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RELATIVE DERIVED FUNCTORS AND

THE HOMOLOGY OF GROUPS

by Graham J. ELLIS

CAHIERS DE TOPOLOGIE

F’T GEOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXI-2 (1990)

RESUME. Dans cet article on étudie 1’homologie d’un

groupe relative a une famille de sous-groupes distingu6s.
On obtient: une description du premier et du deuxieme

groupe d’homologie relative: deux généralisations de la
formule de Hopf: une nouvelle suite exacte d’homologie.

0. INTRODUCTION.

Let N be a normal subgroup of a group G. It is not diffi-
cult to define relative homolog) groups Hn(G:N) for n z 1 (see

§2) which fit into a natural long exact sequence

where Hn(G) is the nth-homology of G with integer coefficients.
More generally to m normal subgroups N1..... Nm of G one can
associate hyper-relative homolog) groups Hn(G: N1 ,....Nm) for
n 2 1 which fit into a natural long exact sequence

In 121 topological methods were used to give a computa-
tional description of the first hy per-relative homology group. In
the present article we shall use algebraic methods to recover

this description. and then to give a new computational descrip-
tion of the second hyper-relative homology group. Our methods
are sufficiently general to apply in other algebraic settings such
as the homology of Lie algebras and commutative algebras. and
the details of this will be given in a subsequent article.

The description of the first hyper-relative homology group
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which we repi-ove is:

THBORBM 1 [2]. Fot- /11 ¿ 1 there is a natural isomor-phism

where  m&#x3E; = {1 ..... m}. -’iEØ N = G and 11 denotes the group pro-
duct in G . 

Thus for /11 = 2 this formula reads

The new description of the second h) per-relative homologx is in
terms of a "hyper-relative version" of the non-abelian exterior

product of groups introduced in 131. w hich we denote bB
B(G: N1... Nm) .

The group A(G: N1....Nm) has a presentation with genera-
tors X’.Y for x. y t G such that v ’ ia Ni and y i $ aNi for so-
me a C m&#x3E;: the relations are 

Here [B.y] = Byx-1y-1. There is a homomorphism

defined on generators by x I,)’ I-&#x3E;[ x, y].

THEOREM 2. There is a natural isomorphism

where the first isomorphism follows immediately from the above

long exact sequences. and the second follows from Theorems 2.
This description of the second integral homolog) of G is also

given in [31 where it is shown to be a reformulation of a result
of Miller [11] (also cf. [6]).
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With ingenuity one can use Theorems 1 and 2 to obtain

other results on the ordinary integral homology of a group. We

shall cite some examples, the proofs of which are given in §0.

PROPOSITION 3. Let N 1..... Nm, be nor-mal subgroups of G such
that Hk(G/NiNj) = 0 for all k = 1.2..... n+m -1 and i#j. Then there

is a natural exact sequence with (3n-1) terl11S:

This proposition together with Theorems 1 and 2 generali-
ses the eight term e,act sequence of [3] Theorem 4.5 in two

respects: firstly our result is in teiins of 111 normal subgroups
of G and not just two: secondly for the case of two normal

subgroups N, and N2 the requirement in [3] that G = N1N2 can
be weakened to a requirement that H;(G/N1N2) = 0 for i =1.2.3.
Note that if G = N 1N2 then our group A(G:N1N2) coincides with
the group N1/,N2 in [3].

Proposition 3 together with Theorems 1 and 2 also gene-
ralises the five term exact sequence of [13] Theorem 2 in tw o

respects: firsth it extends the five term sequence to eight
terms: secondly the requirement in [13] that G = Nk-(ni#k Nk) for
all A can be very much weakened to a requirement that

As further instances of how Theorems t and 2 can be
used to give information about the ordinary integral homology
of a group we cite two more theorems. the first of which has

ali-ead,. appeared in [2]. Again we defer the proofs to 96.

THEOREM 4 [2]. Let R1..... Rn be normal subgr-oups of a gr-oup F
such that

with a a non-empty proper subset of  n&#x3E; (for example these

F/lTiEaRi coul d be free) and F/ITiEn&#x3E;Ri G . Then there is an

isomot-phisin 

THEOREM 5. Let R1..... Rn be normal subgroups of a group F
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such that

ivith a#n&#x3E; a non-empti proper subset of n&#x3E; and F/TIie n&#x3E;Ri
=G Then there is an isomorphism 

For n = 1 Theorem 4 is the well-known Hopf formula for
the second integral homology of a group, and Theorem 5 is the

description of the third integral homology given in [3] Corollary
4.7. For n = 2 Theorem 5 is new, and the isomorphisms of Theo-
rems 4 and 5 read

As was pointed out in [2]. for any group G an F and R;
can always be found to satisfy the hy pothesis of Theorem 4 (or

5). One method is analogous to methods of CI?.1-CJ and is best
illustrated for n = 2. Choose any surjection F;-G with F; free.
i = 1,2. Let P be the pullback of these surjections and choose a

surjection F-P with F free. Let Ri be the kernel of the compo-
site map F-P-Fi. In general one constructs inductively an n-

cube of groups F such that. for aCn&#x3E;:

(i) Fn&#x3E; is G. and

(ii) the mor-phism Fa-limB ) aFB is surjective.

The organization of this article is as follows. In § 1 and

§2 we recall basic definitions and facts on simplicial resolutions
and derived functors. In §3 we prove some abstract technical
results on relative derived functors. Theorems 1 and 2 are pro-
ved in §4 and §5 respectively. In §6 we prove Proposition 3 and
Theorems 4 and 5.

1. DERIVED FUNCTORS.

In this section we recall from C1.8J facts on cotriples and
derived functors. A useful reference for the details of simplicial
objects is 141.

Let C be an arbitrary category and E = (E.2.d) a cotriple
on C. That is E: C -E is an endofunctor and s: E-1c. 8: E-E2
are natural transformations such that
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EXAMPLE 1. Let U: Gp-Set be the functor from groups to sets

which takes a group to its underlying set, and let F: Set-Gp be
the functor which takes a set to the free group generated by
the set. Then E = FU: Gp- Gp is an endofunctor, and the obvious
natural transformations provide us with a cotriple E = (E.E.d).

To each object C of C one can associate a simplicial object
E(C)# in C by setting

Now let T: C -Gp be a functor from C to groups. By ap-
plying T dimensionwise to the simplicial object E(C)u we obtain
a simplicial group TE(C)u. The homotopy groups of this simpli-
cial group are the derived functors of T u,itb r-espect to the

cotriple E. and we write

The homotopy groups of TE(C)# are isomorphic to the

homology groups of the associated Moore complex (cf. [41)

where Mo = TE(C)o. Mn = n0inKer(Ei:TE(C)u-TE(C)n-1
for n &#x3E; 1 and d,., is the restriction of E n. Thus

EXAMPLE 2. Let F be the cotriple described in EBaiilple 1, and
let T = (-)ab: Gp- Gp be the functor which takes a group G to its
abelianization Gab = G/[G.Gl. It is shown in [1]] that L§(G) =
Hn+1(G) for m &#x3E;0.

2. HYPER-RELATIVE DERIVED FUNCTORS.

Throughout this and the next section we shall suppose
that E = (E.s.d) is a cotri ple on a category C such that E : C - C
factors through a pair of functors
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with U a right adjoint to F. with E: FU-1c, the counit of the

adjunction. with v: lD-UF the unit of the adjunction and i) = Fv U
(cf. 151).

We shall saN that a moi-phism f: C-A in C is a fibration
if there exists a morphism L : UA-UC in D such that
(Uf) L = 1uA’ It is readil) seen that a fibration f : C-A induces a

dimensionwise surjective homomorphism of simplicial groups f#:
TE(C)#TE(A)#. We denote the homotopy groups of the kernel
of this simplicial map by

Since a surjection of simplicial gi-oups Nields a long exact se-

quence of honl0top) groups (cf. [4]) we have immediately

PROPOSITION 6. A fibuation f: C-A in C yelds a natural long
eBact sequence

Now the functors LRT can be regarded as derived func-
tors. To see this let RC denote the category whose objects are

the fibrations C-A in C and whose morphisms are commutative
squares in C: 

The cotriple E = (E.z.d) on C extends in an obvious way to a

cotriple RE = RE.d.6) on RC : on objects RE is defined b)

Let RT: RC -Gp be the functor which maps a fibration C-A to
the kernel of the induced group homomorphism TC-TA. that is

Clearly the functors LRT defined above are the derived
functors of the functor RT with respect to the cotriple RE on
RC.

Note that the endofunctor RE factors through a pair of

adjoint functot-s
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where RD is the category whose objects are the morphisms of D
which possess at least one splitting, and whose inorphisms are

commutative squares in D: the adjoint pair is the obvious one.

Thus we can define inductively. for niz 0.

Therefore we have derived functors LRmTn: RmC - Gp. m, n ;,- 0.
We call these functors the hyper-relative derived functors of T .

EXAMPLE 3. Let G be a group with normal subgroups N 1.....
Nrll’ This data gives rise to an m-cubical diagram consisting of

groups Gx = G/TicaNi for each a cm&#x3E;. and of quotient hoino-
morphisms Ga-Ga u i&#x3E; for each i a. We denote this i7i-cube b%
{Ga}. Thus for example if m = 2 we have

It is clear that in genei-al {Ga} is an object in the categor)
RmGp. 

Letting T = (_)ab as in Example 2. we define

It follows immediately from Proposition 6 that these hy per-rela-
tive homology groups fit together in eaact sequences as descri-
bed in the Introduction.

3. SOME TECHNICAL RESULTS;

Extending a definition of [9] vve shall say that a diagram

in C satisfying q1P = q2P is split over D if there exist l11or-
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phisms X: UC-UC’ and V: UC-UC" in D such that

(Up)X = luc, (Uq1)u= 1 uc’ and (Uq2)u= L(Up).
We shall say that a functor W: C - Gp is right exact if it

maps any split diagram (*) to a diagram in Gp which is split
over Set with set maps X : WC-WC’, (1: WC’-WC" which preserve
the group identity elements.

LEMMA 7. For any functor T: C - Gp the zeroth derived func tor
L T 0 : C - Gp is righ t exact.
PROOF. A split diagram (1) gives rise to a diagram of group ho-
momorphisms

Since L0T(C"’) is a quotient of TFUC’" for C"’ = C.C’.C"’ it fol-
lows that the diagram induced by the arrows going from left to

right 

is split over Set. and that the splittings can be chosen so that

they preserve the group identity elements.

LEMMA 8. If

is a diagram of groups such that q1p = q 2 p and which is split
over Set with splittings which preserve identitJ elements. then

q1(Kerq2) is a normal subgroup of G’ and G is isomorphic to

G’/ q iKerQ2)’
PROOF. The homomorphism q 1 is surjective as it has a set

theoretic splitting it. Thus the image of any nor-mal subgroup of
G" is normal in G’. Now if g is in Kerp then

Hence Kerp = q 1(Kerq2) . Finall) p is surjective as it has a set

theoretic splitting L.

Let us now suppose that the category C contains pull-
backs. Thus given a fibration C-A in C we can consider the
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diagram

where pi and q; "forget the Ith copy of C ". (Thus for example
p 1 denotes the projection onto the second copy of C.) On ap-
plying the functor L o we obtain a diagram

where we write Pi and qi instead of L0T(pi) and L0T (qi) . With
this notation we have

LEMMA 9. For anv fibration f: C-A there is an isomor phisrn

PROOF. We can consider

as a diagram in RC with the vertical maps the objects. As such
the diagram is split over RD. To see this note that a map X:
UA-UC exists b% virtue of the fact that f is a fibration: the
other maps of the splitting are

Since q3 and p2 are split homomorphisms we have

Hence the proof is completed bN applying Lemmas 7 and 8 to

the following diagram of groups:
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4. PROOF OF THEOREM 4.

If N is a normal subgroup of a group G and if Q=G/N.
then the diagram

is isomorphic to the diagram

where denotes a semi-direct product: the action of G on N is

gn = gng-1: the action of N G on N is (n.g) n’ = gn’g-1: the

homomorphisms are

Now the induced maps

clearly satisfy Ker q2nl Ker q3 = 1. Thus f rom Examples 2 and 3

and Lemma 9 we get an isomorphism

It is thus readilv seen that H1(G:N)= N/[G.N] and this proves
Theorem 1 for m = 1.

More generall) suppose that N1......Nm are normal sub-

groups of a group G (m &#x3E; 2). For aCm-1&#x3E; let

Then the following pullback diagram in Rrr’-1Gp

is isomor-phic to the diagram

Let us suppose that Theorem 1 has been proved for m-1 normal

subgroups of G. Clearly Ker q2n Ker q3=1. So Lemnla 9 gives us

an isomorphism
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and this kernel is isomorphic to the kernel of

Theorem 1 follows by induction.

5. PROOF OF THEOREM 2.

Let G be a group and let E(G)u be the simplicial group
obtained from the cotriple of Example 1. Applying the functors
(-),b and [.]: Gp-Gp dimensionwise to E(G)u yields a short
exact sequence of simplicial groups

the resulting long exact homotopy sequence provides us with

isomorphis ms

Recall from the Introduction the definition of the group
A(G:N1,....Nm) where Ni are normal subgroups of G. The special
case A(G:G) coincides with the group denoted in [3] b) GAG. It
is known from [3] (see [61 for an algebraic proof) that for a

free group F there is an isomorphism

Thus if we let A: Gp-Gp be the functor which takes a group G
to the group A(G:G). then we have an isomorphism
L^n(G)= LE, (G) for nz 0. So in particular

If {Ga} is the m-cubical diagram of Example 3 arising from the
subgroups N 1..... Nm, then we find that

Thus to prove Theorem 2 we need to show that

This isomorphism follows from an inductive use of Lemma 9 and
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Proposition 11 below, together with the fact (proved in Proposi-
tion 3 of [7]) that L^0(G) = A(G;G). The proof of Proposition 11
uses the following lemma.

LEMMA 10. For am normal subgroups N 1, ... , Nm of G (m &#x3E; 2) the
canonica 1 sequence of groups

is exact.

PROOF. Clearly IT: X^y I-&#x3E; xNm ^yNm is surjective. The image of
the homomorphism L: BAy I-&#x3E;y clearly lies in the kernel of 7c,

and moreover Imt is normal in Â(G;N1,...,Nm-1). Finally it is

readily verified (cf. Proposition 1 in 161) that there is a homo-

morphism

and that x induces an inverse to W.

Now the homomorphisms qi and pi of §4 induce homo-

morphisms

PROPOSITION 11. With the above notation and mz 2, there is an

isomorphism

A(G;N1,... , Nm) = Ker P2/Q1 (Kerci2nKerci3).
PROOF. From Lemma 10 we see that Ker q2 is generated by the
elements of the form ( n.1.1 ) ^ (n’, n", X ) . Also Ker q3 is generated
by the elements of the form (1 , n,1 ) A (n’, n", x) . Hence

Ker q 2 n Ker q 3 is generated by the elements of the f orm

(n,1,1)A(1,m,1). It follows that q1(Kerq2n Kerq3) is generated by
the elements of the form (n,1) A ( m-1, m) . Now Kerp2 is genera-
ted by elements of the forin (n.1) A (mX) , and there is a surjec-
tive homomorphism
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By Lemma 10 we have

6. REMAINING PROOFS.

Proposition 3 is certainly true for m = 1. Suppose then
that for some m z 2 the proposition is true for any suitable col-
lection of m-1 subgroups. Let N1,... Nm be subgroups of G sa-
tisfying the hypothesis of the proposition, and consider the

following commutative diagram in which k s n and the rows and
columns are exact:

We thus obtain an isomorphism

Similarly we obtain homomorphisms

which we can combine to get a homomorphism

The canonical homomorphisms 4Ji: Hk(G)-Hk(G/Ni) combine
to give a homomorphism
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Finally. using our inductive hypothesis, there is a compo-
site map

Thus the of Proposition i exists for m suo-

groups. The verification of its exactness is a routine exercise.

Theorems 4 and 5 follow from Theorems t and 2 together
with the following lemmas.

LEMMA 12. Let R1,.... Rn be normal subgroups of a group F
such that the hypothesis of Theorem 4 is satisfied. Then there
is an ex-act sequence

LEMMA 13. Let R1,.... Rn be nor-mal subgroups of i group F
such that the hypothesis of Theorem 5 is satisfied. Then there
is am evact sequence

Lemma 12 is precisely Proposition S of [2]. and Lemma 13
is proved in a similar fashion.
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