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CAHIERS DE TOPOLOGIE VOL. XXXI-2 (1990)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

THE CLASSIFYING TOPOS OF
A CONTINUOUS GROUPOID. 11
by Ieke MOERDIJK !

RESUME. Dans cet article. on construit une complétion
¥vG pour chaque groupoide G, et on montre que tout
foncteur continu exact BG-BH entre les topos classifiants
des groupoides continus G et H est obtenu par produit
tensoriel avec un espace muni d'une action de yG a gau-
che et de YH a droite ("bi-espace”). On en déduit une
description complete de la catégorie des topos en termes
de groupoides continus et de tels bi-espaces.

If G is a continuous groupoid, i.e., a groupoid in the ca-
tegory of spaces, it is natural to consider the category of étale
G-spaces. These form a topos BG. called the classifying topos
of G. It arises naturally in many contexts, e.g. in foliation theo-
ry where G is a groupoid of germs of local diffeomorphisms of
a foliated manifold (see e.g. [11]). and BG is the étendue asso-
ciated to a foliation (already described by Grothendieck and
Verdier in [12], 1V.9).

The generality of the construction is beautifully demons-
trated by A.Joyal and M. Tierney, who show in [6] that every
Grothendieck topos is equivalent to a category of the form BG,
for a suitable continuous groupoid G.

In Part I (cf. [7]). I discussed many properties of the
functor G=BG. This functor is not full, but it was proved there
that the category of toposes can be obtained from a category of
groupoids by a calculus of fractions. in the sense of Gabriel and
Zisman (see [2]).

The aim of this second part is to describe the morphisms
of toposes BH—BG in terms of the continuous groupoids G and
H, in a way which is somewhat in the spirit of Morita theor)
for modules over commutative rings.

The argument proceeds in two steps. First, I construct for
each continuous groupoid G a completion vG. vG is a conti-
nuous category (no longer a groupoid). but the étale yG-spaces
are the same as the étale G-spaces. i.e.. there is an equivalence
of categories

1 Supported by a Huygens Fellowship of the ZWO.
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I. MOERDIJK

() BG ~ B(yG).

The second step is to show that for each geometric morphism
f: BH-BG there exists a space R(f) equipped with an action by
YH on the right and one by vG on the left. such that the in-
verse image functor f* comes from tensoring with R(f): there is
a natural isomorphism

(2) E®_ gR(f) = f*(E)
for each étale G-space E.

Just like the category of commutative rings can be -made
into a bicategory with bimodules as morphisms and the tensor
product as composition (cf. [1]). such spaces equipped with an
action of YG on the left and one of YH on the right — call
them bispaces — form the morphisms of a bicategory with con-
tinuous groupoids as objects and tensor-product as composition.
It is a formal consequence of (2) that the 2-category of toposes
is equivalent to a bicategory of groupoids and such bispaces, as
I will spell out in Section 6.

Although this paper is a sequel to Part I ([71), familiarity
with all of Part I is by no means necessary. However. I do as-
sume that the reader is familiar with the preliminaries listed in
Section 1 of Part I (appropriate references are given there), as
well as with Sections 5 and 6 of Part I. Some of the basic facts
from Part I are quickly reviewed in Section 1 below.

I should also say that the results of this paper have
already been worked out for the case of continuous groups (not
groupoids) in my paper [8]. The technical details are much ea-
sier for groups. and for the reader with an interest in these
details. it might be more pleasant to read [8] first.

The author is much indebted to A.Kock and the referee.
Both spotted numerous inaccuracies. and moreover made various
suggestions which have improved the paper substantially.
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THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID. il

1. THE TOPOS ASSOCIATED TO A CONTINUOUS GROUPOID.

In this section, we briefly review a construction of the
classifying topos of a continuous groupoid. discussed in Part I.

1.1. DEFINITION OF BG (see I, 5.1-5.4). Let G be a continuous
groupoid, i.e.. a groupoid object in the category of spaces (in
the generalized sense. see e.g. [6]). As in Part I, we write
dg:GGy and d4:G~Gg for the domain and codomain.
m:Gyxg,G, = G, for the composition (m(f,g) = f-g). and
5:Gg—G, for the identity: so these are all continuous maps of
spaces satisfying the usual identities. As in Part I. we will
always assume that dy and d, are open maps (it then follows
that m must be open. too).

A G-space is a space p:E—Gy over Gy equipped with an
action of G on the right. --E.g G,—E. satisfying the usual iden-
tities. So a G-space is a triple (E.p.-). but we usually just write
E to refer to the triple. A map of G-spaces f:E-E is a map
over Gg which preserves the action.

A G-space E is called open. resp. étale. if the map
f: E->Gg is open. resp. étale (i.e.. a local homeomorphism). Note
that this implies that the action E~G0G1—>E is an open map. BG

is the full subcategory of (G-spaces) consisting of étale G-spa-
ces. BG is a topos. called the classifving topos of G. The cano-
nical geometric morphism whose inverse image is given by for-
getting the action is denoted by mg: Sh(Gy)—BG.

The construction is functorial in G: if ¢: H=G is a homo-
morphism of continuous groups. . induces a geometric mor-
phism B¢: BH-BG (1.5.4).

The construction relativizes to an arbitrary base topos: if
G is a continuous groupoid in a topos E. the étale G-spaces in
E form a topos over E. which we denote by B(E.G). An impor-
tant property is the stability of the construction under change-
of-base (not in the least because stability allows us to use
point-set arguments. as was pointed out throughout Part I: cf.
in particular 1.5.3). We restate 1t e\plicitly here.

1.2, Stabllity THEOREM (1.6.7). Let p: F~E be a geometric mor-
phism. and let G be a continuous groupoid in E (we assume that
G, — Gy is open). Then there 1s a canonical equivalence of

toposes
F> cB(E.G) ~ B(F. p#(G)).
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1.3. Generators for BG (1.6.1). Let G be a continuous groupoid,
and let UCGy be an open subspace. An open U-congruence is
an open subspace N CG, such that dg(N),d,(N)CU and N cont-
ains all identities (s(U) CN) and is closed under inverse and
composition. We tactor out such an N to obtain an étale G-spa-
ce, namely

(1) G,Nd{ Y W/N,
a space over Gy by dg, with action given by composition.

Intuitively one can think of G, Nd;XU)/N in point-set
terms: the elements are equivalence classes [g] of morphisms g:
x-x' in G with x'<U. where two such g;:x = x; and go:x =x,
are equivalent if g, g7'«N. The action of G on the right is
described by

[gl-h=1ghl =[Lm(g,h)].

Since the quotient in (1) is stable. one may use change-of-base
techniques to actually exploit this point-set description of the
étale G-space G, Ndj XW/N.

The étale G-spaces which are of the form (1) generate BG;
the corresponding full subcategory is denoted by Sg. or S(G).

1.4. Maps between generators. As explained in 1.6. a section
a: V-GyNd;(W/N
(i.e., dg-a =idy) where VCG is an open subspace, induces a
morphism
(2) i:G,Nd{YV)/M - G;Nnd{NW/N

if M is a sufficiently small open V-congruence. In point-set no-
tation, & is described by

(3) allgd = laldg)-gl.

Every morphism in S(G) is of the form (2). A generating G-space
of the form (1) always has one distinguished section given by
the identity, which we denote by

s:W =G, Nd{HW/N
for any open WC U.

1.5. Inverses in S(G). Let
d:G,Nd{\V)/M — G,nd{ U/N

be a map in S(G) coming from a section a: V = G, Nd{ AW/N
as above. Then there is a collection {U;} of open subspaces of
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THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID. 1I

U, with open U;-congruences N; CN. such that there are sec-
tions b;: U;—= G,Nd{V)/M with the property that
{b;: GyNd{WU)/N; = GNd{UV)/M};

is an epimorphic family, and for each i, 4-b; is the natural
subquotient map G, Nd7y YU;)/N; = G, Nd{XU)/N.

To see this. we use a point-set argument (and implicit
base extension). Let £ be a point of G; Nd;XV)/M (in any base
extension) and choose (by going to some further open surjective
base extension) a point g: z — 3 of G, with 3 ¢V and £=1[gl.
and a point h: 3 - x in G, with x «¢U and a(y)=[h]. Let

b.:U, - G,Nd]AV)/M

be a section through the point [h™%: x—) 1. Since the space
G,Nd{UV)/M is étale over Gy, we may assume (by choosing
U, small enough) that &-b,= s (the identity section. cf. 1.4).
Choose M, small enough for b, to induce a map

G,Nd{ U)/M, = G Nd{UV)/M.
Then clearly &-b, = §; moreover
b lg-hl=1I[g h b x)]=1[gl=E.

1.6. Continuous categories. Notice that the definition of the ca-
tegory BG of étale G-spaces given in 1.1 also makes sense if G
is just a continuous category (a category object in the category
of spaces), rather than a groupoid. Below. we will use the same
notation BG for the category of étale G-spaces in the case of a
continuous category G. BG is still a topos, but many of the
results of Part I do not extend to this case where G is a conti-
nuous category.

2. LAX FIBERED PRODUCTS OF TOPOSES.

Let G - FE « F be geometric morphisms of S-toposes (whe-
re S is the base). The lax fibered product. or lax pullback is the
universal solution (up to equivalence of hom-categories) to ha-
ving a pair of geometric morphisms T = F. T = G, together with
a natural transformation (all over )

T/’IJ:\E
~.
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(between the inverse image functors). We write F =g G for this
universal topos. and

| |
() l E/ l
G E

for the corresponding universal square. It can be constructed as
a pullback
F=g G ———— F.gG

|

E=EE EfSE

(2)

2.1. LEMMA. The construction of lax fibered products is stable.
i.e.. if T»S is an extension of the base. then

(F=pG)xg T =~ (FxgT) SEgT (Gxg 1.
PROOF. Obvious.

The following theorem was found independently by Pitts
([10]. Theorem 4.5) and the author (preprint version (1986) of the
present paper): our methods of proof were completely different:

2.2. THEOREM. let F - E — G be geometric morphisms with lax
fibered product F =g G. as in (1). If F>FE is open. then so is the
projection (F=gG)-G.

For the proof of 2.2, we shall use the Sierpinski space S:
it has two distinguished points. an open 1 and a closed one O.
For toposes T and E over S, a geometric morphism h:
TxgSh(S)—E is equivalent to a pair of morphisms hg.h: T - E.
together with a natural transformation hp = hj. Clearly the
topos F=g G of (1) can also be constructed as the pullback

F=’EG F-gG

(3)

ESh(S) E xg E
where ESh(S) js the exponential of S-toposes [5].

PROOF of 2.2. Let us first observe that it suffices to prove that
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for an S-topos E , the evaluation evy E Sh(S) . E is open. In-
deed. one can construct the pullback (3) in two stages,
F=gG=(ESPSh L F)xp G
as in
ESh(S)\EF -_— F (E Sh(s) F) EG

A

ev ev 4t 4
ESh(S) 0 s F ESh(S)XEF A b SN

and use that open maps are stable under pullback.

To prove that evy: EShS F s open, we follow an idea
similar to the proof of [91, 2.1. If E =Sh(X), for a space X in
S, then Sh(X)Sh(S) » Sh(XS), where the exponential XS of spaces
has a presentation of the form (Ugy,Uy) where U;CUyCX are
open subspaces of X. Then (Ug,U,) C XS is the subspace defined
by saying that a map h: T->XS factors through (Ug,U,) iff

hgs hyas maps T—X. and hg(T) CUy. h(T) C U,.
Clearly ev,(Ug. .Uy =U, so ev,is open.

If E is any topos, a construction of Joyal (see [61) gives
a space Y and an open surjection p: Sh(Y)—E. By considering
the diagram

Sh(Y)Sh(S _p_s_h_(i Sh(S)

(1) evlj Jev 1

Shiv)—2——

we find that it is enough to show that Sh(Y)Sh(S)— ESh(S) ;g 4
(stable) surjection. Recall that Sh(Y)—E is constructed as a pull-
back

Sh(Y) Sh(Xyy)
(2) ‘
E stul

where E — S[U] is a localic geometric morphism into the object
classifier S[U] and Sh(Xyy) classifies partial enumerations of the
generic object U. So by exponentiating the pullback (2) by Sh(S).
it is enough to show that

(3) Sh(X)ShS — sruIshs
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is a stable surjection. We will show that for any geometric
morphism f: T=STUISPS (T any topos over S) there is an open
surjection g: T'= T and a commutative diagram

T L Sh(XSMS

(4) gl
f

T ———— sruIshs

from which it follows that Sh(X)SPS) — SLUISMS s a stable
surjection. By working in T it is enough to take the case T = S
(="sets"). The given map f corresponds to a pair Ag,A; of sets
together with a function a:Ag—A, We need to find partial
enumerations IN D U; Ei A; (i =0,1) such that a-gg=e; on
UgNU, in some base extension T', for this precisely defines a
map h: T > Sh(X)SPS) making (4) commute. There is an open
surjection T° - T such that there are partial enumerations

N5V, 2o A, in T. Let Ug=Vg, U= Vo+Vy: then
Uy, U,CN+N ~N. and UgNU,= V4 CIN+N.

so if we define eg=Pg, ¢Vg=afy, 4V4=P,, the proof is com-
plete.

We furthermore have:

23. LEMMA. Let F ~E — G be geometric morphisms with lax fi-
bered product F=gG. If F and G are spatial toposes (i.e.. Fx
~ Sh(X), G~ Sh(Y) for spaces X.Y ). then so is F=gG.

PROOF. If F and G are spatial, so is FxgG. Moreover.
E=g E->ExgFE is spatial (since the left hand side classifies mor-
phisms of F-models while the right hand side classifies pairs of
E-models: the latter kind of structure bounds the former). So
also the top arrow in the pullback (2) is spatial. Since the
composite of spatial morphisms is spatial. F=gG is a spatial
topos.

3. COMPLETION OF CONTINUOUS GROUPOIDS.

In this section we will construct a continuous category YG
for any continuous groupoid G. ¥vG is a kind of completion of
G, which still defines the same topos; i.e., there is an equiva-
lence B(yG) ~ BG, induced by a continuous homomorphism G-=vG
of continuous categories.

3.1. DEFINITION of ¥vG. Let G be a continuous groupoid, with
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classifying topos BG. We define a continuous category YG as
follows: the space of objects is the same as that of G, i.e,
(YG) g =Gg, and the space of morphisms (yG), is defined by the
lax fibered product

Sh(yG ) —dr Sh(Gy)

1 dul g/ lﬂfc,

Sh(Gg) —S— BG

Notice that this lax fibered product is indeed spatial by 2.4, so
¥G4 is uniquely defined as a space. The two geometric mor-
phisms dg and d4 in (1) define the domain and codomain. The
identity s: YGg—~YG, is defined by the universal property of (1)
and the identity transformation from =g to itself. Composition
in YG, which is a map

(2) m: (YG) 134G (YG) 1 = (1G) 4

(where the pullback in (2) is along dy on the left, d; on the
right) is defined by the universal property of Sh(yG,) as follows:
write 7, and m, for the two projections

YGy »yGaYG1 —= YG,
so that there is an isomorphism

and consider the composition of 2-cells
I'n T
(4) TG d {74 —1, Tgdgny ® Tgdym, ___5____2__) TgdgTs-

Since (1) is a lax fibered product, there is a unique continuous
map of spaces
m:YG xGgy¥Gy > YGy such that dym = dyny. dgm = dgm,.

and the composition (4) coincides with &-m:

Sh(vG 1~y G, 7G
G Y\GOY v dqm,
m 3
() dom\, Sh(1G) —1— Sh(Go)
dﬂl E/ JTEG

Sh(Gg) —S BG

It is somewhat tedious but straightforward to verify that G
thus defined is indeed a continuous category. by using the uni-
versal property of vyG,. Alternatively, by stability (3.2 below)
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composition in YG can be described in point-set language (using
change-of-base) and it is then obvious that the laws of a cate-
gory hold. cf. 3.5 below.

Notice that the definition of ¥G is functorial in G.

3.2. Stability LEMMA. Let p: F-E be a geometric morphism. and
let G be a continuous groupoid in E. Then there is an isomor-
phism of continuous categories in F. p*(yG) =y p®(G).

PROOF. Obvious from 2.1.

3.3. The continuous homomorphism %: G-vG. Let G be a conti-
nuous groupoid in the base topos, with associated continuous
category yvG. The action of G on étale spaces defines a natural
transformation p: ding~ dpng:

Sh(G) —1—— Sh(Gy)

(1) dg by lTCG
TG
Sh(Gy) BG
so by the universal property of 3.1 (1). there is a unique conti-
nuous map
943G, = (YG)4 such that dgd; = dg. d¥; = d,and p=E-9,.
Letting 9g: Gg—(YG)y be the identity, we obtain a continuous
homomorphism
(2) %: G - ¥G.
Clearly. the definition is natural in G and stable under change-
of-base. We will come back to this map % in 3.9 below.

3.4. REMARK. Let 61C~(G1 be the subspace of invertible mor-
phisms in the category +vG. with inclusion i:G;C, vG, Then
E=E-i is an isomorphism and

Sh(G,) — 31— Sh(G,)

(1) dg TG

Eo
TG
Sh(Gg) —S——— BG

is a pullback of toposes. The continuous groupoid G (with éo=
Gg) is precisely the étale completion of G considered in 1.7.2.
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3.5. Points of vG. Let G and YG be constructed in the base to-
pos S. A point of vG, is a triple (A,x".a) where s and A’ are
points of Gy and « is a natural transformation a: ev . —ev.: he-
re ev,:BG—S is the functor taking an étale G-space E to its
fiber E, over x. Codomain and domain are given by:

(1) dg(x,x' ) = x, dx.x'a)= x'.

Clearly if g: v—= ' is a map in G (a point of G,) then the action
of g defines a natural transformation

(2) g evy = evy
given in point-set notation by
(3) gele)=eg.

So (A,x,g*) defines a point of yG,, and this describes precisely
the map ¥ on points:

4) 8(g) = (dyg.d,g.8").

Notice that by stability and change-of-base. % can actually be
defined by formula (4), provided one interprets g as a point of
G, (or really p®G, but we suppress base-extensions from nota-
tion) in an arbitrary base extension p: E—S.

Composition in yG,; can be described similarly: to define
m: YGpygyYGy = YGy, it is enough (Yoneda Lemma) to define
for each test space T a function

mr: Cts(T.yG,) *Cts(T,Gg) Cts(T,7Gy) = Cts(TyG,y).

natural in T. But a pair of continuous maps T—vyG, in the do-
main of my is nothing but a pair of points of YG,, two triples
(x,x",a) and (A", x",B), not in S but in the base extension Sh(T).
and my({x.x"a),(x’,x",p)) is just (x,x",a-B). So from the point
of view of test spaces. it is clear that composition is associati-
ve, etc.

Let us consider a point (x.\.a) of yG; more closely: First
of all. a:ev,- —ev, is completely determined by its components
at generators G,Nd ;YU /N of BG. Moreover. if [g] is any point
of GyNd7{Y(W/N in any base-extension, represented by a mor-
phism g: x'— 3 with 3 <U. then for a small neighborhood V of
x' we can find a section a:V — G,Nd;(U)/N of the étale G-
space G,Nd{YU/N such that a(\)=[gl. and this defines a
morphism in BG,

i GNd{YVI/M = G Nd{ HW/N with d(\) =[g].

for M small enough (see 1.4). Now « (Lsx\'D is re-

GyNd{ HVi/M
presented by some arrow h: \— z in G where z is a point of V:
naturality of « as in
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- a, —
(G Nd VM) —X—— (GNd{ /N .
O‘l ICX:O‘(Gpd; Lw/N)
(GNdTHVI/M), —=& (G,Ndy HU/N),

gives
aGlﬂdfi(V)/M([g]) = §x(a(G1md;uv)/M)([sx‘]))
= 4, (LhD = La(z) hl.
In other words, o is completely determined by its values

K -1
2 nar 1o [SXDGNATIVI/MY,

where V ranges over all neighborhoods of ' and M over all
open V-congruences. So o corresponds to a unique point in the
space

(5 lj_mvyM(Glﬂd]l(V)/M)x

i.e.. given points \.\" of Gy, the space yG(x,\')C vG,; of mor-
phisms v— \' is precisely the inverse limit (5),
(6) YG(\, ) = l(_i_mv’M(Gmd;’(V)/M)x.

Therefore. we will also write points of vG, as triples
(7) (a,7\".g) where g is a sequence 8) g=1{lgy.mIv.Mm

of equivalence classes [gy p: N = xy pm] with vy p eV (V ran-
ging over neighborhoods of \'. M over open V-congruences).

If G is a continuous group (Gg=1) then (6) reduces to
¥G #~limyg G/M

where M ranges over the open subgroups of G. So YG is preci-
sely the monoid associated to G that I considered in [8]1 (there
¥G was called M(G)).

3.6. Points of vG (bis). By the preceding discussion. we may use
the following scheme to define points of yG{\.\) where \ and
x' are given points of Gy. Suppose Vg2V, 2V,2-- is a neigh-
borhood basis at x', and that M;CG, (i =1,2,....) is a system of
open V;-congruences (cf. 1.3) such that

M1 C M I Vi g = MiN(dg,dy )71V 43 Vi)

which form a cofinal system at ' in the sense that for any
neighborhood W of x and any open W-congruence NCG,, there
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is an i such that V;CW and M;CN. thus giving rise to a map in
S(G),
3: GiNd{UVY/M; - G,Nd{HUW)I/N

(cf. 1.3). Moreover, suppose that Ugz2U 2+ is a neighborhood
basis at x. Let

0 a;; U; = GyNd{Vy/M; (i =0,1,2,...)

be a coherent family of sections of the étale G-spaces
G,Nd{YV)/M;, coherent in the sense that for each i,

a; -
Ujpq—— 21— GyNd; ' (Ve /M4y
@ | E
a; 24
u; G,Ndy UV, /M,
commutes. Then [a;]; defines a point of yG(x.x"): in the form

of 3.5 (8), if V is any neighborhood of x and M is a V-con-
gruence, choose i so large that V;<V, M;sM, so that there is a
map

3: GyNd{UVY/M; » GNd{UVI/M
and let

[gV,M] = §(ai(,\')) eGJ)d{‘(V)/M

3.7. REMARK. If one writes points of yG, as triples (x,\',g)
where g is a sequence as in 3.5 (8), then composition in yG can
be described as follows: if (x,x", h) is another such point, then

(x',x", h) - (x,x,8) = (x,x", k)

where the sequence k has components [kyy] (U a neighborhood
of x", M an open U-congruence) defined by choosing a section
a:V-G,Nd7W/M through [hyyJ on a neighborhood V of x',
letting N be an open V-congruence small enough for a to define
a morphism of G-spaces

i: G,Nd{UV)/N = G,nd; (/M
and then setting [ky \] =d([gy ND).

3.8. A presentation of vG. From the description of points of ¥G,
(in any base extension, by 3.2) it is not difficult to obtain a
presentation of the space YG,, by a preorder equipped with a
stable covering system (L.1.1. [6]. 8IIl.4). The elements of the
preorder B are triples
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(1) [u.N

where U C Gy is open. N is an oper ‘i-congruence, and A is an
open subspace of G,d; HU)/N.

(As an apen cithepace of ~G, [1IN A1 is defined hy sta-
ting that a point (x.x.g) (in an) base extension) as in 3.5 (8)
lies in [U.N.AY iff x'«U and [gy nI¢A (so \edglA)).)

The preorder on elements of the form (1) is generated b)
three conditions:

(i) If W' <U then [U N|U. AUT<[UN.A]:

(ii) If A's A then [U.N,A'1s[U.N,A]l (for given U,N);

(iii) If for given U, N' and N are open U-congruences with
N'CN, and

3:GNd{HW/N = G,Nd{HU/N

denotes the projection (an étale surjection). then for A contained
in G,Nd7 " (U)/N.

(a) [UN,AI<IUN".3"4A)]
and, for BC G,Nd;{W/N’,

(b) [UN',BI<I[UN",3(B)1.

Notice that (a) and (b) imply
(2) [U.N,A] = [U.N.3 1(A)]

since §3 YA) = A.

The covering s)stem on this preorder B is generated by
covers of two Kinds:

(a) If {U;}; covers U in Ggy. then {[U;.NIK;.AlK;];} covers
[UN.AL;

() If {A;}; covers A in the space G,1d; U)/N, then
{LU.N|K.A;1;} covers [U.N,A].

Notice that this is a stable generating system.

Alternatively. one can define B as a semilattice. where
meets are given by:

(3) [U.N.ATALV,M.B] = [UNV.N|[VNM|U.3"HA)N3 YB)]

where § 1(A) is the inverse under
5:G Nd7HUNV)I/INNM) = G Nd{HU)/N,

and similarly for 3~ %(B).

To see that B equipped with this covering system is in-
deed a presentation of yG,. it is enough to show that if PCB is
a subset which is inhabited, closed under meets. and is such
that if a cover of some [U.N,Al is contained in P then so is
(U.N.A] itself. then P gives rise to a unique point of vG,. Let
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v o= (U] IM.A: UM, Al P).

Then ' defines a point of Gy by the covers of type (a) and or-
der-condition (i) (or (3)). Similarly, if [U.M.A] is any element of
P, then

{A;CGNd{HW/M [IUM,A;1¢P)

defines a point [gy pm] of GNd; (/M. and therefore a point
x = dglgu,m) of Gg. Now clearly from (iii). the sequence g =
={[gu,mI]} where U ranges over neighborhoods of ' and M over
open U-congruences. defines a point (x,x",g) of YG,, by 3.5 (8).

In the sequel. we will refer to opens of vG, of the form
[U,M,A] as basic opens. and often (implicitly) use point-set no-
tation

[UM.A] = {(xx,80) | X eU, [gymleA)

(where the right-hand side is considered as a set of points in a
variable base extension).

3.9. PROPOSITION. The continuous homomorphism 9%:G-vyG in-
duces an equivalence of toposes BG — BvG.

PROOF. (As usual. we freely use point-set language as ever)-
thing is stable. and leave base extensions implicit.) Let E be an
étale G-space, and let g: x— 3 be a point of G (in a base ex-
tension). The action by g gives a map g*:E, —E_ which only
depends on 8%(g). To see this, take e <E, and a section a:U—E
through e. where U is a neighborhood of ). By continuity. there
is a neighborhood W C G,N(dgy,d,)~YUxU) of s(U) such that for
any h «W.
(1) aldh)-hea(l).
Let W' be the closure of W under inverse and composition. W’
is an open U-congruence and for any h « W', ald h)-h ea(l). So
if g': x— ) is another point of G, such that $(g)=9(g’), then
[gl=[g'lin GNd;(U)/W'. and therefore there is (in some open
surjective base extension) an h « W' with hg = g'. Then

e g =(e-h-g=e-g.

On the other hand. the action :Exg Gy — E of G on E
can be extended to an action +: Ex(;uyG1 — E by ¥G in an ob-
vious way: if (v.x.a) is a point of vG, (cf. 3.5). i.e.. o ev,. =ev .
then for e <E,

(2) ex(a.v.a) = ap(y).

Clearly e+3(g)= e'g <E, . so this indeed extends the action by
G (which by the preceding can be recovered from the action of
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¥G). It remains to see that the extension is unique. To this end,
it is easier to think of points of yG, as given in the form
(x.3,8) as in 3.5 (8). If e <E,., take a section a: U~E through e;
then ex(x.y.g) is the limit in E,, of the sequence

(3) {a(di(gV,M))*«‘)(gv,M)}v,M
(V ranging over neighborhoods of ) contained in U), by conti-
nuity of the action *:Exgy7Gy - E. ((3) eventually becomes con-

stant, since E_ is discrete.) So * is completely determined by
what it does on YyG-morphisms in the image of 9.
From this. the equivalence BG~ BvyG is clear.

3.10. REMARK. If E is an étale G-space, the action Exg,G1~ E
is an open map. as pointed out in 1.1. It is easy to see that the
extension Exg vG,— E described above is again an open map.

4. BISPACES.

In this section. G and H are continuous groupoids, with
associated completions yG and YH. We will discuss how certain
spaces equipped with an action by yG, as well as one by vH,
give rise to geometric morphisms BH-BG.

4.1. vG-yH-bispaces. A YG-vyH-bispace is a space R equipped
with an action of YG on the left and one of YH on the right,
such that these commute; so there are maps pg:R->Gy,
pu: R-Hyg, and actions

*:YGleuR_)R. 'ZR‘AHDYHlﬁR

satisfying the usual unit- and associativity identities. When G
and YH are understood. we will just speak of bispaces.

If R and R’ are two yG-yH-bispaces, a homomorphism f:
R-R' of bispaces is a continuous map of spaces which is both a
map of yG-spaces and one of yH-spaces; i.e.. f satisfies the
usual identities
paflr) = pg(r). puyf(r) = pylr),
f(E+r) = E+F(r) and flr-n = Ff(r)-q.
This defines a category (yG-yH-bispaces).

A bispace R is called open if
(i) py:R—~Hg is open:
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(ii) both action maps *: YG,xGnR—*R and -: RxHoyHI—*R are
open;

(iii) the diagonal action u:YGyxg vGyixgy,R = Ry R defined
by p(EE,r) = (Exr.E'*r) is open
(so the pullback YGyxg,vGy in (iii) is along dg on both sides).

4.2. Tensor products. If E is a +yG-space, with action
Exg,vYG,~E, and R is a bispace as above, we ma)y construct the
tensor product E®,gR as the coequalizer of spaces

E x*

SR E'V‘GUR — E®,GgR.

If E®* and <R are open maps. the coequalizer (1) is stable ([8],
Lemma 1.2), so in that case we can use change-of-base techni-
ques and point-set arguments to investigate the structure of
E®yGgR. In particular. the right yH-space structure of R can
then be used to define a right action of YH on E®,GR. So if R
is open. (1) defines a functor

(1) E)\GUA{G‘II\GOR

(2) —®~yGR: (open yvG-spaces) — (open yH-spaces)

where we call a YG-space E open if the action E®ygvG; —~ E is
an open map.

If E is an étale G-space. we define E®,gR as the tensor
product (1), where E is regarded as an open yG-space by 3.9,
3.10.

4.3. LEMMA. If R is an open bispace and E is an étale G-space,
then E®,GR is an étale yH-space. So R defines a functor
—8®yGR: BG— BH.

PROOF. Since —&,GR preserves colimits. it is enough to show
that —®,GR sends generators to étale yH-spaces (colimits in BG
are computed just as colimits of G-spaces). Take a generator
G,Nd; /N (cf. 1.3). Write [UN.s(U)] for the basic open (3.8)
of vG, given by the open set s(U)CG,Nd; U)/N. where s:
U-G,Nd;(W/N is the section coming from the “identity”
5:Gg—G,. Let Ry=RNpgl(), and write Ry/[U.N.s(U)] for the
quotient of Ryy by the action of [U,N,s(W]: i.e.,

T
(1) [UN,s(N1®,GgRy —— Ry —1= Ry/LUN, s(W)]
*_

is a coequalizer. Clearl)
(2) (GNd;AW/N) &R ~ Ry/[UN.s(WD)].

Now consider the following diagram. in which ¢ is open by as-
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sumption (cf. 4.1 (iii)). as is the quotient map g (by [8], Lemma
1.2), so the diagonal A must be open.

[UN. s(W) 1xg, [UN, s(WIxg, Ry —*— Ry~pRu

- v

Ry /[UN, s(U)] Ru/[UN, s(UW) Ixgg Ru/TUN, s(U)]

Since pgy: R—=Hy is open, it follows that py: Ry/[UN,s(U)1-H,
is étale ([6]1, § V.5). This proves the lemma.

4.4. Left flat bispaces. A YG-yH-bispace R is called left-flat if
R is open (4.1) and —®,GR preserves finite limits of étale G-
spaces, i.e.. (cf. 4.3) the functor —®,GgR: BG—=BH is left-exact.

So a left-flat bispace R induces a geometric morphism g(R):
BH-BG given by
(1) g(R™(E) = E®,GR.

If R and R are both left-flat bispaces and y:R—R' is a homo-
morphism of bispaces, then clearly we obtain a natural transfor-
mation —®yGR - —®,GR'. i.e.. a 2-cell g(R)— g(R). So if we
write Flat(yG.yH) for the full subcategory of bispaces whose
objects are left-flat. and Homg(BH.BG) for the category of geo-
metric morphisms BH—BG over the base topos S. we obtain a
functor g: Flat\yG.yH) - Homg(BH,BG).

4.5. PROPOSITION. Let G.H.K be continuous groupoids. and let
R be an open vG-yH- bispace. S an open YH-vK- bispace. Then
(i) R®4GS is an open YyG-yK-bispace.
(ii) for any open yG-space E. there is a canonical isomor-
phism
(E®,GRI® HS ~ E®,G(RO®,HS).
(iii) if R and S are left-flat. so is R® HS.

PROOF. (i) Consider the diagram

R® 1S
y \
RpoS —5 S —p— Ko
T2
R P H,
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where g is a quotient map. Since py is open, so is 75, and hence
since pg is open, pgm, is open. Since g is a surjection. it follows

that R®,GgS — Ky is open.

To see that the action + of yG on R®,GS is open. consider
the diagram

k. S

YGI“GDR"‘HQXS RHOS
YGirg q
¥
YGl \GD(R®YH S) _— R®"(H S

Since * and g are open surjections, so are g-(*x<S) and YGxgq.
Hence

*:']’GirxGD(R(XJ.{HS) - R®,HS
is open.

The proof that the action (R® HS) -k, YKy = R& LS is
open is similar.

Finally. we show that the diagonal action
ki ¥G1-GyYG1°GoR®vHS) = R& 1S
is open. Consider the diagram

(R<R)rp1 g (YHy g YHy) o1y S ¢

(RxR)xp

(R R) 1S

(1) (R<R)xgq g b1 (S*i¢ o S)

(gxg)t

(R®- 1 S) > (RO HS)

where in (1), p is the diagonal of S (an open surjection by hypo-
thesis). 1 interchanges the second and third coordinates, gq:
RKHDS - R®,HS is the quotient map. and ¢. ¢ are described in
point-set notation by

(r.r' h.h'.s) = (r-h.r'-h',s), e(r.r.s) = (r&s.r'es).

The diagram commutes (by the identity r-h®s = r® hs for points
of R® HS). ¢ is surjective (it splits). while (R-R)-yu and (g q)t
are open surjections. so ¢ is an open surjection. Next. consider
the following diagram where y' is the diagonal action of R and p
that of R®,HS.
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1~
YG 1G4 YG1 G R *HS) = G 1%G41C17G,(R®vHS)
s /
(2) RXHURXI-iOXS
u
¢

(R®yH S)xi  (R®OyHS)

Since ¢ and ' are open surjections. while g is a surjection, ¢ must
be an open surjection.

(ii) The coequalizer

EXGOYGleOR

E‘GOR > E®yGR

is stable if E is an open yG-space (as noted in 1.2): therefore
one obtains some other coequalizers from it, and similarly for
the coequalizer defining R®,HS. These fit together in a 3x3
diagram. and the argument then proceeds as in [4] p. 60 (proof
of the associativity of composition of profunctors).

(iii) This follows from (i) and (ii).

S. BISPACES INDUCED BY GEOMETRIC MORPHISMS.

In this section we will prove our main result. namely that
every geometric morphism comes from tensoring with a suitable
bispace.

5.1. Construction of the functor R. Let G and H be continuous
groupoids. with completions YG and YH respectively. as discus-
sed in §3. and let f: BH-BG be a geometric morphism. The re-
presentation R(f) of f as a bispace is the space defined by the
lax fibered product

PG

Sh(R(f)) Sh(Gy)
(1) Pu 5% TG
TH f
Sh(Hg) BH BG

Usually, we will just write £ for the universal natural transfor-
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mation E(f): p&nG&- pamyaf’. Notice that the lax fibered pro-
duct square (1) indeed defines a unique space R(f), by 2.4.

The aim of this section is to show that R(f) is an open
YG~-vH-bispace, and that there is a natural isomorphism
—®yGR(f) ~ F* of functors BG-BH.

5.2. Bispace structure of R(f). We will show that R(f) has a
bispace structure given by an action of yG on the left and one
of YH on the right. There are two possible approaches: one is
to use the universal property of R(f) (similarly to the approach
in 3.1). Alternatively, one can use change-of-base techniques and
work with points of R(f); we shall follow the latter approach.
It is clear from the definition that a point of R(f) is given as a
triple

(1) (x,),0)

where x ¢Gy and y ¢Hg are points, and o is a natural transfor-
mation
(2) o: evy, —ev, f*

(recall that ev,.:BG—S takes an étale G-space E to its fiber E,
over x). _

In 3.5, we described points of YG, as triples (x,x",a) whe-
re a:ev, —ev,. The action v of YG on R(f) on points is simply
described by

3) (x,x"0)*(x,y,0) = (x',y,00a)

(where we write —*— for v(—,—)). Similarly, denoting the action
g of YH on R(f) by a dot, the map w:R(Axy YHy = R(F) is gi-
ven on points by

(4) (x,)",0)- (3,3 B) = (x, 3.0 (B-F)).

It is important to note that (3) and (4) apply to points of ¥G,
YH and R(f) defined over an)y base extension, since by stability
of the construction involved, p®(R(f))=R(p*f), in analogy with
3.2. Therefore, using the familiar method of test-spaces and ba-
se-extensions, (3) and (4) can be applied to actually define the
action maps ¢ and v. From this point of view. it is clear that
the bispace identities hold for g and v.

We remark that the construction of R(f) is functorial in f:
if f,g:BH—BG are two geometric morphisms. and t: f*— g* is a
natural transformation, the universal property of R(g) gives a
unique continuous map R(1):R(f)—R(g) such that pg-R(1) = pg,
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pu- R1) = py, and

E(f) T TP E(g)
TGP — fTupH —HH ETHPH = T'GPG ETHPH-

Te ¢ e AP0 ..Me

PN P e L S S (- R - -
A 1D MWL ML IILCHUIL LU LIITOUMN ittt AN L 1Ot Vv Wi

spaces.

Let us take a closer look at a point (x,3.0) of R(f). Just
as in 3.5, the natural transformation c:ev,—ev, -f' is completely
determined by its values GG,nd{‘(W)/M([S"'f) of identities at
generators — here U ranges over open neighborhoods of x and
M over open U-congruences. as in 3.5. So a point (\.3,6) of
R(f) can alternatively be represented as a triple
(S) (x,).F)
where rF ={ry m'u.m is a sequence of points

I'U.M € f“(Gﬂ‘ldIl(U)/M))

coherent in the sense that for any W=sU and M <M|U. with as-
sociated map

3:GNd7UUI/M - G,NdHU)/M
(cf. 1.4) we have
(6) f*(§(ru'.M')) = rlI,M'
In other words. the fiber R(f)(x.3) over the pair of points x of
Gy, » of Hy can be described as an inverse limit

(7) ROAN) = limyy v FGNdTH/M),.

Writing points of R(f) in the form (5). and points of vG.
YH in the form 3.5 (7), the actions [1:R(f)\H0'rH, — R(f) (deno-
ted by ‘) and V:YGAGDR(f) — R(f) (denoted by ) can be descri-
bed as follows: For (x.3.F) ¢ R(f). (x.X",8) evG and ()'.3,h) ¢YH,

(8) (NP (" h) = (A h)

where for \ ¢U and open U-congruence M. (r-h)y p is defined
by
9) (F'E)U,M = I'U,M‘()'..)'.E).

the action on the right-hand side of (9) coming from the fact
that F*(G,Nd{ U)/M) «BH has a yH-space structure by 3.9; for
the action of vG. we have

(10) (NN NV F) = (N ghr)

where for v': U and open U'-congruence M'. (g+r )y amp is defi-
ned by choosing a section

(11) b:U - GndyHu)y/M
with x ¢ U. b(x)=[gy m' 1. and choosing M small enough for b
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to define a map of étale G-spaces

(12) b:G,Nd7UW/M - G Nd;HUV/M" :
then
(13) (é*l_')u"M' = f*(b)(’.U,M)'

5.3. Points of R(f). Analogously to 3.6. points of R(f) may be
defined in the following way. Let x¢Gy and y « Hy be points. let
(V;,M;). i =0.1,2,... be a cofinal system at x (as in 3.6. so {V;};
is a neighborhood basis at x. M; is an open V;-congruence,
etc.). and let Ug 2 U; 2 --- be a neighborhood basis at ). A co-
herent system of sections b;: U; = f(G,Ndj U;)/M;). coherent
in the sense that each square

b,
Ujp g — s FHGNdTUU /M sy
F2(3)
b.
u; + UG NdTUU;) /M)

commutes. defines a point r of R(f)(x.,y) in the form 5.2 (5). If
V is any open neighborhood of » and M any V-congruence. then
for i large enough, V;CV and s:V;,— GNd;YV)/M induces a
maps: G,Nd;YU;)/M; = G,Nd;(V)/M,

and we put ry \g = £ (3)(b;(y)).

5.4. Basic opens of R(f). Analogously to 3.8. one can show that
the space R(f) is generated by opens of the form

(1) [U.M,B]

where UC Gy is open. MC G, is an open U-congruence. and B is
an open subspace of the étale H-space f*(G,Nd7 U)/M). Wri-
ting points of R(f) in the form 5.2 (5), [UM,B1CR(f) is defined
as the subspace consisting of those points (in any base-exten-
sion) (A,3.7) such that x ¢U and ry \ < B. Suggestively. we put

(2) [UM.BI = {(x.3.7) | neU. ry peBl

One can define a presentation of R(f) by a preorder equipped
with a stable covering system. completely analogous to 3.8. and
details are left to the reader.

5.5. THEOREM. lLet be a geometric morphism. Then the associa-
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ted bispace R(f) is open, i.e. (see 4.1):
(i) py: R(f)=Hy is open.

(ii) Both actions YG yxg R(f) = R(f) and R(f) <gyvH, = R(f)
are open.

{iii; Tiie diagunai action (aiso aenoted by y)

TH YG1XGOYG1>"G0R(f) = R(f)xH R(F)

is open.
PROOF. (i) is a special case of 2.2. For the second part of (ii),
i.e.. openness of the action

(1) -+ ROUFA xggYH = R(f),

consider a basic open of the domain space. say

(2) [U,M,BI xH y[V,N,A]

where we may assume that B is the image of a section

) b:V - FH(G,Nd7U/M)

and A the image of a section

(4) a:W - H,Nd{"(V)/N:

moreover. we ma) assume that N is so small that b induces a
g?p B:H,Nd;UV)/N > F(G,NdTHU/M).

We claim that the image of (2) under the action (1) is the basic
open .

(6) [UM.b(A)].

To prove this, take a point (x.z,§) of [UM.b(A)]1 (in any ba-
se-extension!). So

() qum = blatz). z<W. xclU.
By going to a further open surjective base extension., we may
choose a point £: z - z' of G; with z'¢V so that [El=a(z) in
the space H; Nd7YV)/N. Now let F= g-9(E~ Y. Then (x,z.F) is
a point of R(f). (z,z'.9(£)) one of YH, and

(x,z',F)(z,z',E)) = (x,2,q).

Moreover clearly (z,z'.9(E)) ¢[V,N.A]. So it remains to show that
(x,z',r) e[UM,B]. By definition of the action of YH on R(f),
rum =(g-HE M)y M is constructed as follows: take a section

c: W' = FH(GNd;(U)/M) through qy ». i-e., c(z)= gy np. whe-
re W' is some neighborhood of z, and one extends to a map

&¢: Hy Nd7UW)I/N = FX(G,Nd] /M)

for small enough N': then
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ram = (69(6_1))U,M = 5([5_1])

But choosing W=W' and ¢ = b-a:W - F(G,Nd7HW/M), we
find that &([E')) = b(2), i.e, rymeim(b) = B.

This proves that (1) is open.

The first half of (ii) follows from (iii) by considering the
diagram

YG 1%G o YG1%G gRU) ——F——— R(A xH R

T43 Ty

YGleuR(f) R(F)
because 1, is an open surjection by (i).

Rather than proving (iii), we prove the following stronger
assertion.

5.6. PROPOSITION. Let R(f) be as in 5.5. and let UCGy be an
open subspace. with associated basic. open [U.N,s(U)] (where
s:U-G,Nd{ U)/N ). Then the diagonal action defines an open
surjection '

(1) [U,N.S(U)]xGo[U.N.s(U)]xGUR(f) - R(f)x,n*(Gﬂd;l(u))R(f).
PROOF. Consider a basic open in the domain of (1),
(2) [U,N AL xGn[UZ.NZ.Azl xGu[V.M.B]

where A;, A,. B are so small that they can be written as images
of sections of appropriate étale spaces. say A;=im(a;). B=im(b).
where
a;:V=GNdiHUYP/N,, a,: V= GNd7UU,/N,
b: W = FHGNd{HUVI/M).
- By choosing V small enough in (2). we may assume that a; is

defined on V: moreover by choosing M small enough. we may
assume that the a; define maps of G-spaces

&) 4: GNd7HV)/M » GNdTNU;)I/N,;.
We claim that the image of the basic open (2) in

. ROF)x¢* (G na7taw N R

is

(4) [U Ny FAEP(B) 1< [U, N, FH(E ) (B)].

Clearly this is enough to prove the proposition.
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First. assume S=Sets and G;, H;, R(f) are all countably
presented (hence have enough points). Take a pair of points
(5) (NG Py (xvpv.po)
In the open subspace (4. S0 \;¢U; and PN ¢ f‘\éi;\B). We
will define a new point (\.3.r) ¢ R(F)(x.3) and morphisms

g1 g2
\ \1 \2
in vYG such that
(6) (x,y,r) e [V.M.B1,
(7) (\,\I,gl)€[ul,Nl,A,],
(8) (.\..\,,g,-)*(.\,_;.l‘-) = (\i,),ﬁi)

where j=1.2.
Fix a neighborhood basis

(9) wWo=wiz
at 3 <Hg. and fix a descending cofinal system at \;

- 0 1 = 0 5 > e
(10) Uyj=uf>ufz--. N=Nf=2Nt

(as in 3.6.s0 (U}‘}k is a basis at \; and NX is an open
U}"—congruence. etc.). Moreover. let B be a basis for Gy and let
for B<B

(11 u®@B) = UYB) =z

be an enumeration of the basic covers of B in a stable genera-
ting system. (Gg is countably presented by assumption.) In (11),
> means "is refined by"”. Finally. fix for each B<¢B a cofinal sys-
tem of open B-congruences.

(12) MYB)z M%B)z:--
We now construct by induction sequences

{ml\.;k. ‘Vk>k. {Ml\h\ {a}{}k (/ =1.2). :bl\‘}k

where

(i) {VK}, is a descending sequence of basic opens of G
(i.e.. elements of B) defining a neighborhood base at some point
A Gy,

(iiy for j =1.2. {a}":Vk—Glfld;l(U}‘)/N;"},\. is a coherent
system of sections.

(iii) MX is an open VK-congruence such that ((VK.MKX)}, is
a cofinal system at \. and MX is so small that ajk defines a
ma
P ak G nd7UVRI/ME = G ndT UM /NE.
(iv) mg< m<{-- is a strictly increasing sequence of natu-
ral numbers. and

(b Wk — FHG,NdTHVRI /MK 3,

- 162 -



THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID. 1I

is a coherent system of sections, and

(v) FHERBLON) = (PR ko k-
J k pl\ ui ‘Ni

Then by 3.6. 5.3, {b,}, defines a point (x,).r) of R(f(x,3) with
ryk apk = by e FAGNdT MV /MK
and {a}")k defines a point (x.x;.g;) of G with
k.,
[(gj)u:\.N:\]=a} (/\).
and (v) implies that (8) holds. (6) and (7) are obvious from the
initial step of the construction. being the following: Since the

pair (x;3,p). (np.3.p5) is in the open (4). we have
f*(:?zj)(b()))=(pj)ui,Nj so we take (assuming that Ve<B. which

one can do without loss of generality)

vl =v.M®=M. b%=0b. af=a;

Now we suppose the sequences are defined up to k. For
the next step. we first use flatness of f' to construct a dia-
gram in S(G) (cf. 1.3-1.5) of the form

G Ndy Uuk*1)/Nk+1
T1 3

GNdi uUk)I/NE

S1
B/ N A"

G,Nd{UVH/M 2~ s, G,Nd7 VK /MEK

=k
62\1 % N
S»

GNdiHUK)I/NF

N A

Gnd; i uky/Nk
as follows: since
~ - = sk(pk
s((pi)u}\.ﬂ'N}\.ﬂ) = (pj)u’}',N/-"' = (bR ).
there are elements S; of S(G) and maps
S ¥

(
GNdy VK/Mk —L— 5, —L— G nd UK ) /NEH

and an element ;¢ f*(S;) such that
~ - ak s Ala - A - IS
Again by flatness of f*. there are an object S; of S(G). maps
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Bj:S3~S; and a point T f*(S) such that

8481 = v2B2, FHBYD) = §; (j=1,2).
By 1.5, there exist a V'2VX, an M'sMK, and a map: a:
G,Nd{YV)/M' >S5 in 8(G) such that §B,x= 8§, is induced by
the “identity section” s:V'->G,Nd;%VK)/Mk and such that T is
in the image of «, say {=al(T).

Now let VK*1< VK be an element of a common refinement
of the covers UX(VK) . ., UX(VY such that

(13) U« FX(G,Nd] (VK Y/ MK|VE*Y)).

such a VK*! exists since UK(VK), uX(vk=1), . .., uXwv9 all cover
VK, so writing

V= UKVRAURKVE YA - AUKVO)
for their common refinement, {F*(G,Nd; V)/(MX|V)ly.y is a
cover of G ,Nd;UVK)/MK). Next, let

(14 MKk*1 = MR(VEK) AnMA(VE-H 0. nME(VD)
and let " be an element of f*(G,NdjUVKk*1)yMk*1) projecting

to T, i.e., fY(3("))=C.
We are now ready to define the next stage of the se-
quences: let my 4, be so large that there is a section
bR, W K1 NG NdTUVEY) /MEHY
through U". i.e., bysq(3) =T, and let af*!: VK1 oG nd (VK /MK
be a section such that Y]-Bj-oz=a~}"“. By choosing mj,, large
enough, these are compatible with earlier defined b¥ and a}".
This completes the description of the induction step.
Now consider F ={O<B |3k:VX<0}. If O¢F and (0;}; is
a basic cover (in the presentation B) of O, then there is a k
with VK<O and a &k with UK(VK)<{0;nV¥},. Thus
ymaxtk,k9*1< some O;. This shows that F defines a point x of
Gy such that {VX} is a neighborhood basis at i, i.e., (i) holds.
Moreover, it is clear from the construction that (ii)-(v) hold.

This completes the proof of 5.6 in case G.H,R(f) are all
countably presented, and S=Sets. In the general case, one can
pass to an open surjective base extension E - S where all enu-
merations that we have used ((9)-(12)) exist, by [9]. Lemma B.

One then builds a tree of finite initial segments of the
sequences {m;}, (VKI. (MK}, {af), (b¥) satisfying (i)-(v), and
proves that the tree has an infinite path in a further open sur-
jective base extension E'—E, by [9], Lemma C.

This completes the proof of 5.6.
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6. EQUIVALENCE BETWEEN TOPOSES AND GROUPOIDS.

In this section, we will show how the results of Sections
4 and 5 give an equivalence of bicategories between toposes and
groupoids.

Let G and H be continuous groupoids. As before, we write
Homg(BH,BG) for the category whose objects are geometric
morphisms f :BH-BG over S, and whose morphisms f - ' are
natural transformations f*- f'* over S. Moreover Flat(yG,vyH)
denotes the category of left-flat yG-yH-bispaces and homo-
morphisms of bispaces. So there are functors

Flat(yG,yH) ;—_%_‘: Homg(BH,BG)

defined by
g(R)* =—®,GR, Sh(R(f)) = Sh(Gy) =ggSh(Hy)

as discussed in 4.4. 5.1. 5.2.

6.1. THEROREM. Let G and H be continuous groupoids. with in-
duced functors

Flat(vG,yH) Homg(BH,BG).

Then R is fully faithful. and right-adjoint to g.
PROOF. Recall that g(T)* = —®,gT while
R(F) .y = limeum FHGNATHU/M),,

(cf. 5.2 (7). We define the counit and unit of the adjunction,
where by stability it is enough to work with points (in some
unspecified base-extension). The unit n=n1: T>Rg(T) is defined
by taking as fiber 7nx., over x¢Gg. 3 ¢Hg the map 71y, (8=
= (x,y {[sxIu.mMm®t}) where [s(v)ly,m denotes the class of s(x)
in GiNd1Y(W/M: so
([s(X)I@ ) e limyy v F(GNdTHWD/MBGT) = Rg(T)y,y.
The counit x=xp:—®,gR(f) = f*(—) has components at genera-
tors G,Nd;HU/M.
xumlg: x= X18(x.v.F) = (3gh Fly.m-

It is trivial to check that the triangular identities
x g(T) gnT) =idg(T) and Rixg) - ngp = idr(p

hold (it is enough to check this on, points, by stability and ba-
se extension). So g — R.

We now prove that » is an isomorphism. Again, by stabi-
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lity it is enough to show that x is 1-1 on points, and that for
any point r in Ff*GNd7YW/M) there exists a point
Ee(G,Nd7 W /M)®,gR(f) in some surjective base extension
which is mapped to r by x.

To see that x is 1-1 on points, suppose that
[gyng= V{I®(x 3. Fy) and [go: as = X518 (N5, 3. F5)
have the same image under x. i.e.
(X3, ¥gq) *F)gm = (820,89 g2) +rum

in FY(GNd7HW/M). By 5.6. there are x «¢Gy and ag; x— x'y, a,:
v= vy, (n,3,q) «R(F), all in some open surjective base extension,
such that (apy m=[s(x)] and (a;+ g=8(g)+r;. Thus for j=1,2.

Lgj: v~ XjI®(nj3.1p) = [s(NPIB(N, . Hgyxr))
= [s(API®(xy,p,a;4 @) = [s(X))-a;x(x,y,q) = s(x)®(x,3,q)

(since a;<[UM,s()]1). So [g,I®(x; 3.7 =[gr1®(\p,y.1)).

To see that x is "onto”". let r ¢ f*(G,Nd; Y U)/M). This is
an étale space over Hg. by m say, so we get a point 3 =
=m(r) e Hy over which r lies. The problem is to find a point
of Gy. By going to an open surjective base extension. we may
assume that G is countably presented. Let B be a basis for Gy,
and let for every basic open BeB. U9B)= UYB)z:-- be an enu-
meration of the covers in some stable generating system for Gg;
and let for each B. M%B)=M4B)z--- be a cofinal system of
open B-congruences. just like in the proof of 5.6. We may assu-
me that UeB and M=M®%U). Pick Uge U%U) such that r is in
FHGNdTHU/M|Ug)): such an Uy exists since Ug(U) is a cover
of U. and therefore

{(F(3): FUGNATHUW)I/(MIW)) — f‘(Giﬂd;1(U)/M)}w,:uo(u,

is an epimorphic family. Let M0=M°(U)OM°(U0). then 3 indu-
ces a projection

n: FUGNd] W Ug) /M) = FH(GNdT (UG /(M|Ug))
so there is an rge F (G4 d](Ug)/Mg) such that m(rg)=r.

Proceeding in this wa). we can construct an open surjecti-
ve base extension (cf. [9], Lemma C) in which there are sequen-
ces {Up}, and {rp}, with

Uge US(U). Uue UXWN UNUg)..... Upe UKW N NURU -y
and rpe FH(GNd7 UL /M), where
M, = MK, N---nMEU ) MK
such that the projection
FX(3): FUGNdTHUR /M) — FHGNdT U/ Moy
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maps ry to ryp_q. Put F= {Ve3Gg) |Ik: U<V}, Fis closed un-
der N, and if a cover \/VI- is in F, then some Vi must be in F,
as is clear from the construction. So F defines a point \ by

N eV edk (UgsV),
Moreover by construction. {(Uy,My )}, is a cofinal system at x
(cf. 3.6). so that (5.3)
R(f), & limy F(GNdTH U/ M),
and hence (x,y.drgly) defines a point of R(f) such that
x([s(x)1®(x.y Arpl)=r.
This completes the proof of 6.1.

6.2 COROLLARY. Let G and H be continuous groupoids. Then
every geometric morphism f:BH-BG comes from tensoring by a
flat vG-yH-bispace: namely. there is a natural isomorphism:

FX(E) = E®,GgR(f).

6.3. Complete bispaces. Call a flat yG-yH-bispace T complete if
1: T=Rg(T) is an isomorphism. i.e.. if -

Tyy ™ limy pm FGNdTHW /M) &cT),,
where U ranges over neighborhoods of x and M over open U-
congruences. We write CFlat(yG,yH) for those flat bispaces

which are complete.
By 6.1, there is an equivalence of categories

(1) CFlat(vG.yYyH) ~ Homg(BH.BG)
and every flat vG-yH-bispace T has a completion T =Rg(T).

The complete bispaces give rise to a bicategory (cf. [1D)
(Groupoids) whose objects are continuous groupoids (with open
domain and codomain maps dgy and d,). whose 1-cells H=G are
complete flat yG-yH-bispaces. and whose 2-cells are homomor-
phisms of bispaces. The composition of 1-cells is given by the
completion of the tensor product: if

K——H G
i.e. T is a complete flat yH-yG-bispace and S is a complete
flat yG-yH-bispace. then S'T=S®,GT. The functors
g: CFlat(yG.yH) — Homg(BH.BG)

then define a homomorphism of bicategories

S

(2) (Groupoids) — (Toposes)
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given on objects by the classifying topos construction GBG of
Section 1. That this is a homomorphism follows from 4.5, which
obviously gives

g(S-T* ~ g(S® ,uD* ~ g(T)*-g(8)* = (g(S)- g(TNH*.

Lhis homomorphism of bicategories (2) is essentially surjective
on objects. by [61. §VIIL3, and an equivalence on Hom-catego-
ries, cf. (1) above. So we conclude

6.4. COROLLARY. The homomorphism (Groupoids) = (Toposes) is
an equivalence of bicategories.

This result is valid over any base topos.
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