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RESUME : Les categories internes sont caractérisées comme cer-
taines classes d’algebr es d’une monade

It is known [2] that the category Silnpl E of simplicial objects in E is
monadic above the category Sp Simpl E of split augmented simplicial ob-
jects in E. From this monadicity is extracted in [1] the monadicity of the
category Grd E of internal groupoids in E above the category Pt E of split
epilnorphisms in E, when E is left exact. Now, via the nerve functor N,
the category Cat E of internal categories in E has an intermediate position :
Grd E  Cat E  Si1llpl E. The aim of this note is to precise the place of
Cat E with respect to this monadic complex.

If we denote by U the forgetful functor S’ilzzpl E -&#x3E; Sp Silnhl E, then,
given an internal category xl in E, the split aug111ented sllllpllclal object
UNX, is the "serve" of a category with a given choice of initial objects in
each connected component. Let us denote by In Cat E the category whose
objects are the internal categories in E equipped with such a choice and whose
morphisms are the choice preserving functors. Let U : Cat E -&#x3E; hz Cat E
be the functor induced by U via the previous remark. This functor U has
an adjoint, namely the restriction F of the adjoint F of U. The functor U
is no more monadic, but the comparison functor K : Cat E -&#x3E; Alg !7 ’ F is
fully faithful (let us say, then, that U is submonadic). Furthermore internal
categories are exactly those algebras ,-; U . FZ -&#x3E; Z in hi Cat E which are
cartesian with respect to a certain fibration In Cat E -&#x3E; E.

1 Université de Picardie Jules Verne
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1 Initialized categories
An internal category --"Y1 in E :

will be said initialized when it is equipped with a split augmentation as a
2-truncated simplicial object :

That means that there is a given choice of initial objects in each connected
c1JOllent and that X-1 1 represents the object of those distinguished ele-
l11ents.

Example: Given any category X1, then the category Dec X1 is canon-
ically initialized :

We shall denote by X 1 an initialized category and by In Cat E the cat-
egory whose objects are the initialized categories, and whose morphismes are
the functors preserving the split augmentation. This category is clearly left
exact and the previous example induces a left exact functor U : Cat E -&#x3E;

In Cat E, where U(X1) is Dec X1 with its canonical initialization.
There is also a functor F : In C’at E -&#x3E; Cat E which associates to X,

its underlying category XI. Furthermore P - U = Dec and there is a natural
transformation : E1 X1 : Dec X1 -&#x3E; X1 :
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where E1X1 : Dec X1 -&#x3E; X1 is a discrete cofibration. On the other hand there
is a natural transformation n1 X1 : X1 -&#x3E; U. FX 1 : 

These natural transformations clearly satisfy the equations which Illalie F a
left adjoint of U. We shall denote by (T, n, 03BC) and by (Dec, E, v) the monad
and the comonad induced respectively on In Cat E and on Cat E by this
adjunction.

2 In Cat E as a fibered category
Let us denote by Izo : Iii Cat E -&#x3E; E the functor associating X-1 to XI. It is

left exact and has a right inverse right adjoint T1, where, for every ob j ect X in
E, T1X is the discrete category dls X with its unique possible initialization.
Now, hi Ccl,t E being left exact, the functor /to is a fibration. A morphism
f : X1 : -&#x3E; Y1 is cartesian if and only if the following square is a pullback :

Proposition 1 The morphism f 1 is cartesian if and only if its underlying
functor f1 = F(f1) is a discrete cofibration in Cat E.

Demonstration :

The category hl h0X1 heing discrete, the functor T1 lzo II is a discrete

cofibration. Now if f 1 is cartesian, the previous square is a pullback and f,
is a discrete cofibration.
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Conversely let us suppose that f 1 is a discrete cofihration and let us

consider the following diagram where the lower right square is a pullback :

Then k1 is a discrete cofibration and also the factorization gi. Let us

show that g, is an isomorphism. Thanks to the Yoneda imhedding, it is

sufficient to do this with E the category of sets. Let Z he an object of Z 1 and
s1Z : s0Z -&#x3E; Z he the associated initial map in its connected component. The
object s0Z is then a uniquely determined object in a connected component
of ..X" 1. The functor 91 being a discrete cofibration, it determines a unique
map s0Z -&#x3E; ..IY above s,Z. The object Y is the unique object above Z.
The functor f 1 is then hijective on the objects and a discrete cofibration.
Consequently, it is an ison10rphis111. 2013 QED (Proposition 1)

Remarks

(1) That f 1 is cartesian imhlies that the following square is a pullback :

(2) That f1 is cartesian ilnplies that f 1 is also a discrete fibration.

(3) Clearly the fulctor 171X 1 : X1 -&#x3E; U . FX1 is cartesian.

(4) The functor f, : X1 - Y1 in Cat E is a discrete cofibration if and
only if U(f1) is cartesian.
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3 The comparison functor K : Cat E -&#x3E; Alg T is fully
faithful

The following diagram in Cat E determines a levelwise split fork in E and
tlms a coequalizer in Cat E :

Proposition 2 The comparz’son functor h : Cat E - Alg T is fully faithful.
This result is a consequence of the following proposition.

Proposition 3 Let ( U, F, n, E) : X -&#x3E; Y be an adjunction, and let

be the monad it defines on Y. The comparison functor h : X - Alg T is
fully faithful (i. e. the functor U is submonadic) if and only if for every object
X in X, the map E.Y is the coequalizer of EF UX and F UEX .

The demonstration is straightforward.

4 The comparison functor K is not an equivalence
Let Sim pl E and Sp Siinpl E denote respectively the category of simplicial
objects in E and the category of split augmented silmplicial objects in E. Let
U : Simpl E -&#x3E; Sp Simpl E denote the functor cancelling the upper indexed
face maps. It has a left adjoint F.

Any internal category X1 can be completed into a simplicial ob j ect NX1
(its nerve) by means of simplicial kernels. In the same way, ally initialized

category X1 can be completed into a split augmented simplicial object nX 1.
Whence the following diagram:
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The functor s N and ?i. are full embeddings. Grd E denotes the category of
internal groupoids, i.e. internal categories such that the following square is
a pullback :

Pt E denotes the category whose olJjects are the split epimorphisms and
whose morphisms are the coherent squares. The functor Z is the inclusion,
and the fullctor j associates to each split epimorphislm the initialized groupoid
obtained by the kernel groupoid of the given epimorphism. Clearly j is a full
embedding.

Thus (U, F) and (U, F) appear to be successive restrictions of the ad-
junction (U, F). The functor (U, F) is always monadic (See [2]). When the
idempotents split in E, then furthermore F is comonadic. When E is left
exact, U is monadic (See [1]) and F is comonadic.

It would be easy to show that F is comonadic (the dual of proposition 3,
plus the existence of kernels). We are going to show that U is not monadic.

Let 2 be the category : 0 -&#x3E;a 1. It is clearly initialized in a unique possilJle
way. The category T2 has two connected components : 0 -&#x3E;a a and 1 . Let
Izl be the unique possible initialized functor: T2 -&#x3E; 2, which is a left inverse
for 7112. It is easy to check that it deter milles an algebra on 2. Now, the
simplicial set Z determined by 71 hl, as an algebra on U . F, is not the nerve
of a category. It is the smallest silnplicial set associated to graph 1:0-&#x3E;0.

5 The monad T, n, 03BC) is transversely cartesian with re-
spect to h,

We saw that 171X 1 is cartesian. Now J1X 1 = UEX1. But EXI is a discrete
cofibr ation and U sends discrete cofibr ations on cartesian maps. So, J1X 1
is cartesian. Fur ther more T = U. F pr eser ves cartesian maps following
proposition 1 and remark 4.

We shall say then that (T, n, p) is transversely cartesian with respect to
the filration h0.
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6 Characterization of Cat E

Proposition 4 Cat E zs isomorphic to the full subcategory of Alg T whose
objects are the algebras x1 : TX1 -&#x3E; X 1 in In Cat E such that xl is cartesian.

Demonstration :

Proof: Let X, he a category ; then the algebra K(X1) is : UE1 X1 :
UDec X1 -&#x3E; UX1. But E1X1 is a discrete coiibration and UE1X1 is car tesian.

Conversely if x1 : TX1 -&#x3E; X 1 is car tesian, then, following remar k 1, the
following diagr am is a pullbach :

and the 3-truncated simplicial object it determines is underlying to an inten-
nal category.

7 The case of Grd E

Why is Grd E monadic and not Cat E ? If we denote again by (T, q, p) the
restriction to Pt E of the monad (T, 17, 03BC) defined on In Cat E, this monad
is again transversely cartesian, but furthermore it has the particularity to be
normal, i.e. the following diagram is a always pullback :

Then any algebra x : TX -&#x3E; X in Pt E induces an internal groupoid in Pt E
(see [1]) : 
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Now 03BCX is cartesian. So Tx, being "equal to pX up to isomorphism" (thanks
to the previous groupoid structure), is again cartesian. Then Tx . ATX is
cartesian since both Tx and ATX are cartesian. But Tx . ATX = AX - x and,
AX being cartesian, x is cartesian.

Consequently, every algebras : TX - X is cartesian and the comparison
functor h : Grd E -&#x3E; Alg T is an equivalence.

A last remark : if again (T, n, p) denotes the monad on Sp Simpl E
induced hy the adjunction (U, F), the objects of hi Cat E are precisely the
objects S of Sp Simpl E which have their map 03BCS : T2S -&#x3E; TS cartesian in
Sp Simpl E with respect to the fibration k0 : Sp Simpl E - E defined by
ko(S) = S-1
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