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LANGUAGES FOR TRIPLES. BICATEGORIES AND

BRAIDED MONOIDAL CATEGORIES

by C. Barry JAY

CAHIERS DE TOPOLOGIE

ET GÉOMETRIE DIFFERENTIELLE

CATÉGORIQUES

VOL. XXXI-1 (1990)

RÉSUMÉ. Les monades, les categories monoidales (ordi-
naires, sym6triques ou tress6es), les categories ainsi que
les bicategor ies constituent toutes, chacune dans un sens

appropri6, des modeles de la th6orie d’un (pseudo-)mo-
noïde. Cette approche est uti lisee pour creer des langages
qui simplifient les calculs, par exemple, dans la th6orie
des monades ou des categories relatives.

0. INTRODUCTION.

Many different kinds of categorical construction have been
regarded, either formally or informally, as monoids (perhaps up
to isomorphism), e.g. triples and monoidal categories (plain,
symmetric or braided 141), or as ’monoids-with-many-objects’,
e.g. categories. 2-categories and bicategories. This viewpoint will
be developed rigorously by exhibiting in each case a structured

category which is the theory of a monoid, so that the objects of
interest appear as models, i. e., structure-preserving functors. For
example, a triple on a category A is a tensor-preserving functor
from a (the simplicial category) into End(A) while a monoidal

category is a tensor-preserving functor from a 2-dimensional

theory into Cat.
Following 131, this model-theoretic approach is used to

create languages for triples (§1). bicategories (§2) and braided
monoidal categories (§3) which simplify many calculations with

triples or in enriched category theory. Consider the following
example suggested by R. Pare and L. Gr(inenfeldel-. ’

PROPOSITION 0.1. Let (V. ®, I , a. l. r. c) be a symmetric monoidal
categori- 171 with a commutative monoid (R... e) in V. and let
k:R0M-&#x3E;M be a left action of R on M . Then R has a right
action p on M which commutes ’A1jth À..

The step of interest is the proof of commutativity. which
is given by an equality of morphisms in V. i. e.
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The diagrammatic proof requires at least five cells ([3], Ex. 2.4).
If V =Set. however, then there is a familiar three-line proof
(plus definitions) using elements. Let X(i-,m)= m m when r- E R

and MEM. Then p(m.s)= q-m and cc,

This proof with elements can be re-interpreted in the language
of V. as a proof of the equivalence of the terms (r m).s and
r ( m . s) . which then implies (0.1).

Slightly modified, this proof yields the same result for a

braided monoidal category . That their languages share many fea-
tures with those for symmetric categories is the result of two
factors. First, by choosing the monoidal structure of the theory 
of a braided monoidal category to be itself braided. rather then

symmetric, the theory is coherent just as in the symmetric case.
Second, an10ng the braids are some which behave like permuta-
tions, including those which appear in the axioms. By tagging
the variables with memories, it is possible to manipulate these

’permutations’ just as in the symmetric case.

I would like to thank R. Pare and R. Wood for many useful
discussions about these ideas.

1. LANGUAGES FOR MONOIDS.

Strict monoidal categories.
Lawvere showed that an algebraic theory is a category

with finite products and a model of it in a category A is a pro-

duct-preserving functor. Mac Lane generalised this idea to allow
the theory to be a category with a tensor product, called a prop
and a model to be a tensor-preserving functor, which we take
here to mean a strong monoidal functor, i. e. one that preserves
the tensor up to coherent isomorphism. For example, there is
both an algebraic theory and a prop to describe monoids. The

prop is the simplicial category (A,0,0),which is a skeleton of
the category of finite sets and order-preserving maps [7] with
sum as the tensor. Equivalently, A has as objects the natural
numbers, with tensor given by addition, and has morphisms,
called operations, generated by 0 : 2 -&#x3E; 1 and I : 0-&#x3E; 1 subject to

associativity and unit laws. The algebraic theory is generated by
the same data. but now contains the projections and other

paraphernalia of a finite product category, which are unnecessary
to describe monoids.

If M : 4-&#x3E;Cat is a model (where Cat has the cartesian ten-
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sor) then V = M( 1 ) is a strict monoidal category . Conversely, gi-
ven a strict monoidal category V then it determines a standard
model M, i.e. satisfying M( n) = Vn.

Let V be a monoidal category, which is fixed for the rest
of the section. Define a typed language L(V)=L whose types are
the objects of all Vn. To each object V of V is associated a

countable set of variables vke V. Given variables Vi E V; for
1  i  n. there is a sequence of variables ( vi) E (Vi) . The empty se-

quence is denoted !,E1. where 1 is the unique object of the ter-

minal category 1. The morphisms of all Vn’s are the function

symbols of the language. A tet-m s consists of

(i) a sequence of variables (V E Vm).
(ii) an operation F: In-4n in 4.

and (iii) a function symbol f: FV-V’.

It is denoted s = f(F v). If f = 1 then s is a basic term: if v= ! 
then it is a constant. Given terms

an operation H and a function symbol h then. whenever the

right-hand side is defined, the following constructions are given:

where Hf denotes M(H) f . Further. let I(!) = + and ® (x,y ) = x©y.
From equations in A it follows that

which can be used in calculations.

Triples.
Consider the following proposition, found in [2].

THEOREM 1.2. Let (T, 1), (l) and (T’ n’, u’) be triples on A and o:

TT’ -&#x3E; T’ be a natural transformation such that the foll o wing
diagrams commute.
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Then a = c) - Tl1’ : T - T’ is a morphism of triples.
PROOF. The two diagrams are

This result and its proof become transparent on noticing
that a triple on A is just a monoid in End(A), the strict monoi-
dal category whose tensor is composition.

Let (R.’ .1) and (S.,1) be monoids in a strict monoidal ca-

tegory V and let 6 : R® S-&#x3E; S . For variables r, r E R and s, s’ E S de-
note 6(r@s) by r. s . Then o is an R-action on S (compatible
with its multiplication) if the following axioms hold:

Now the theorem can be replaced by a more general result.

THEOREM 1.3. Let 6 : R® S-&#x3E; S be am R-action. Then there is a

monoid morphesm a : R -&#x3E; S giveJ1 by 1 a (r) = r.1.

PROOF. a (1) = 1.1 = 1 and

The proof is, perhaps. familiar. since if V = Ab (which is
non-strict) then a monoid in V is just a ring and the correspon-
ding result is that every R-algebra S induces a ring homomor-
phism R-S.

The chief benefit of this proof is its familiarity and com-
pactness. In other situations where there are many functoriality
and naturality squares. instead of just two as here, the brevity
of the variable proof is a significant benefit. Perhaps in this way
some of the technical arguments of, say, projective resolutions

may be simplified.
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2-categories.
2-categories are usually described [5] as categories whose

homs are categories, rather than just sets. We shall develop this

viewpoint by looking at categories in a novel way.
A small category C consists of a graph do , d 1: C 1-&#x3E;C o in

Set, together with identities i:Co -&#x3E;C1 and compositions c: C2-&#x3E; C1
satisfying some axioms, where C2 is the object of composable
pairs of morphisms, described by the pullback

Thus, a small category has been thought of as a ’mo-

noid-with-many-objects’ in Set. By passing from Set to another
base, a category arises simply as a monoid.

Consider the bicategory Span of spans in Set with hori-
zontal composition given by pullback. Let G be a span which is
an endomorphism of some given object X, i.e. a graph on X.
The full sub-bicategory of these is a monoidal category denoted
Graphx. A monoid structure (with respect to span composition)
on G is exactly the data required for a category. This yields a

homomorphism of bicategories from A, as a one-object bicatego-
ry, to Span, or, more appropriate for our purposes, a strong
monoidal functor A-&#x3E; Graphx .

Consider now a small 1 2-category B. Let B o = X be its set

of objects and B 1 be its category of 1- and 2-cells. By regarding
X as a discrete category, domain and codomain become functors
d o , d 1: B 1--&#x3E; X, respectively. Thus, underlying B is a graph in Cat
whose category of objects is discrete. Let SpanCat denote the

bicategory of spans in Cat and. given any category X, let

Graphx(Cat) denote the monoidal category of endomorphisms of
X in Span Cat. Then a monoid in Graphx( Cat) is a double cate-

gory 151 in general, and a 2-category if X is a set. Thus. one
can construct a language for B just as for strict monoidal cate-

gories. in which the types are the objects of B1, i. e. the 1-cel Is.

2. LANGUAGES FOR PSELIDO-MONOIDS.

Monoidal categories.
In practice. monoidal categories such as Ab are much mo-

re prevalent than strict monoids in Cat. since often associativity
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and unit laws only hold up to isomorphism, e.g.

rather than entialitx, Consequently thP theory T must have all 
of the data of A and (in place of the equations of 0) the 2-cell

isomorphisms: associativity a: ©(.1)- ©(I.©) and left and right
units. 1: O (I .1 ) -&#x3E;1 and i-: respectively. subject to the

pentagon and triangle laws. This data is used to generate a

(strict) monoidal 2-category. These are defined by substituting
*2-functor’ for ’functor’ and ’2-natural’ for ,’natural’ in the defini-
tion of monoidal categories. For example, Cat equipped with its

cartesian product is a monoidal 2-category. The 1-celis of T are
still called operations: the 2-cells of T (and their images in

models) are called canonical transformations. A standard model
of T in Cat is. of course, a (non-symmetric) monoidal category.

The definition of the language L for a monoidal category
is the same as in the strict case. However. (1.1) no longer holds.
Nor is it true that

Instead. impose on the terms an equivalence relation = defined
as follows. Lets = f (Fv) with V E V and t = g(G w) be terms.

Then s z t iff

The equivalence is exemplified by its occurrence when a is a ge-
nerating canonical transformation. Let s E X . t E Y and u E Z be
terms. Then

Note that - is transitive since canonical transformations compo-
se. It is also closed under tensoring and application of opera-
tions and function symbols.

Mac Lane’s coherence theorem for monoidal categories [6].
when interpreted as information about T , states that if F, G:
m-&#x3E; 1 in T then they are isomorphic in at most one (in fact.

exactly one) way. The argument is easily extended to cover

arbitrary codomains n (see 131). Hence T is coherent, i. e. it is

locally ordered.

THEOREM 2.1. Let V be a monoidal ca tegors- and x = F v be a

basic term wi th v E V and f. g : F V -&#x3E; W in V. Then
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PROOF. BN definition, there is a canonical transformation a: F-F

such that f = goav. Now the coherence of T forces a = 1. 

EXAMPLE 2.2. Let R be an object of V with an associative, bi-

narv operation m : R-&#x3E;R, i.e.

This is equivalent. on writing : ) to

since, as normal forms, these terms are

and a is the unique canonical transformation ® (@.1 ) =&#x3E;@ ( 1.@) . Si-

milarly e:I-R is a right unit for m if (writing e for e(+)) we

have x - e = x. Further, the term e’B. w hen w ri tten formally.

Nields a function symbol f: R-R which is idempotent since

The diagrammatic proof of this result requires a six cell dia-

gram [3].

EXAMPLE 2.3. Let V be a monoidal category and A a V-catego-
ry. For f a variable of type A(A. B) and g E A(B. C) write gof
in A(A.C) for the effect of coinposition on g(j!) f. Similarly. let

1A E A(A.A) denote the identity jA: I-A(A.A) applied to +-. Then
the category axioms are

Now one can calculate as with ordinary categories.

Bicategories.
Note that SpanCat . as defined above. made no use of the

2-cells (natural transformations) of Cat . Let f and g be a pair
of span morphisms in SpanCat with a: f -g a natural transfor-
mation satisfying do« = 1 and d1a = 1.

Then a is a 3-cell of SpanCat. Compositions are defined
in the obvious way. Presumably, SpanCat is now a tricategorj.
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though, since they have not been defined in general, we shall
confine ourselves to Graph x (Cat) . now equipped with 2-cel ls, so
that it is a monoidal 2-category. Observe that here a standard
model of T is just a bicategory. It is straightforward now to

define a language tor a bicategory

whose types and function symbols are generated by the objects
and morphisms of B1, i . e. the 1-cel 1 s and 2-cells of B. Further.
the coherence theorem for bicategories proved by Mac Lane and
Pare in 181 is now seen to be just the (known) coherence of T.
Hence, the appropriate modification of Theorem 2.1 follows for
this language. The theory of categories enriched over a bicate-

gory can now be developed just as for ordinary categories.

Symmetric monoidal categories.
To define, say, a commutative monoid in V requires a

symmetry. The usual ones are considered here: braid symmetries
will be dealt with in §3. A symmetry on a monoidal 2-category
is a 2-natural transformation C satisfying C2 = 1. The iterates of
C (i.e. the operations generated by C under tensoring and com-
position) are called permutations. and may be identified with the
usual permutations of the natural number.

Let S be the symn1etric. strict monoidal 2-category (called
a 2-prop) generated by the data and equations of T and a cano-

nical transformation c: @-&#x3E;@C satisfying ccc = I and the hexagon
law

A model of S is a strong, symmetric, monoidal 2-functor:
a standard model in Cat is a symmetric monoidal category V. It
is important to distinguish c. whose image is the symmetry of
V. from C whose image is the switch functor y2- V2.

The equivalence relation defined bN (2.1) and (2.2) yields
c(x@y)=@C(x.y) which is not quite satisfactory. It must be
extended to include C(x.y) = (y.x) so that c(x@y)= (y @x). For-

mally. define f’(F v) = g(G w) in this language if

(2.3) v and w have the same number of variables,
(2.4) there is a permutation P such that J’Pi = JVi’
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and (2.5) there is an a: F-&#x3E;GP in S such that f = goav.
As before, the relation is an equivalence, closed under tensoring
and the application of operations and function symbols.

THEOREM 2.4. Let V be a si-mmetr-ic monoidal category and let
x = F v be a basic term with v E V and f.g:FV-W in V. Then
f(x) g(x) iff f = g .
PROOF. P = 1 is the unique permutation such that P v = Y and, by
coherence, a = 1 is the unique canonical transformation F-F = FP.
Hence f= goav = g. ·

Now the general proof of Proposition 0.1 is given by ap-
plying the theorem to the result for Y= Set, now reinterpreted
as a proof that

3. LANGUAGES FOR BRAIDED PSEUDo-MONOmS.

The braid category.
Recall that the braid group Bn on 11 strings is generated

algebraically by Ti for i =1,....n-1 subject to the relations

For a geometric interpretation see [I] or 141. B) imposing the
extra relation T.i2 = 1 one obtains the permutation group Pn* Thus
there is a canonical surjective homomorphism q,,: Bn- Pr,. For

S E Br, and 1  i  n write Si for ( ql,S) i . The j-pure eletnents of
Bn form the smallest subset closed under

(ii) if S is j-pure and T is S j-pure then TS is j-pure.
Consequently, 1 = T j- 1T. j is j-pure.

THEOREM 3.1 (Artin). Every element S of B n may be expressed.
in a unique way as a nor-mal foim SnSn-1...S2 wheue Sj is uni-

quely e.Bpressible as a reduced j-pur-e powei- product of ti ’s

satisf)ing i  j (where reduced means successi,,’e teims in the

powei- product ar-e powers of distinct ti ’sl. ·

Consider the subset (not a submonoid) Krl of Bn consis-
ting of those braids B whose normal form only employs first

powers, i.e. Sj = T.j-1 tj -2... ti for some i. Now every permutation
is the image of such a form. Identify the elements of Kn with
their images and call them permutations.
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Now consider B,,, as a category with one object 11. Define
the br-aid category to be B= EBn . It is a strict monoidal catego-
ry with tensor (dF) given on objects by addition and determined
for mnrnhicmc h Y

Braiding is defined as follows. Given m and n let

Then Cm n Ym...Y2Y1 B plays the same role for braid theo-
ries that P (the permutation category) plays for props. Adding
identitn 2-cells to B yields a 2-category also denoted bN B.
which is a strict. braided monoidal 2-category. i.e. ® is a

2-functor and C is a 2-natural isomorphism. satisfying the usual
braid axioms.

Braided monoidal categories.
A braided monoidal category is a monoidal category V

with a natural isomorphism c: O = gC satisfy ing the hexagon
law (Diagram ?.1 ) and its dual. In short. the hexagon law is

a ca= (1Oc&#x3E;a (cO1) while its dual is a-1ca-1 - (cO1a-1(1Oc).
Note that c is not. in general, an involution. For examples and
applications see 141. Thus. there is a ?-piop whose models in

Cat are the braided monoidal categories. However, to precisely
formulate the coherence theorem in this context is rather diffi-
cult : in 141 it is stated as

to test vvhetheu a diagra111 built Lip Fron1 a r-. I and c coiii-

mutes in all braided n7onoidal categories it suffices to see

that each leg of the diagram has the same underlying
braid.

Note. however, that in the ?-piop. no use is made of the equa-
tions C2 = 1. By removing it, C2 and 1 no longer have the same
codomain. which will make the coherence theorem easy to state.

A braieled theory is a braided. monoidal 2-category
(T.+.O.C). The iterates of C are called braids. A model of T in
Cat is a strong. (braid) symmetr-ic. monoidal 2-functor M from T
to Cat. A model is stamdard if M(n) = Vl1 for some category V.
As with 2-props. every model is isomorphic to a standard one.

For example, the (braided) theory T1 of a braided pseudo-monoid
is generated by the data for a (non-symmetric) pseudo-monoid,
and a canonical isomorphism c:O =&#x3E; Q9C which satisfies the

hexagon law and its dual. Standard models in Cat are just brai-

ded monoidal categories and so their coherence can be expressed
as a property of T1. Translating the result of [4]. or proving
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directly yields
THEOREM 3.2. T1 is coherent.

Languages for braid theories.
Let M: T1 -&#x3E;Cat be a standard model, with M(1) = V. Con-

struct a language L for M just as before. By imposing the same
relation as on T, one can repeat Theorem 2.1 in this context.

This does not yet make calculations any easier, however, be-
cause there isn’t, in general, a good notation for B v where B is

a braid and v is a sequence of variables (call such terms braids
of variables). If one simply write C(x.y) = (y .x) then

C2( -’.) ) = (,’C) with the consequent loss of information. Note,
however, that many calculations employing braids, including all
those adapted from the study of the usual symmetry, only in-

volve the permutations of B. For these a better notation is pos-
sible.

Modify the language bN assigning to each variable i,i in a

term s. as part of its data. a set of llariables m (vi) called its

memory. Define the memory of s to be m ( s) = Um(vi). Also

is the set of variables in s . Given a variable B of s and a set of
variables w satisfying lwln(l sl U m ( s)))O then x vv is the variable
x, but now wi th JV added to its memory. Further. sW= f(F(vi w) .
Finally. given a term t with ltl = w then s t = sw Consequently.
we have

where stu denotes s(t,"). Note that if e is a constant then

Hence s e = s and es = e.

Now define an order » . called ieductioii. here for the

permuted variables, and later for all terms. For sequences of
vai-iables v and nl we have

Close this relation under ordering. tensoring and application of
C. This order will later be extended to an equivalence. Note
that (3-1) and (3.2) represent the hexagon law and its dual while
(3.3) expresses the naturalit) of C with respect to itself.

LEMMA 3.3. Let i, and it, denote sequences of variables of
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length n and P. Q E Bn denote braids.
(i) If m(v) = 0 then P is a permutation iff there is a w

such that P v» w.
(ii ) IF P 4 » w and Qv » w· then P = Q 

PROOF. (i) Let P=SnSn-1...S2 be a permutation in normal form
and let Pj=SjSj-1...S2. By induction it follows that Pjv reduces
to a sequence of variables with

since each Si. being i-pure, only adds ifi to memories. The con-
verse is trivial.

(ii) From (i), P and Q are permutations, and hence

equal, since their images in Pn are. ·

Reduction is defined in general by f(F v) » g(G w) if:

(3.5) there is a permutation P such that P v » w.
and (3.6) there is an a: F-&#x3E;GP in T1 such that f = goav.
As before. it is closed under tensoring and the application of

operations and function symbols.

Now the main results for §2 can be duplicated for braid
theories, with the permutations playing the same role as before.

THEOREM 3.4. Let f and g be function s s mbols. x be a basic
term and r be a term. Then f (.x-) »r and g (x) » r imply f = g.
PROOF. Let x - F v and r = h(H u) . B) the lemma there is a uni-

que permutation P such that P v » u and also f - h o a v and

g = h o B v for some a, B: F =&#x3E; HP. Since T1 is coherent, a=p and
so f = g . ·

EXAMPLE 3.5. That Proposition 0.1 holds for V a braided mo-
noidal category can be shown as follows. Let r, S E R and m E M
all be variables with empty memories. Then apply the corollary
to

and

One cannot extend the reduction process from permuta-
tions to arbitrary braids if memories are to be assigned to va-

riables, rather than sequences of variables, since (3.3) forces
(xy) Z = (xz)y while removing the restriction on memories to

obtain C2(xy ) = (xy) yields
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and

although

Similar problems occur in attempting to arbitrarily reduce C-1.
One might try to put signs on the elements of the memory and
allow

but (C.1)(1.C-1)(C,1)(x,y,z) and (1,C)(C-1.1)(1,C)( v,y,z) both
reduce to (z-x,y z.xy) although

One possible extension of » remains: without allowing negative
entries in the memory, make (3.4) an equivalence, i. e. extend »
to the smallest equivalence relation - containing it. We must.
however, restrict our reductions to terms without memory.
(Otherwise, on replacing z above by z" the old problems recur.)

PROPOSITION 3.6. If s = t and m (s) = ø then s» t.

PROOF. Without loss of generality, there is a term r such that
s. t » r- with s = P v and t=Qu/ with v, w and r- sequences of va-

riables. Thus the problem reduces to showing that P=QP’ for
some permutation P’, and this for Q = (p,C, g) . Hence

Now, m(v) =0 implies that P acts on the variables w; and w;+1
by some expansion of C, denoted P2’ i. e. P = P3P2P1 as a pro-
duct of normal forms. Since P is a permutation and wi and wi+1
are adjacent in r, it follows that P3P2=QP3 and so P=QP3P1)
as required. 

The results above for » can now be extended to - . Con-

sequently . the two-part proof in Example 3.6, for example, can

now be compressed to a single string of equivalences.

Examples.
EXAMPLE 3.7. Beraid monoidal identitites. A representative sam-
ple of the calculations required for enriched category theory
using braidings is given by B3-B7 of [4]. TheN are proved here

using the language. since then all i-eln on braids which are per-
mutations. Note. however, that by using the language, explicit
reference to these results is not required in applications. Equi-
valence of terms will now be written as equality. since the need
for the distinction has passed.
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EXAMPLE 3.8 (Eckinann-Hilton). Let R be an object in V with
two associative binary operations * and o having the same unit
e: 1- Rand satisfying the interchange law

where

so that the interchange law says

Writing e for the constant e(*). we have

Note that e e = e since e is a constant. Hence the two operations
are the same. The proof of commutativity is similar.

EXAMPLE 3.9. V-categories. Given a braiding on V and a V-

category A. define A°N to have the same objects as A but with
AOP(A,B) = A(B.A). For variables f E AOP(A.B) and g E AOP(B.C)

coinposition is defined bN

where m is the composition of A. Then for h E AOP(C ,D),

The identity laws are handled simiiarh.
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Given V-categories A and B, define AOB to be the V-ca-

tegory which has as objects pairs (A.B) of objects from A to B.
respectively and as hom-objects

The identity of (A. B) is (1A.1 B) and composition is determined by
(the unique morphism such that)
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