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NON-ABELIAN COHOMOLOGY OF ASSOCIATIVE

ALGEBRAS. THE 9-TERM EXACT SEQUENCE
by Antonio M. CEGARRA and Antonio R. GARZON

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFF.8RENTIELLE

CATÉGORIQUES

VOL. XXX-4 (1989)

ReSUMe. Cet article étudie une notion d’ensemble de co-
homologie non-abélienne H3 (X, O) de dimension 3 d’une

algebre associative X a coefficients dans un module croise
d’algebres C. On obtient une suite exacte naturelle a 9

termes associée a une suite exacte courte de modules

crois6s, qui 6tend la suite exacte a 6 termes de Dedec-
ker-Lue, et se ramène a la suite usuelle abélienne si les
coefficients sont ab6liens. Les m6thodes utilis6es étant

purement catégoriques, des resultats analogues vaudraient

pour les groupes, les algebres de Lie, etc.

INTRODUCTION.

Given associative algebras X and B over a commutative
and unitary ring R, the set Hom(X,B) of homomorphisms of al-
gebras from X to B is pointed with distinguished element the
zero morphism 0: X- B and the functor

Hom(X,-) : Associative algebras 2013 Pointed sets

is left exact; i.e., for any exact sequence of associative algebras

the associated sequence of pointed sets’

is exact. When B’ , B and B" are zero-algebras, i.e., the multipli-
cative structure is trivial, the usual cohomology groups of X
with coefficients in the trivial X-bimodules B’, B, B" allow one to
obtain a well known long exact sequence whose first 3 terms

reduce to (2), so that these cohomology groups give an appro-
priate solution to the problem of measuring the deviation from
exactness of the functor Hom(X,-) on short exact sequences of
trivial algebras.

The main object of the non-abelian 2-cohomology for as-
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sociative algebras is to measure the deviation from exactness of
Hom(X,-) on general exact sequences of algebras such as (1). In

1966, by using "crossed modules" of algebras to define non-abe-
lian 2-dimensional cohomology for algebras. Dedecker-Lue in 1161

gave a solution to this problem: associated to the sequence (1)
there always exists a short exact sequence of crossed modules

where IB is the algebra of inner bimultiplications of B and this
short exact sequence induces a 6-term exact sequence of sets

with distinguished elements

where, for an arbitrary crossed module O= (d:B-A,u:A-MB)’
H2( X, O) was defined in terms of non-abelian 2-cocycles and it
was interpreted in terms of isomorphism classes of extensions
of X by the crossed module O, i. e., commutative diagrams

where the top row is a short exact sequence of algebras such
that actions of E on B by translations coincide with those indu-
ced by x.

After Dedecker-Lue’s 6-term exact sequence in non-abelian

cohomology associated to a short exact sequence of crossed
modules the main problem is that of giving a measure of the
deviation from right exactness of H2(X, - ) adding new terms

(functorial in X and the short exact sequence of crossed modu-
les) by using an adequate notion of H3(X,-). To give a solution
for this problem is the main object of this paper.

Our solution uses the monadic non-abelian cohomology
sets with coefficients in "hypergroupoids" studied in C8, 9J and it
was suggested by the results given by J. Duskin in [181, about
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monadic non-abelian cohomology with coefficients in groupoids.
Duskin observes that, in the more usual algebraic categories,
"crossed modules" [26] are equivalent to internal groupoids and
arbitrary extensions of an object by a crossed module corres-

pond to torsors under the associated groupoid, which are classi-
fied by the set of homotopy classes of simplicial morphisms
from the cotriple standard resolution to the nerve of the grou-
poid. The key to define H3(X, O is the observation that just as

a crossed module 0 has associated a groupoid (1-hypergroupoid)
G(0 in V, in such a way that

(see Corollary 9), it also has canonically associated a 2-hyper-
groupoid G2(Ø), via an equivalence of categories between the ca-
tegory of crossed modules and a certain full subcategory of the
category of 2-hypergroupoids in V, and we take

These sets H3(X, O) have some distinguished elements (neutral
and null classes) which allow us to describe the exactness of a

sequence

associated to a short exact sequence of crossed modules

satisfying in addition that Ker(p o) =Im(8’). This condition is

equivalent to the property of the morphism of groupoids
Q (p): G(O)- G(O") being a "quotient map" in the sense of Hig-
gins [25], and we need that to establish the connecting map

H2(X, O)- H3O(X,O’) since every 1-cocyle under G (O") must have a
lifting to a 1-cochain under G(O). Moreover in such conditions
the morphism of 2-hypergroupoids G2(p): G2(O)-G2(O") is a

surjective Kan fibration whose "2-hypergroupoid kernel"

G2O(X, O’), is used to define the "relative" 3-rd cohomology set

Note that any short exact sequence of algebras such as

(1) has always associated a short exact sequence of crossed mo-
dules with Ker (p0 ) = Im (d’) taking d: B-A= I B the canonical mor-

phism into the algebra of inner bimultiplications and A"

= IB/S(B’). Therefore for any algebra X there exists a 9-term
exact sequence extending the sequence
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Moreover, in this case, the resulting 9-term sequence is exact of

pointed sets in the 3 last terms (i. e., the corresponding sets H3
have only one distinguished element).

The structure of this paper is as follows. In Section 1,
§1.1 is devoted to give a quick review of Dedecker-Lue’s non-

abelian cohomology theory. In 1.2 we recall Duskin’s low dimen-
sional non-abelian monadic cohomology with coefficients in

groupoids, showing explicitly its relationship with Dedecker-
Lue’s theory, and 1.3 is dedicated to establishing a general
6-term exact sequence in non-abelian monadic cohomology car-

rying as examples those classically shown in the more usual

algebraic contexts (Groups, Associative algebras,...). The simpli-
cial way in which this sequence is obtained will allow us to

prove the existence of the 9-term exact sequence in non-abe-
lian cohomology of algebras. In Section 2, §2.1 is devoted to set

up the basic machinery of the 2-dimensional non-abelian monadic
cohomology with coefficients in 2-hypergroupoids; in 2.2, using
that general theory we define the 3-rd non-abelian cohomology
set of an algebra X with coefficients in a crossed module 0,
H3(X,O), and in 2.3 we show the announced 9-term exact se-

quence in non-abelian cohomology of algebras, which is a gene-
ralization of the usual abelian one when the sequence of crossed
modules is that associated to a short exact sequence of zero-

algebras.
Although we have choosen the category of associative al-

gebras as the context in which we develop this paper, we want
to point out that the methods, constructions and concepts used
here are essentially categorical and so they are applicable to

many different algebraic contexts as Groups, Lie algebras, etc.

NOTATIONS AND PRELIMINARIES.

Throughout the paper V will denote the category of asso-
ciative algebras over a commutative and unitary ring R.

For an algebra B, MB will denote the "multiplication al-

gebra" of B. For each element b E B a bimultiplication [t(b) is

defined by

g(b) is the "inner bimultiplication" defined by b and the map
(1: B-MB is a homomorphism of algebras. The image u*(B) = IB
of this homomorphism is a two-sided ideal in MB and the quo-
tient PB = MB/IB is called the "algebra of outer bimultiplica-
tions" of B. Two bimultiplications o1, o2 E MB are permutable on
the subset S of B if
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for every b E S. A subset M of MB is permutable on S if every

pair of bimultiplications from M is permutable on S. For more
details about these notions see [27, 28] .

Given X, B E V an action of X on B is a homomorphism
cp : X- M B such that Im(cp) is permutable on B; as usual x b and
b’ denote cp (x) b and b cp (x) respectively. An action of X on B

determines an extension of X by B,

where BXI X is the semidirect product of B with X, i. e., Bxl X is

the direct surn as modules and the product of two elements is

given by the rule

In this paper we will use standard simplicial terminology.
The category of simplicial objects in a category C is denoted

Simpl(C); ( E . , E ’.) will denote the set of simplicial morphisms
of E. into E’. and [E., E’.] the quotient set of ( E . , E’. ) under
the equivalence relation generated by homotopy.

Given a simplicial object E. and n&#x3E; 1, the n-th simplicial
kernel of E. is an object denoted à"(E.) together with mor-

phisms di: An(E.) - En-1, o ~i ~ n, universal with respect to sa-

tisfying di dj = dj_idi for all i  j; and for 0~ i s n we denote

Ani(E.) the object universal with respect to having morphisms
dj:Ani(E.) -En- 1, 0 s j s n, j :1= i satisfying

which is called the object of open i-horns at dimension n . For
these objects one has a commutative diagram of canonical mor-
phisms 

An n-truncated simplicial object F.tr consists only of

Fo , ... , Fn and the usual face and degeneracy morphisms between
them. The process of n-truncating is a functor (usually denoted
by Trn) which has a right adjoint Coskn and built by iterating
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simplicial kernels to truncated simplicial objects. The universal

adjunction property gives a natural bijection

We will denote by G = ( G, p, E ) the cotriple associated to

the monadic forgetful functor V-Sets. For X E V, the cotriple
determines an augmented simplicial algebra

called the standard cotriple resolution of X. Let us note that
this resolution is aspherical, i. e.. the canonical morphisms Fn
from Gn+1 (X) to An(G. (X)) and G2(X) - G(X)x G(X) are surjec-
tive epimorphisms. For more details about simplicial objects see
C23, 29J.

1. SIMPLICIAL VERSION OF DEDECKER-LLIE’S NON-A.BEL,IAN
COHOMOLOGY FOR ASSOCIATIVE ALGEBRAS.

In 1967 J. Beck gave an interpretation theorem for the
Barr-Beck monadic cohomology groups H1G in terms of isomor-

phism classes of torsors (i. e., principal homogeneous spaces)
under internal abelian groups which, in the case of algebras, are

identificable with singular extensions in the usual sense (i. e.,
extensions

This fact has been generalized by J. Duskin in [181 where a low
dimensional monadic cohomology with coefficients in internal

groupoids is developed; here, the cotriple resolution gives rise
to a cocomplex of groupoids where 1-cohomology turns out to

be homotopy classes of simplicial cocycles, and a classification
theorem, analogous to Beck’s Theorem, is proved by the notion
of torsors under groupoids. Now, the categories of crossed
modules in algebras and groupoids in algebras are equivalent,
and therefore extensions of an algebra by a crossed module

correspond to torsors under the associated groupoid. Therefore,
Duskin’s non-abelian cohomology applied to the category of

algebras gives an alternative simplicial description of Dedecker-
Lue’s H2 defined in 1161.

Since this general cohomology with coefficients in §rou-
poids is the first stage for establishing our non-abelian H , we
will give in this section some background on it, showing expli-
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citly its relationship with Dedecker-Lue’s non-abelian cohomolo-
gy for associative algebras. Moreover, to obtain the 9-term exact
sequence we will describe the Dedecker-Lue’s 6-term exact

sequence by using simplicial cocycles.

1.1. Quick review of Dedecker-Lue’s non-abelian cohomology.
Let us remember that a crossed module in V is a system

where A, B E V, MB is the multiplication algebra of B and 8 and [t
are homomorphisms satisfying

i) Im (u) is permutable in

iii) The composite

maps each element of B onto the inner bimultiplication which it

defines (i.e., b b’ - d (b)b’= b8(b’»,
where

A morphism of crossed modules in V is a commutative

diagram 

where f and g are morphisms in V such that

We will denote by XM(V) the category of crossed modu-
les in V.

In the following O = (d: B- A, u: A -M B) will denote a cros-
sed module in V. For X E V, F(X) will denote the free R-module
on the generators (x IXEX) and N(X) the kernel of the canoni-
cal epimorphism F(X)-X.

A 1-cocycle from X to 4J is a pair ( f, cp) where f: X-B is

a homomorphism of R-modules, cp : X-A is a homomorphism of

R-algebras and the condition of cp -crossed homomorphism
I I I 

is verified for any x1’ X2 E X.
Z1(X, O) denotes the set of 1-cocyles from X to O and ta-

king cp : X- A to be a fixed homomorphism, Z1 cp (X,O) denotes the
subset of Z1(X,O) of those elements of the form ( f,cp). Z1cp (X, O)
is then endowed with a base point (0,cp) . 
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are maps satisfying :

We denote Z2(X, (D) the set of 2-cocycles from X tao 0.

Two 2-cocycles (T1’ T2 cp) and (T1, T2, cp’) are equivalent if
there exists a map p: X-B such that

This establishes an equivalence relation in Z2(X,O) and the
quotient set H2(X,O) is by definition the second cohomology set
of X with coefficients in 0. Note that (0,0,cp)EZ2(X,O) iff cp :
X-A is a homomorphism. These special 2-cocycles form a privi-
leged subset of Z2, the elements of which are called neutral.

Thus, H2(X,O) is a set with prefered subset 02(X, (D) of neutral

classes , (i. e., containing a neutral cocycle); the neutral class

containing the neutral cocycle (0, 0, cp) will be called the cp-neu-
tral class.

The set H2(X,O) has an interpretation in terms of equiva-
lence classes of O-extensions of X, i. e., commutative diagrams

where

is a short exact sequence of algebras such that the actions of E
on B by translation coincide with those induced by x, i.e.,

A 0-extension E of X has associated a 2-cocycle from X
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to O, (T1,T2,cp) as follows: To each XE X, choose a representati-
ve u( .-1() in E, that is, an element u( .-1() with a( u (x) ) = x; in parti-
cular let us choose u(0) = 0. We define

for x-x1-x2,xi E X, rl E R, Erixi E N(X), and it is straightforward
to see that (T1,T2, cp) is really a 2-cocycle. Note that this cocycle
is normalized in the sense that

The 2-cocycle (T1, T2, cp) depends on a choice of representatives,
but if u’(x) is a second set of representatives, u’( x) and u( x) lie
in the same coset, so there is a map p: X-B given by p(x)=
u’(x) - u (x) and the new 2-cocyle is

So both cocycles represent the same class in H’(X,O).

Therefore we have a canonical map Q: Ext(X,O-H2(X,O)
where Ext(X,0 denotes the set of isomorphism classes of O-
extensions of X.

Now, in order to show that 0 is a bijection, note that any
2-cocycle (T1, T2, cp’) is equivalent to a normalized one (T1,T2,cp)
through the map p: X-B given by p(x)= -T2(0), x E X. Then, gi-
ven a normalized (T1, T2’cp) E Z2(X, O) consider in Ext(X,O) the
class of the O-extension

where E = B x X with the operations

and it is straightforward to see that Q[(T1,T2,cp)] = [E] is well
defined and it is an inverse of Q. Therefore we have a natural

bijection H2(X.O)r Ext(X,O) through which the elements of
O2(X,O) correspond to isomorphism classes of split O-exten-

sions, that is, extensions with E the semidirect product of B by
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X where the action of X on B is given via a homomorphism cp:
X-A.

Suppose now that O’ = (8’: B-A’, (1’), O = (8: B-A,u) and 0" =
(8": B"- A",u") are crossed modules in V and recall that a se-

quence of morphisms of crossed modules

is called a short exact sequence [16] if the sequence

is an exact sequence of algebras and po: A-A" an epimorphism
of algebras. Then, if O’-O-O" is a short exact sequence of
crossed modules, XEV p: X-A is a homomorphism and 8= p ocp :
X-A" one has

THEOREM 1 (Dedecker-Lue). There exists a sequence

which is exact in the following sense: The sequence

is an exact sequence of pointed sets. An element of Z1o(X,O") is
in the image of the preceding map iff its image under the follo-
wing map is neutral. An element of H2(X,O’) (resp. H2(X,O)
lies in the image of the preceding map iff its image under the
following map is the cp -neu tral class (resp. neutral).

1.2. Low dimensional monadic non-abelian cohomology.
In this paragraph we will recall Duskin’s non-abelian mo-

nadic 0- and 1-cohomology theory with coefficients in internal

groupoids in an algebraic category, and we will show explicitly
its relationship with Dedecker-Lue’s theory for associative alge-
bras.

Throughout this paragraph C will denote an algebraic ca-

tegory, i.e., monadic over Sets, G =  G, n , E) the cotriple associa-
ted to the forgetful functor C-Sets and for each S E C, G.(S)
the cotriple standard resolution of S and l1s: s- G(S) will denote
the natural inclusion map given by the unit of the adjunction.
We will suppose that G.(S) is aspherical and let us note that
this condition is always verified in all the more usual algebraic
categories (see [23]).
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Let us remember that an internal groupoid G in C is a

simplicial truncated diagram in C:

together with a morphism in C, m : G1 dl xdo G1---t G1 (the multi-

plication of G ) satisfying
i) m(m(x,y),z) = m(x,m(y,z)),
ii) m(x,sod1x) = x = m(sodox, x), 

- 

1EG1 such thatiii) for all x E G1 there exists a unique x-1E G1 such that

Usually we will denote xy= m(x,y).
A morphism of groupoids fr: G-G’ is a commutative dia-

gram :

and the corresponding category of groupoids in C is denoted by
GPD(C).

Now, in the case G is a groupoid in V, the category of

algebras, since d 0 s0 = id, every element in G1 can be expressed
uniquely as a sum b+s0(x) with b E B = Ker( d 0) and XEGO; so G1
is the semidirect product algebra of B and G 0, and the multi-

plication morphism of the groupoid is necessarily given by

(because

Then m is a homomorphism iff

or eqnivalently iff
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which implies that m is a homomorphism iff

Then, si B = Ker( d o) , translations in G1 via s o define a ho-

momorphism V: Go-MB, and O(G) = (d: B-G0,u) where d = d1/B,
is a crossed module in V.

Moreover, a morphism of groupoids f : G-G’ induces a

morphism of crossed modules

and so we have a functor O(-): GPD(V)-XM(V) which is an

equivalence; a quasi-inverse for (D(-) is defined by associating to

any crossed module O = (d: B- A, u) the groupoid

where

and

and to a crossed module morphism ( f, g) : O-O’ the groupoid
morphism (g1.g):G(O)-G(O’) where g1(b,a) =(f(b),g(a)).

Thus we have

PROPOSITION 2 C26, 7J. The categor.y XM(V) of crossed modules
in V is equivalent to the ca tegoryr GDP(V) of groupoids in V..

The 1-cocycles from an algebra X to a crossed module
have a natural translation in terms of the groupoid G(0.

DEFINITION 3. Given a groupoid G in C and a morphism
cp : S-G0 in C, Tcp(S, G) is the set of all morphisms f: S-G1 in C
such that d 0 f = cp .

Now, considering a crossed module 0 and the associated

groupoid G(O), on has

PROPOSITION 4. There evists a natural bijection

Let us note that Tcp (X,G(O) is pointed by sop and the base
point (0,cp) of Z1cp (X,O) maps, by the above bijection, into sop.

Now, if S E C and G is a groupoid in C, following Duskin
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[18] we define the 1-cohomology- set S with coefficients in G as

the set of homotopy classes of simplicial morphisms from G.(S)
to the simplicial object Ner( G) , the nerve of the groupoid in the
sense of Grothendieck, which is defined as follows:

The face operators

and the degeneracies are

A 1-cocycle of S with coefficients in G is by definition a

simplicial morphism from G.(S) to Ner(G) . We denote Z1 G(S,Gr)
the set of such cocyles, i.e., Z1G(S.Gr) - ( G. (S),Ner(Gr)) .

The homotopy relation defines an equivalence relation in

Z1G(S, Gr) and the corresponding quotient set

is the set of cotriple cohomology of S with coefficients in G
1181. There is in H1Gs,Gr) a subset O1GS,Gr) of distinguished
elements ("neutral elements"), those classes of 1-cocycles
(S0cpd0nES) n~O ("neutral 1-cocycles") with cp : S-G0 a homomor-

phism ; the class containing the neutral cocycle (s0cpd0nEs) will
be called the cp-neutral class.

These Hi are functorial in both variables (contravariant in
the first one).

Let us note that a simplicial morphism f. E (E., Ner(G)) is

completely determined by its 1-truncation ( fi, f o), since for any
nz 2 and vE En

and conversely, an 1-truncated simplicial morphism as below ex-
tends to a simplicial morphism iff the "cocycle condition"

is verified.
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A 1-truncated simplicial morphism

not necessarily satisfying the cocycle condition (CC1) will be
called a 1-cochain and C1G(XnGr) will denote the set of such
1-cochains.

Also, any homotopy h. : f.- g. for f. , g. E (E. , Ner(Gr)) is

completely determined by its truncation h00: E0 -G1; and a ho-

momorphism h00 defines a homotopy from f. to g. iff the con-
ditions

are satisfied.
The set Hh(S,Q) has an interpretation in terms of equi-

valence classes of G-torsors over S (principal homogeneous spa-
ces over S under G). Let us recall that a G-torsor over S is a

truncated simplicial morphism 
r

such that p is a surjective epimorphism, the square

is a pullback, and for any ( z0, z1, z2) E E xs E xs E the cocycle con-
dition

is satisfied.
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A morphism of G -torsors over S is a commutative diagram

i.e., a homomorphism f: E-E’ such that

It is easy to see that every G -torsor morphism is an iso-

morphism, and we will denote the set of isomorphism classes of
G-torsors over S by Tors1[S,G].

PROPOSITION 5 (Duskin [18]). There exists a natural bijection

As we said in the introduction it was observed by Duskin
that torsors under groupoids correspond categorically to non-

singular extensions in the usual algebraic categories. We can

now make this fact explicit in the category V of associative

algebras.
Let us suppose O = (B- A, u) is a crossed mocule in V and

G(0 is the associated groupoid as in Proposition 2. If

is a torsor over X under G(O), then

and so we have a commutative diagram
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where B(b) is the unique element of E such that

Moreover, the actions of E on B by translation coincide with
those induced by t0. In fact:

which implies B(t 0(e)b) = ep(b) and

is a O-extension of X, it determines canonically, up to isomor-

phism. a torsor over X under Q(0 which is given by

where which is a morphism since

Finally the condition ExxE n (BxA)xAE is clear, the iso-

morphism being (e, B( b) + e) + ( ( b, t0(e) ), e) .
Since the O-extensions are classified by Dedecker-Lue’s H2

and the G(0-torsors are classified by Duskin’s H1 it is clear
that there must be a natural isomorphism between them and we
will give now the explicit relationship. For this, we will use the
description of H1 in terms of the simplicial "covering" of S,
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The asphericity of G.(S) implies:
i) The canonical simplicial morphism q. : G. (S) - Cosk°(G(S) -S)

given by

is a surjective epimorphism in any dimension.

ii) Any simplicial morphism f. E (G.(S), Ner(G)) factors uniquely
through the simplicial morphism q..

iii) Any homotopy between simplicial morphisms in

(G.(S),Ner(G)) induces another between the corresponding facto-
rizations through q.. Consequently- q. induces natural bijections

Let us recall that for any algebra X, G(X) is the tensor

algebra over the free R-module F(X) on the generators ( AIAEX),
i.e.,

Then, an element v E G(X) has a unique expression such as

and therefore.

and one can write

Using this, it is plain to see that, if T(X) is the R-submodule of

Ker(EX) generated by all elements of the form

one has

PROPOSITION 6. T(X) is free. as a R-module. on the generators
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V2, V3,---, vn, ... , and Ker(ex) is, as an R-module, the direct sum

of T(X) and N(X) = Ker(F(X)-X) . ·

PROPOSITION 7. Given an algebra X and a crossed module 0 =
= (8 : B-A, g ) there e..1(ists a na tural bijection

which maps one to one neutral 2-coc:ycles into neutral 1-cocy-
cl es.

PROOF. Let us give (T1,T2,cp)EZ2(X,O). The map cp induces a ho-

momorphism g0:G(X)-A such that g0(x) = cp(x), xE X. Since

every element in G(X) XxG(X) has a unique expression such as

(z, v+z), VE Ker(EX:G(X)-X), if we map

we have a well defined map (really a homomorphism of R-mo-
dules) g1: G(X)XXG(X)-BXIA given by g1(z, v+z) = (g1( v),g0(z)),
where g1 : Ker(EX)-B is given by r2 and the unique homomor-
phisms of R-modules induced by the above mappings, using that
Ker(ex) = T(X)ON(X). In other words, C1 is the unique map ma-

king commutative the diagram

This map g1 is a homomorphism iff the conditions

are verified for all z E G(X) and vE Ker(Ex); but if Y = {z E G(X) I
i) and ii) are verified for all V EKer(Ex)}, Y is a subalgebra of
G(X) and it is straightforward to see that {xIXEX}C Y. So

Y = G(X) and gi is a homomorphism.
Moreover, by construction d 0g1 = g 0d1 and giso= sogo;

then the pair (gi, go) is a truncated simplicial morphism
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iff d1g1 = g0 d1. Now, since d1g1(z, v+z) = Sgi( v) + g0(z),
d1g1= g0d1 iff dgi(v) = g0(v) and, by using the conditions defi-

ning a Dedecker-Lue’s 2-cocycle, it is straightforward to see

that this relation is true for any vE Ker(sx). So, (g1, g0) is a

truncated simplicial morphism which satisfies the cocycle condi-
tion since for any (z0,z1,z2) E G(X)xxG(X)xxG(X),

Conversely, a truncated simplicial morphism (gi,go) has

uniquely associated a Dedecker-Lue’s 2-cocycle (T1,T2,cp) where

So we have just a bijection v:Z2(X,O)n(X,G(O)) which
clearly maps neutral 2-cocycles into neutral 1-cocycles. ’

The following proposition shows that two Dedecker-Lue’s

cocycles are equivalent iff their images by v are homotopic.

PROPOSITION 8. Given t wo 2 -cocycles (T1,T2,cp), (T1,T2,cp’ in

Z2(X,O) there is a canonical bijection between the set of maps
p: X - B which define Dedecker-Lue’s equivalences from (T1 , T2 , cp)
to (T1, T2, cp’) and the set of homotopies from v(T1 , T2 , cp) to

v(T’1, T’2, cp) .
PROOF. Let v(T1,T2,cp)=(g1,g0) and v(T’1,T’2, cp’)=(g’1,g’0).

Since G(X) is the free algebra on X, to give a homomorphism
h8: G(X)-BxIA such that d0h00 = go, d1h8= g’o is equivalent to
give a map p: X- B such that cp’( x) = dp(x) + cp (x) and h00(x)=
(p(x), cp(x)) , x E X. Now, the homotopy condition

is equivalent to the conditions
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for Dedecker-Lue’s equivalent cocycles. In fact, since any ele-
ment (Z.Z’)EG(X)xXG(X) can be expressed as (O,v)+(z,z),
VEKer(EX). and for elements as (z,z) the homotopy condition is

easily verified, we reduce the homotopy condition to

g1(0. v) h00 (v) = g’1(0, v) , which is equivalent to 1 if VET(X) and to
2 if vE N(X).

COROLLARY 9. For any algebra X and crossed module O,v in-
duces a canonical bijection H2(X.O)n H1G (X.G (O)) mapping bi-

jectively O2(X.O) onto O1G(X. G(O)) .

1.3. The 6-term exact sequence in non-abelian monadic cohomo-

logy.
In the more usual algebraic categories the 6-term exact

sequences in non-abelian cohomology [12,16,26,2....] are associa-

ted to "short exact sequences" of crossed modules; this concept
corresponds categorically to that of surjective precofibration (in
the sense of Grothendieck [24]) of groupoids. We note this fact
in the case of algebras.

PROPOSITION 10. The equivalence of categories XM(V) rr GPD(V)
carries short exact sequences of crossed modules into sequences
of groupoids

such that
1. G’ is the subgroupoid kernel of q (i. e..

2. po is surjective.
3. q, is a precofibration, i. e.. the canonical morphism ( q1, do)

from G1 to G’idoxpoGo is surjective.

Now we will establish a general 6-term exact sequence
associated to a sequence of groupoids in an algebraic category C
satisfying the above conditions 1. 2 and 3. That sequence res-

tricted to the more algebraic contexts (algebras, groups,...) is
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equivalent to those classically established in them. Moreover,
the simplicial way in which it is obtained will be used to prove
the existence of the 9-term exact sequence for algebras.

PROPOSITION 11. Let (q1,p0) : G-G" be a precofibration of grou-
poids surjective on objects and let G ’ be the subgroupoid kernel.
For ani- morphism cp : S-G o there evists a sequence

where v = pop , which is exact in the following sense:
The sequence

is an exact sequence of pointed sets. An element of r,9,(S,G") is

in the image of the preceding map iff its image under the follo-
wing map is neutral: an element of H’(S,G’) (resp. H1G(S, G))
lies in the image of the preceding map iff its image under the
following map is the 9-neutral class (resp. neutral).

PROOF. The exactness in the 2 first terms is clear.
We define the connecting map X1: Tv(S, G") -H1G(S, G’). Given

fETv(S,G"). there exists a morphism u: G(S)-G1 such that

(q1, d0)u=( f, cp )ES and we have a pair of morphisms (f1,f0) whe-
re f0 : G(S)-G0 is given by f0 = d1tJ. and f1:G(S)xsG(S)-G1 is

given by f1(z0,z1) =u(z0)-1u(z1) for any (z0,z1)e G(S)xsG(S).

and ( fl, f o) is a truncated simplicial morphism which satisfies the
cocycle condition since

Then (ft,fo) defines a 1-cocycles whose class in H1G(S, G’)
does not depend of the election of u since if u’ is another mor-

phism with ( q1, d0)u’ =( f, cp)ES and ( f1, f0) is the corresponding
cocycle as above, the morphism h 0: G(S)-G1 given by
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h00(z)=u(z)-1 u’(z) defines a homotopy from (fi,fo) to (f’1,f’0).
Thus, we define E1: Tv(S,G")-H1G(S,G’) by E1(f) = [(f1,f0)].

The exactness in Tv(S,G"): Let gE Tcp(S,G) and f = q1g: S- G1’’.
The morphism u : G(S) - G1 given by u =g ES verifies (q1, d0)u =

(f,cp)E s, so E1 (f) = [(f1,f0)] where f0 = dt(1 = d1gEs and

and therefore E1(f) is the cp’-neutral class where cp= dlg.
Reciprocally, let fEr a(S,Q") such that E1(f) is the cp’-neutral

class. If u: G(S)-G1 is a morphism such that ( q1, d0)u= ( f, cp)ES
then E1(f) is represented by the 1-cocycle defined by the pair
(fo,fl) where f0 = d1u and f1(z0,Z1)=u(Z0)-1u(Z1) and so it

must exist a morphism h00: G(S) -G1 defining a homotopy from
the cocycle ( f0, F1) to (sacp’ssdo.cp’ss). Then, the morphism
g’ : G(S) - G1 given by g’( z )=u (z) h00 (z) factors through s s since

for any (z0,Z1)EG(S)xsG(S):

and so there will exist g: G(S)-G1 such that gzs = g: It is plain
to see that q1g = f and d 0 g =cp, i. e. , g E Tcp (S,G ) and q*(g) = f.

The exactness in H1G (S,G’): Let f E Tv(S,G") and X1(f) =[(f1, f0)]
with f0 = d1u and f1(z0,z1)=u (z0)-1u(z1) for a homomorphism
u: G(S) -G1 verifying q1u = fss and d0u=cpEs. Then i*X1(f) is the

cp-neutral class in H1G (S,G) since h00 =u. defines a homotopy
from (s0cpESd0,cp ES) to i*(f1,f0)].

Reciprocally, if [(F1, f0)]E H1 G(S, G’) is such that i;*J(ft,fo)] is

the cp-neutral class, there will exist a homomorphism h 8:
G(S)-G1 such that d0h00=cpES, d1h00 = fo and for any (z0.z1) in

G(S)xsG(S). h00(z0) f1(z0, z1) = h00 ( z1) . Then the morphism q1 h00 :
G(S)-G’’1 factors through ES so that there will exist f: S-G"1
such that fEs = q1h00 and fETv(S,G") since

and consequently do f = p0 cp. Now. recalling the definition of
it is clear that the cocycle associated to f via the choice of u =

h00 is just ( f1. f0).
The exactness in H1G(S,G) : Let [( f1, f0) ]E H G(S, G’). Then

and since Pofo factors through E s, there will exist a morphism
 cp":S-G"0 such that p0f0 = cp"Es . Moreover, since f1 has codo-

main G’1,
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so that q*i*[(f1.f0)] is the cp"-neutral class.
Reciprocally, let E(g1 ,g0)]EH1GS,G) be such that

is the cp"-neutral class. Then there will exist a morphism h00:
G(S)-G’1 defining a homotopy from (gl,go) to the neutral cocy-
cle (S0cp" E s d0, cp" ES). Now, since q is a precofibration there
exists a morphism a : G(S)-Gi such that ( q1, d0) a = ( h00, g0) .
Then the pair ( fl, f o) where

defines a si nce

and

It is clear that h00 = a defines a homotopy from (gl,go) to

i*(F1, f0) and so the proof is finished.

2. NON-ABELIAN H 3 WITH COEFFICIENTS IN CROS SED MO-
DULES. THE 9-TERM EXACT SEQUENCE.

As we said in the Introduction, the object of this section

is to define for any algebra X and any crossed module 0 a

3-dimensional cohomology set H3( X,O), functorial in both varia-

bles, such that it allows to obtain a 9-term exact sequence
associated to a short exact sequence of crossed modules, exten-

ding the Dedecker-Lue’s 6-term exact sequence and reducing to

the usual abelian one in the case the short exact sequence of
crossed modules corresponds to a short exact sequence of ze-

ro-algebras.
Since the notion of H3(X,O) is given using the monadic

H’ G non-abelian cohomology with coefficients in hypergroupoids
we start in the next paragraph recalling, in an algebraic category
C, some results about the monadic non-abelian cohomology H2G
which was studied in more generality in [9].

2.1. Non-abelian cohomology H2G.
DEFINITION 12 1231. A 2-hJpergroupoid in C is a simplicial ob-
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ject G. in C such that for 0~i~ m and all l m&#x3E; 2 the morphism

is an isomorphism. The full subcategory of Simpl(C) whose

objects are 2-hypergroupoids is denoted 2-HYPGD(C).

A canonical example of 2-hypergroupoid is given by the

Eilenberg-Mac Lane complex K(M,2) for M an internal abelian

group in C, which is defined as the 3-coskeleton of the trunca-
ted simplicial object

with di: M3- M, i = 0,1, 2 the projections and

In [17], Duskin proves that the usual monadic cohomology
of an object S with coefficients in the internal abelian group M.

H2G(S,M), is isomorphic to [G. (S) , K( M, 2)], the group of homoto-
py classes of simplicial morphisms from the standard cotriple
resolution of S to the 2-hypergroupoid K(M,2). This fact and
the equivalence of Corollary 9 suggested the definition we give
in [9] of the cohomology sets with coefficients in arbitrary
h) pergi-oupoids as :

DEFINITION 13. Let G. be a 2-hypergroupoid in C and S E C. The
second cotrlple cohomologj- set H 2 G (S,G.) of S with coefficients
in G. is defined as the set of homotopy classes of simplicial
morphisms in C from the standard cotriple resolution of S into

G., i. e., H2 G(S. G.) = [G. (S), G.].
A 2-coci-cle of S with coefficients in G. is by definition a

simplicial morphism from G. (S) to G. and the set of 2-cocyycles
is denoted Z2g (S.G.)

In the more usual algebraic categories (Groups, Associative
algebras, Lie algebras,...) any 2-hypergroupoid G. has associated
a sub-2-hypergroupoid defined as the simplicial subobject of G.

generated by the degenerate 2-simplices. A 2-cocycle
f. E Z2G (S, G.) which factors through that 2-hypergroupoid will be
called neutral and so HG(S,G.) is a set with a subset of "neu-
tral classes", i. e., containing a neutral 2-cocycle. Let us note

that every morphism cp :S-G0 determines the neutral 2-cocycle
(sn0 cpEsdn+10)n~0.

Clearly H 2 is functorial in both variables.
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just as in the 1-dimensional monadic cohomology, 2-cocy-
cles and homotopies between them are determined by their
2-truncations verifying appropriate "cocycle" and "homotopy"
conditions. In fact, any simplicial morphism f. E (E.,G.), with G. a

2-hypergroupoid, is completely determined by its 2-truncation

( f2, f1, f0 ) since for n ~3 and Y E En:

and conversely, a 2-truncated simplicial morphism (f2.f1. f0) ex-

tends to a simplicial morphism iff the "cocycle condition"

is verified (see [9]).
Also, any homotopy h.: f.- g. for f., g. E (E.,G.) is com-

pletely determined by its truncation ( h10 , h11, h00) since for mk2

and conversely, a truncated homotopy ( h10, h11, h00) extends to a

homotopy from f. to g. iff, with

then the homotopJ- condition

is verified (see 191).

The following proposition shows that in the more usual

algebraic categories the homotopy relation between 2-cocycles is
an equivalence relation.

PROPOSITION 14. Let G. be a 2-h.ipergroupoid in C which is a

Kan complex fi. e.. the canonical morphisms KJD are surjective).
X E C and 2-cocJ’cles f., g., t. E (G.(S),G.) .

(a) If h.: f.- g. and h1: g.- t. are homotopies. there ex*ists a

homotopy h’:: f.- t..
(b) If h.: f.- g. and h’J: f . - t. are homotopies. there exists a

homotopj- h:: g.- t..

PROOF. (a) Since the canonical morphism K21 : G2-A12 (G.) is sur-

jective, there is a morphism V: G2(S) -G2 with K21V=
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Then we define

and

where ’ Thus

Then ( h" 10, h"11, h"00) defines a truncated homotopy
which extends to a homotopy from f. to t. since the homotopy
condition is verified: In fact, let

and

The homotopy condition is d3h"22= t2. To prove that consider
the morphisms

and

It is straightforward to see that

0,1,2, so d3L6 = h"2 and therefore

The proof of b is analogous. ·

The well known Moore’s Theorem [29], assuring that every
group complex is a Kan complex, allows us to establish the

following
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COROLLARY 15. For anj- 2-,kipergroupoid G. in the categorj- of
algebras V and X E V, the homotopj, relation in the set (G.(X), G.)
is an equivalence relation..

As we saw in 1.2, HG can be calculated using cocycles
from Cosk0(Tr0(G.(S)); the following is the corresponding 2-di-
mensional analogous result.

LEMMA 16. Let be a 2-hJpergroupoid in C and S E C. Then

PROOF. We will show that every 2-cocycle f . E (G. (S), G.) has a

factorization, which is necessarily unique, by the canonical sim-

plicial epimorphism q. : G. (S) - Cosk 1(Tr 1(G. (S)) . Given f . , consi-
der .

as follows:
Since G.(S) is aspherical, the morphism q2: G3(S)-A2(G. (S)) is

a surjective epimorphism and for each (.x,).) E G 3(S) x A2(G.(S) )G3(S)
we have that f2(x) = f2(y). In effect, as

there is a z EG 4 such that di(z) = s1 d1(x) , i = 0,1, d2(z) = x and

d3(z) = Y. Then dif3(z) = dis2f2(x), 0~i~ 2, and as G3nA33(G).
we deduce that d3f3(z)=d3s2f2(x), that is, f2(x) = f2(y) . Thus
there is a unique morphism f’2 from A 2(G. (S) to G2 such that

f’2q2 = f2.
It is plain to see that f’tr=(f’2,f1,f0) is really a 2-truncated

simplicial morphism which satisfies the cocycle condition and

therefore it has an extension f’.: Cosk1(Tr 1(G. (S) ) ) - G. which sa-

tisfies f’. q. = f. as required.
As q. is an epimorphism, the correspondence f. k4 f’. defines

a bijection (G.(S),G.) = (Cosk1(Tr1(G.(S»),GJ.

Finally, if h.: f.-g. is a homotopy between 2-cocycles f. and

g. , the 2-truncated homotopy h.tr = ( h01, h11, h00) from f.tr = f’tr
to g. tr = g’. tr also verifies the homotopy condition for f’. and

g: and so it extends to a homotopy h : : fl- g’*. Clearly if f’. 
and g: are homotopic, then q.f’. and q. g’. are homotopic too.

The following lemma will allow us to give a general re-

sult which will be used to establish the 9-term exact sequence
in non-abelian cohomology of algebras.
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LEMMA 17. Let S E C and let q. : G. -G’’. be a morphlsm bet ween
Kan 2 -hypergroupoids in C which is a Kan-fibration. If

g. E Z2G(S. G.) is applied bi the canonical map

into a 2-coci-cle homotopic to a 2-cocy-cle f. E Z 2G(S, G".) then
there evists another 2-coci-cle g’. E Z2(S, G. ) homotopic to g. such
that q*g’. = f..

PROOF. Let h. be a homotopy from q*g. to f.. We find the

2-cocycle g’. with the required conditions as follows: Since the
canonical morphism G1-G"1 dOXqoGO is surjective there exists a

morphism H00 : G(S)-G1 such that q1 H00 = h 00 and doH8= go . We

consider the morphism g’o = dtH8. Now, for z E G(S) such that z

is not in 11s(S) let vzE G2 be such that

(this element exists since q. is a Kan-fibration). Then we define
the morphism H10: G2(S)-G2 as the unique one verifying

Now we define H11:G2(S)-G’’2 as the unique morphism verifying
H11nG(s)ns = S0H00ns and for Z E G(S) , z Ens(S), H11 (nG(S) (Z):
wz where »T z E G2 is such that

and

(this element Wz exists since q. is a Kan-fibration). Let g’1=
d2H11 and g’ 2 :A2 (G. (S)) - G2 given by

It is tedious but straightforward to see that (g2, g’1’ g’o) is a

2-truncated simplicial morphism, which is really a 2-cocycle and
(Hl,HJ, H 8) is a truncated homotopy defining a homotopy from
g. to g:. Moreover g1 is applied by q* into f. since

and analogous)) q1g’1 = d2h11 = f1 and q2g2 = d3h2 = f2 and so the

proof is completed. ·

2.2. Non-abelian H3 (X, (D) .
Now. we will use the general monadic cohomology with

coefficients in 2-hypergroupoids for our purpose of defining an

adequate 3-dimensional cohomology of an algebra with coeffi-
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cients in a crossed module. The key for that is the observation
that just as a crossed module (D = (S: B-A,u) in V has canonically
associated an internal groupoid in V (i.e., a 1-hypergroupoid)

having in fact an equivalence of categories XM(V) rr GPD(V) (see

Prop. 2), it also has associated a 2-hypergroupoid in V, denoted
G2(O), in such a way that one has a full and faithful functor

and so there is an equivalence between XM(V) and a certain full

subcategory of 2-HYPGD(V). We will use this functor to define
H3(X,cD).

The 2-hypergroupoid Q2(O) associated to a crossed module
0 is defined as

where B XI A is the semidirect product algebra, (BxAB)2x1 A is the
R-submodule of B4OA whose elements are those 5-th uples
(b0, b1, b2, b3,a ) such that d( b0) = d(b1) and d( b2) = d(b3) and who-
se structure of algebra is given by the product

where

(BXABxAB)3XIA is the R-submodule of B9EÐA which consists of
those 10-th uples ( b0 , ... , b8,a) satisfying

and whose product is given by

where

the face and degeneracy operators are given by:
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It is straightforward to see that Q2(O) really is a 2-hypergrou-
poid in V and besides, if (p1,p0) : O-O" is a morphism of cros-
sed modules one has an induced morphism of 2-hypergroupoids
q. : Q2(O)-Q2(O") determined by q0= po, q1( b,a) = (P1( b), P0(a))
and 

So that G2( ) : XM(V)-2-HYPGD(V) is a functor. This clearly
is a full and faithful functor and it is not difficult to observe
that it gives an equivalence between XM(V) and the full subca-

tegory of 2-HYPGD(V) consisting of those 2-hypergroupoids G.

satisfying:
i) The canonical morphism G.-Cosk1(Tr1(G.)) is a split epi-

morphism ;

is a groupoid (with the only one possible multiplication mor-

phism, see 1.2):
iii) TT1(G. ) = 0 and TT2(G. ) rr TT1 (Tr1(G.)) as Go-modules.

DEFINITION 18. The third cohomolog.y set of an algebra X with
coefficients in a crossed module O. denoted H3(X, O), is defined
as H3( X, O) = H2G (X, G 2(O)).

Clearly H 3(X, (D) is functorial in both variables.

RBMARK 19. As we observed in general in 2.1, a 2-cocycle
g. E Z2G(X,G2(O)) is equivalent to a truncated simplicial morphism
(g2, g1, g0) from Cosk 1(G.(X» to G 2(O) satisfying the condition

(CC2); now, if we express g1(z) , z E G2(X) , as an element of

B xl A by ( g1(z) , g0 d0 (z)), to give gi is equivalent to give the

g o do-derivation g1:G(X)-B and the simplicial identities reduce

to gi must verify dg1(z) +g0 d0(z) = g0 d1(z) for z E G2(X) and

g1s0(x) = 0 for Xe(X). Likewise, the simplicial identities imply
that for any (z0,z1,z2)EA2(G.(X)), g2(Z0,Z1,Z2), as an element

of (BXAB)2XIA, has the form
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and the fact of g2 being a morphism of algebras is equivalent
to that of the map g2 : A2(G.(X))-B being a god2-derivation, 0 re-

ducing the simplicial identities on g2 to the equalities

and

and the condition (CC2) takes the form:

Consequently we will identify a 2-cocycle g. with the sys-
tem

In the same way, if g.=(g0,g1,g2) and g’.=(g’0,g’1,g’2) are

2-cocycles, a homotopy h.: g.- g’: is determined by its trunca-

tion h00:G(X)-BxIA, h01. h11 : G2(X)- (BxAB)2 XI A satisfying the

homotopy condition ( HC 2) . Now, if we express h00 (x)=
(h00(x),g0d0(x)), xE G(X), as an element of BxIA, to give h 8 is

equivalent to give the go-derivation h00: G(X)-B verifying
dh00(x)+g0(x)=g’o(x). Likewise, the simplicial identities imply
that, for any z E G2(X) , h10(z) and h11 (z) take, as elements of

(BxAB)2 XI A, the form

and the fact of h J, hl being morphisms of algebras is equivalent
to that of h01, h11, W: G2(X)-B being go do-derivations, reducing
the simplicial identities on hJ, hl,W to the equalities

and the homotopy condition (HC2) takes the form

Consequently we will identify a homotopy h. between

2-cocycles g. and g’. with the system
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The cohomology set H3(X, O) reduces to the usual mona-
dic abelian cohomology when one considers the crossed module
(M-0) defined by a zero algebra M according to [17] (3.7) and
the following lemma:

LEMMA 20. Let M be a zero algebra, then the 2- h.,vp ergroupoid
G2(M_O) is homotopically equivalent to K(M,2).
PROOF. Consider the natural inclusion i.:K(M,2)-G2(M-0):

where i2(x)=(x,0,0,0), and the simplicial morphism a. from
G2(M-0) to K(M,2) determined by

It is clear tha a. i. - lK(M2)’ Moreover it is plain to see

that the morphisms h00=0:0-M and h01, h11 : M- M4 given by
h10= 0 and h11(x)=(x,0x,0), determine a homotopy from i. a. to

1G2(M-O); that K(M,2) is a deformation retract of G2 (M-0) . 

Let us recall now that, in general, a 2-cocycle g. in

Z2 G (S,G.) is neutral if it factors through the simplicial sub-

object of G. generated by the degenerate 2-simplices. Now, for a
crossed module 0 in V, we are going to analyze in more detail
the neutral 2-cocycles with coefficients in G2(O) using for this
the canonical morphism

determined by
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In fact, it is plain to observe that the subalgebra of G2(O) ge-
nerated by the degenerate 2-simplices has as 1-truncation

and it consists in those 2-simplices which are of the particular
form ( b, b, b’, b’,a) ; thus clearly one has that a 2-cocycle
g. E Z2 G(S, G2(O)) determined by the system (g0 ,g1 , g2) is neutral
iff for any (z0,z1,z2) E A2(G.(X)),

i. e., iff it factors through Ner(G (O)), but the simplicial mor-

phisms under Ner(G(0) are just the 1-cocycles under G(0 or

equivalently the Dedecker-Lue’s 2-cocycles with coefficients in
C. So we have

PROPOSITION 21. The canonical morphism j. : Ner(G(O))- G2(O)
induces a bijection between Z2(X,O)rr Z1 G(X,G (O)) and the set of
neutral 2-coc cles over X under G2(O).

In order to establish the 9-term exact sequence it is ne-

cessary to point out two larger subsets than that consisting in
the neutral cocycles which, recalling the terminology used by
Dedecker in 1131, will consists of "null cocycles". We introduce
these cocycles as follows: The simplicial morphism j.:
Ner(G(O))- G2(O) has two factorizations through the simpli-
cial algebra Cosk 1(G(O))

where the simplicial morphisms i. , r. and t. are determined by:

Then we introduce the r-null 2-cocycles (resp. t-null 2 -cocycles)
under Q 2( cI» as those which factor through r. (resp. t. ). A class
in H3(X, O) is called r-null (resp. t-null) if it contains an r-null

(resp. t-null) 2-cocycle.
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Let us observe that Im (r.) is just the simplicial subalge-
bra of Q 2(O) generated by those 2-simplices ( b0 , b1, b2, b3,a) in
(BxAB)2xiA such that b0-b1+b2-b3 = 0 and Im(t.) is the simpli-
cial subalgebra generated by those 2-simplices ( b0, b1, b2, b3,a)
such that b0 = b1. So, a 2-cocycle g.EZ2G(X,G2(O)) represented
by the system (go ,Ct ,g2) is r-null iff g2(z0,z1,z2) =

g1(z1) -g1(z2) and it is t-null iff C2(zO,Zt,z2)= g1(z0) for any
(Z0 ,z1,z2) E ¿12( G. (X» .

Since to give a simplicial morphism from Cosk 1(G. (X» to

Cosk1(G(O)) is equivalent to give its 1-truncation, we have

PROPOSITION 22. There is a canonical bijection between the set
of r-null 2-coc.J"les (t-null 2-cocj-cles) and C1G(X,G(O)).

RBIISARIC 23. Because Cosk1(G(O)) is aspherical, any simplicial
morphisms f.,g. from Cosk1(G.(X» to Cosk1(G(O)) inducing the
same morphism between the augmentations are always homoto-
pic ; likewise, any morphism g:X-A/8(B) has a "lifting" to a

simplicial morphism g. from Cosk 1(G. (X) ) to Cosk 1(G(O)) and
therefore the set of r-null elements (t-null l elements) in

H3(X,O) is bijective to the set Hom(X,A/8(B)) by the map which
associates to each r-null (t-null) class the induced morphism
between the augmentations by any 2-cocycle representing it.

It is clear that every neutral 2-cocycle is an r-null 2-co-

cycle and also a t-null 2-cocycle, and the following proposition
expresses a necessary and sufficient condition to the coincidence

among neutral, r-null and t-null classes.

PROPOSITION 24. Let O= (d : B- A, u) be a crossed module in V.
For each X E V let TTx: Z1G(X,G(O))-Hom(X,A/d(B)) be the map
which associates to a coci-cl e the induced morphism between the

augmentations

(such a map corresponds to that called "crest" by Dedecker-Lue
in C16J). Then the following conditions are equivalent:
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i ) For each X E V an element in H3(X,cI» is neutral iff it is
r-null.

ii) For each X E V an element in H3(X,cI» is neutral iff it is

t -null.

iii) For each X E V, xx is surjective.
iv) The morphism 1A/8(B) is in the image of 1tA/8(B).
v) There exists a commutative diagram

representing a O -extension of A/(S(B).

Note that this last condition expresses that the class of
2-fold extensions

of A/8(B) by the A/8(B)-bimodule M in IM(A/8(B),M) is zero

(see [7] Prop. 8.15, 191), i. e., the obstruction to the abstract
kernel (S: B-A,1A/d(B)) vanishes.
PROOF. The equivalences i) =iii) and ii )= iii ) are immediate con-

sequences of the above remark; iii)-iv) is trivial and iv)-iii)
is proved as follows: since for any f E Hom(X,A/8(B)) the com-

position of G.(f):G.(X)-G.(A/8(B)) with a 1-cocycle

gives a 1-cocycle over X under G(0 which is applied by xx into
f. Finally iv) and v) are clearly equivalent. 0

It is clear to observe that the diagram (I) is natural on
the crossed module 0 and this fact allows us to use the notion
of r-null 2-cocycle to define a "2-hypergroupoid kernel" of the

2-hypergroupoid morphism G 2(p) : G 2(O) -G 2(O") induced by a

short exact sequence of crossed modules

Let us note that the groupoid kernel of G(p): Q( O)-G(O"), G(O’),
is just the simplicial subalgebra of G(O) consisting of those

1-simplices (b,a ) E B xIA such that pi( b) = 0.

DEFINITION 26. Let 
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be a short exact sequence of crossed modules. The 2-hypergrou-
poid kernel of G2 ( p) , denoted G2O(O’), is defined as the simpli-
cial subalgebra of G 2(O) generated by those 2-simplices which
are applied by G 2(p) into the image of r. : Cosk1(G (O")) - G2(O").

as 1-truncation and consists of those 2-simplices

For an algebra X we will denote

The definition of G2O(O’) is justified by all the following
development; see especially the following remark, the definition
of the connecting map and the proof of the exactness in the

sequence.

REMARK 27. In the case of

being the short exact sequence of crossed modules associated to
a short exact sequence of zero-algebras M’-M-M", it is easy to
observe that the homotopical equivalence a.: G2(O)-K(M,2) esta-
blished in the proof of Lemma 20 restricts to an equivalence
between G2O(O’) and K(M’,2) so that H3O(X,O’) is the usual abe-
lian cohomology with coefficients in M’.

2.3. The 9-term exact sequence.
In this paragraph we establish the 9-term exact sequence

in non-abelian cohomology of algebras, using for that the des-

cription of Dedecker-Lue’s 6-term exact sequence in the simpli-
cial way shown in 1.3, i. e., that obtained as example of Proposi-
tion 11 when one considers the sequence of groupoids in V,
G(O’)-G(O)-G(O") associated to a short exact sequence of
crossed modules (D’-(D-0":
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Obtaining the elongation will necessitate a restrictive con-
dition on the sequence of crossed modules since we will need
that a cocycle under Q(O") has a lifting to a cochain under
G(O). The following proposition shows a sufficient condition for
that.

PROPOSITION 28. i) If q G-G" is a morphism of groupoids
which is a quotient map in the sense of Higgins [25], f. e., q o is

surjective and the canonical morphism

is surjecti ve. then any coci-cle f.EZ1G(X,G") has a lifting to a

1-cochain under G. i.e.. there evists (gt,go)eCh(X,Q) such that

qlg; = fi , i = 0. .1.

ii) Let

be a short exact sequence of crossed modules. Then G(O)-G(O")
is a quotient map iff Ker( p0) = 1m (S’). Such a sequence verifying
this condition will be called a "short s trongl vl exact sequence of
crossed modules".

PROOF. Given f.EZ1G(X,G") let g0: G(X)-G0 be any morphism
satisfying qogo = f o. For each z E G(X) such that z nx(X) let

vz E Gi be an element verifying

then we define gi: G2(X)-G1 as the unique morphism satisfying
g1nG(X)nx(x) = s0g0nx(x) and g1ng(x) (z) = vz for each z E G(X)
and z Enx(X).

It is straightforward to see that q1g1 = fi and (gi,go) is

a truncated simplicial morphism from G.(X) to Ner(G) and so i)
is proved.

ii) In these conditions, G((p1,p0)) is a quotient map iff for
each b" E B" and a0, a1 E A such that d"( b") + p 0( a 0) = p0 ( a1), there
exists b E B satisfying p1(b) = b" and d( b) +a0 = a1; but, since pi
is surjective, that condition is verified iff for each a e Ker( p o)
there exists b E Ker(pi) = B’ such that 8(b) = a , i.e., iff

Ker(po) = Im(S’) .

is a short strongly exact sequence of crossed modules, there
exists an adequate "connecting map" X2: H2(X,O")-H3O(X,O’’) de-
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fined as follows: Each 1-cocycle f.~ZG(X,G(C")) has a lifting to

a 1-cochain under G(0, say (g1,g0)E C1G(X,G (O)), Le., a trunca-

ted simplicial morphism from Tr1(G.(X)) to Tr1(G (O)) such that

q1g1= fi and p0g0= f 0:

which in general is not a 1-cocycle, but according to Proposition
22 it canonically defines through t. : Cosk 1(G. (X) ) -G 2(O) a t-null

2-cocycle g. under G2(O) (explicitly, g. is the 2-cocycle corres-

ponding to the system (g0, g1, g1 d0). This 2-cocycle g. is carried

by composition with G 2(p) into an r-null 2-cocycle under G2(O")
(really into a neutral 2-cocycle) and so it factors through
G2O (O’).

We claim that the class of g. in H3O (X,O’) only depends
on the class of f. in H2(X, O"). In effect, let h. : f.- f’. be a

homotopy between 1-cocycles under G (O") and g. and g’. the as-
sociated 2-cocycles under G2O(O’) as above. Then a homotopy H.:
g.- g’. is built as follows: Since G(p): G(O)-G(O") is a quotient
map of groupoids there exists H00: G(X) - B xl A such that

denoting

we define I

(note that

the last equality by the homotopy condition).
It is easy to see that (H10,H11 ;H00) is a truncated homoto-
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py from g. to g’. verifying in addition the homotopy condition
(HC2) (see Remark 19) and so it extends to a homotopy H. as

required. Therefore, the correspondence f. 1--) g. according to the

previous construction induces a well defined map

The following proposition expresses that X2([f.]) is preci-
sely the obstruction to If.] being in the image of p.:
H2(X,O)- H2(X,O").

PROPOSITION 29. Let

be a short strongbr exact sequence of crossed modules and X
an algebra. The sequence _ 

is exact in the sense that an element is in the image of p* iff
it is applied bi- X2 into a neutral class.
PROOF. Let g.EZ1G(X,G(O)) be a 1-cocycle: then x2p*[g.] is re-

presented by the 2-cocycle which belongs to Z2G (X, G2O(O’)) de-
termined by the system ( g0,g1, g1 d0) which is neutral since g. is

a 1-cocycle and so g1(z0-z1+z2) = 0 for all (z0,z1,z2) E A2(G. (X)).
Conversely, let f.EZ1G(X,Q(O")) be such that X2[f.] is a

neutral class in H3O(X,O’). To prove that [f.]EH2(X,O") is in

the image of p* let us suppose (g1,g0) E C1G(X,G,O)) is a 1-co-

chain lifting of f. and g. * (g0,g1,g1d0) E Z2 G(X,G2O(O’)) the cor-

responding 2-cocycle such that X2 [f.] = g. ; since Eg.] is neutral

there will exist a neutral 2-cocycle g’. (g’0,g’1,g’1 d0) (so veri-

fying g’1 ( z0 - z1 + z2) = 0, ( z0 , z1, z 2) E A2(G. ( X))) and a homotopy
h. = ( h00 , h10, h11, W) from g. to g’.. Then, using this homotopy, we
build the following 1-cocycle f’. E Z1G(X,G(O)) : take f6 = go and
f1: G2(X)-BxIA given by
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(using the condition ( HC2)) and

(since h10, h11E (G2O(O’))2) ; from where ( f1 , f0) defines a 1-cocycle
f’. EZ1GX,G(O)) such that p*(f’.) = f . so that the proof is com-

pleted. 

Now, recalling the definition of X2, it is clear that i*X2
maps any element of H2(X,O") into a t-null element of
H3 (X,O). Really one has:

PROPOSITION 30. In the same conditions as in the previous
proposition. the sequence

is exact in the sense that an element is in the image of X2 iff
its image by i. is a t-null element.

P’ROOF. Let g.= (g0, g1, g2) Z2G(X,G2O(O’)) be such that i;+:[g.] is

represented by a t-null 2-cocycle g’.=(g6,,k;,k;do) and let

h.= (h00,h10,h11; W) be a h,omotopy from i* (g.) to g’.. Using this

homotopy we define the following t-null 2-cocycle g". -
(g6,,q;’,k;"do): Take 

(using successively (HC2), see Remark 19, and the fact that

g2(z0,Z1,z2) is in G2O(O’)), we have that g’: factors through
G2O(O’) and the pair (q1g1", p0g0") defines a 1-cocycle over X

under G(O") whose class in H2(X,O") is clearly sent by X2 to

[ g".]; but g". represents in H3O(X,O’) the same element that g.
since the system ( h00, H10, H11, W’) where

determines a homotopy from g. to g". so that the proof is com-

pleted. ·

The following is a consequence of Lemma 17 and the de-
finition of G2O(O’).
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LEMMA 31. If

is a short exact sequence of crossed modules such that the in-
duced morphism pi : Ker(d)-Ker(d") is surjective (or equivalently
that the induced morphism Ker(po)/8(B’)-A/8(B) is injective) the

sequence

where i. is’ induced by- the inclusion G2O(O’)-G2(O) and p. by
G2(p) is exact in the sense that an element is in the image of
i. iff it is applied bi- p. into an r-null class.

PROOF. The condition of p1:Ker(d)-Ker(d") being surjective is

equivalent to that of G 2( p) : G2(O)-G2(O") being a Kan-fibration;
then if g. E Z2 G( X, G2(O)) is such that p*(g.) is homotopic to an

r-null 2-cocycle, Lemma 17 implies that there is another 2-cocy-
cle g: homotopic to g. such that p*(g1) is an r-null 2-cocycle,
but then g’. factors through G 2O((O’) and so the class of g. is in

the image if i* . That p* i* carries all element into an r-null 1
class is obvious. ·

COROLLARY 32. In the same conditions as in Proposition 29 the

sequence

is exact in the sense that an element is in the image of i. iff it
is applied by p* into an r-null class.

PROOF. The condition Ker(p0) =Im(d’) implies that the map pt:
Ker(8)-Ker(8") is surjective.

In summary, by Theorem 1, Propositions 29 and 30, Corol-
lary 32 and Remarks 23 and 25, we have:

THEOREM 33. Let 

be a short strongl.y exact sequence of crossed modules in V (i.
e.. such that Ker(po) = Im(8’) ). For any algebra X and ant- ho-

momorphism cp : X-A there exists an exact sequence. extending
Dedecker-Lue’s 6 -term exact sequence
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whose exactness in the three last points is as follows: An ele-
ment is in the image of p. iff its image by X 2 is neu tral: an
element is in the image of X 2 iff its image by i * is t-null; an
element is in the image of i * iff its image by p * is r-null.

Moreover, if there e.1(ists a O -extension of A/8(B) with
crest ’A/B(B) then neutral = t-null = r-null and the e..1(actness is

established in the sense that an element is in the image of a
map in the sequence iff its image bJ’ the following map is neu-
tral. ·

In the particular case of C being the crossed module of
inner bimultiplications in B and O" = (B"-IB/d(B’)) the exactness
in the 3 last points is established in terms of pointed sets.

Finally, by Lemma 20 and Remark 27, the sequence of
Theorem 33 reduces to the usual abelian one when the sequence
of crossed modules is that corresponding to a short exact se-

quence of zero-algebras.
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