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MULTIPLICATIVE LATTICES AND C*-ALGEBRAS

by J. ROSICKY

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFRRENTIELLE

CATÉGORIQUES

VOL. XXX-2 (1989)

RÉSUMÉ. Soit R(A) le treillis des id6aux a droite fermes

d’une C*-alg8bre A. D’apr6s la dualité de Gelfand, toute

C*-alg6bre commutative A est uniquement d6termin6e par

R(A). On a cherché a étendre ce r6sultat au cas non-com-

mutatif en munissant R(A) d’une structure supplémentaire
[2,7,11,3 et 4]). On poursuit ici ces recherches en munis-

sant R(A) d’une multiplication I o J = I . J . Les treillis mul-

tiplicatifs ainsi obtenus sont appel6s "quantum frames", et

leurs propri6t6s sont 6tudi6es.

Our aim is to introduce a new structure on the lattice

R(A) of all closed right ideals of a C*-algebra A. Recall that a

C*-algebra is a complex Banach algebra A with an involution *
satisfying

By the Gelfand duality, commutative C*-algebra correspond to

locally compact Hausdorff spaces ( A will denote the topological
space determined by A). Since R(A) is isomorphic to the lattice

O(A) of all open sets of A, a commutative C*-algebra A is

completely determined by R(A). In the non-commutative case,

the situation is much more complicated and the search for

satisfactory invariants is still continuing. The lattice R(A) may
be considered as a non-commutative substitute of a topological
space but it does not determine A. It motivates efforts to con-

sider R(A) as a richer structure than a mere lattice. C. J. Mulvey
[11] equipped R(A) with the natural multiplication I.J of closed

right ideals. The resulting multiplicative lattices were called

quantales and their theory was further developped in [31 and

[4]. The second paper proves that any unital postliminary
C*-algebra can be reconstructed from its quantale. We carry

this investigation forward by considering another multiplication
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0 on R(A): I o J = 1*. J .
Recall that a frame is a complete lattice satisfying the

distributivity law

(see [8]). Open set lattices of topological spaces are frames.

For instance, R(A) is a frame for any commutative C*-algebra A.
Quantales were introduced as a non-commutative generalization
of frames. A quantale is a complete lattice Q equipped with an
associative and idempotent multiplication . such that

and

for any x, xi E Q, i E I (1 is the top element of Q, 0 is the bot-

tom one). Since the concept of a quantale was varying, we point
out that our quantales are idempotent. Frames coincide with

commutative quantales (. equals to ^). For any C*-algebra A,
R(A) is a quantale. Besides many nice features, quantales have

some deficiencies. For instance, one cannot require separation
properties because any regular quantale is automatically commu-
tative [13]. We introduce quantum frames as quantales together
with a new multiplication 0 subjected to some axioms. Any
frame is a quantum frame with 0 taken as ^. Frames coincide

with quantum frames having 0 idempotent. Any R(A) is a quan-
tum frame. Separation axioms can be imposed upon quantum
frames and, analogously as in the commutative case, R(A) is

completely regular for any A and normal for A unital. Moreover,
R(A) is compact iff A is unital. Like discrete frames are connec-
ted with Boolean algebras, discrete quantum frames lead to

ortholattices, i.e., to the usual quantum logic.
Even the quantum frame R(A) does not determine A. The

reason is that R(A) is an invariant of the Jordan algebra Ah of
hermitian elements of A (non-isomorphic C*-algebras may have
isomorphic Jordan parts). The author does not know whether the
quantum frame R(A) determines the Jordan algebra Ah . Follo-

wing C.A. Akemann 121 and R. Giles,, H. Kummer [7], a unital

C*-algebra A can be reconstructed from an embedding of R(A)
into a bigger lattice P which is given by irreducible representa-
tions of A. In the commutative case, it is the embedding of

O(A) into the lattice 2A of all subsets of A . In a general case,
P is a discrete quantum frame but it is not determined by the

quantum frame R(A).
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1. QUANTUM FRAMES.
I Recall that an element x of a quantale Q is called 2-sided

if 1. y = x. The set Q of all 2-sided elements of Q is a complete
sublattice of Q closed with respect to the multiplication. Hence
for any x E Q there is the smallest 2-sided element R ;-, x. It

holds

Moreover, there is a one-to-one correspondence between quanta-
le multiplications on a complete lattice Q and complete sublat-
tices Q C Q satisfying

for

for

for

(see [3]). Further, Q is a frame.

1.1. DEFINITION. A quantum frame is a quantale Q together
with a new multiplication 0 satisfying:

for

for

for

for

for

for 

An immediate consequence of the first two axioms is

Hence the multiplication 0 determines 2-sided elements and the-
refore the quantale multiplication, as well. We could formulate
Definition 1.1 without mentioning . at all and . was used for the
convenience only. Another easy consequence is that

for any x,y E Q

Further
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because i.e.,

Consequently, if 0 is idempotent then it coincides with A . Hence

idempotent quantum frames coincide with frames.

1.2. LEMMA. The following conditions are equivalent for any

quantum frame Q :
(i) Q is associative.
(ii) Q satisfies the equation (x o y) o z = (x o z) o (y o z).

for an i,

PROOF. Evidently (iii) - (i), (ii) .

1.3. LEMMA. In the definition of a quantum frame, the sixth

axioms can be weakened to:

for

PROOF. Using (QF6’) and (QF3) we get

Therefore

Now

Let A be a C*-algebra and denote by R(A) its lattice of

closed right ideals. Following [3], R(A) is a quantale with I.J
being the closed right ideal generated by a b, a E I, b E J. Let I o J
be the closed right ideal generated by a*b, a E I, b E J. In fact,
I o J = I*J is the usual product of a closed left ideal I* with a

closed right ideal J.

1.4. PROPOSITION. R(A) is a quantum frame for an)’ C*-algebra
A.

PROOF. (QF1) is evident because PJ is 2-sided. (QF2) follows
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by the self-adjointness of any .2-sided ideal.
(QF3) Since the involution is continuous in the norm topology,
we have

(QF4) only needs that x. - is continuous in the norm topology.
(QF5) Taking a left approximate unit ut for I (see [5]), we ob-
tain that

for any x E I.

(QF6) For K 2-sided, one has

(QF7) Let K be 2-sided and ut its left approximate unit. Then

and

for any

Let A be a W*-algebra of operators in a Hilbert space H

and r(A) its lattice of weakly closed right ideals. Replacing the
norm closure - by the weak closure cl we get multiplications .
and 0 on r(A) (i.e.,

and

1.5. PROPOSITION. r(A) is a quantum frame for anj- W*-algebra
A.

Proof is analogous to that of 1.4 (the involution and tran-
slations x. - are weakly continuous, see [61).

Let A be a C*-algebra and Ah its set of hermitian ele-

ments. For a,b E Ah, let a o b = ( a b+ b a) l2 be their Jordan pro-
duct.

1.6. LEMMA. Let I , J E R( A) . Then I o J is the closed ideal genera-
ted by ao b, a E Ih, b E J h.
PROOF. Denote by K the closed ideal generated by a o b , a E Ih,
b E J h. Since

for a E Ih, b E Jh, we have Kc I o J. Let a E I+, b E J+ be positive
elements. Then a 1/2 E I+ and b1/2E J + (see [5], 12.4). Hence K
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contains elements

We proved that a b E K for any a E I+, b E J+. The assertion the-
refore follows by

(8) Io J is the closed ideal generated by a b, a E I+, b E J+.
To verify (8), let us’ vt be left approximate units for I, J resp.
and N E I, y E J . Then

which yields (8).

1.7. PROPOSITION. Let A be a C*-algebra. The quantum frame
R(A) is completely determined b.y the Jordan algebra AIr
PROOF. The lattice R(A) is an invariant of the ordered real vec-

tor space Ah (see [5] 12.4.1). The result follows by 1.6.

The ordered set of real numbers will be denoted by IR. An

isotone mapping e: R-&#x3E; L into an ordered set L is called bounded
if e(a) = 0 and e( b) = 1 for some real numbers a  b.

1.8. PROPOSITION. Let A be a unital C*-algebra. Hermitian ele-
ments of A correspond to bounded V-preserving mappings
IR - R(A).

PROOF. Let aA: R(A)-P(A) be the embedding mentioned in the

Introduction. By the spectral Theorem, hermitian elements of A
correspond to V-preserving bounded mappings e: (R-&#x3E;P(A). The

fundamental result of Akemann, Giles and Kummer (see [2] and

[7]) asserts that e comes from a hermitian element of A iff it

factorizes through R(A).

The author is able to prove that the quantum frame R(A)
also determines Ilall, ra and a 2 for a E Ah and r E R. He does
not know whether the sums a+b, a, b E Ah are determined too,
i. e. whether the whole Jordan structure of Ah can be recons-

tructed.
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2. FUNCTORLKUTY.

A homomorphism of quantum frames is a mapping Q1 -&#x3E; Q2
preserving V , 1, . and o . Any homomorphism f : A -&#x3E; B of

C*-algebras determines a mapping R(f):R(A)-R(B) such that

R(f) (J) is the closed right ideal generated by f (J) (see [3]), But

R(F) does not need to be a homomorphism of quantum frames
because 2-sided ideals are not generally preserved. To restore

the functoriality we will introduce weak homomorphisms of

quantum frames.

2.1. DEFINITION. Let Q1 and Q2 be quantum frames. A mapping
h: Q1 -&#x3E; Q2 will be called a weak homomorphism if it preserves

V, 1 and satisfies

for any

Any V. 1 and 0 preserving mapping is a weak homomor-

phism. Weak homomorphisms of frames coincide with homomor-
phisms.

2.2. LEMMA. Let f : A -&#x3E; B be a unital homomorphism (i.e., unit

preserving) of unital C*-algebras. Then R(f):R(A)-R(B) is a

iveak homomorphism. For f surjective, R(f) is a homomorphism.
PROOF. It is easy to see that R(f) preserves V and 1. (9) fol-
lows from the fact that R(f)(I o J) is the closed right ideal ge-
nerated by f( a) f( b) , a E I, b E J and R(f)(I) o R(f) (J) is similarly
generated by

and

i.e., it is a closed ideal generated by f (a*) f (b), a E I, b E J .
Let f be surjective. Then R(f) preserves . (see [4]) and

since for any jv E B there is a .Y E A with x = f(y) , R(f) also pre-
serves o .

It is easy to see that for a weak homomorphism
h: Q1--tQ2 we have

Hence
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We proved that

holds for any weak homomorphism A. Another consequence of

(10) is that the composition of weak homomorphisms h: Q1 -&#x3E; Q2,
g: Q2 -&#x3E; Q3 is a weak homomorphism:

Let Q denote the category of quantum frames and weak homo-
morphisms and C be the category of unital C*-algebras and uni-
tal homomorphisms. We have obtained the functor R: C-Q and
the next result gives some of its properties. They follow by [I]

and [7]; assertion (b) is 111.3 from 111. Recall that a functor F
is faithful if for any morphisms f,g:A -&#x3E; B from the domain

category the implication F(f) = F(g) =&#x3E; f = g holds.

2.3. pROPOSITION. The functor R: C-4 Q is faithful and
(a) R( f) is one-to-one iff f is one-to-one
(b) R( f ) is surjective iff f is surjective.

PROOF. Let f: A...:, B be a unital homomorphism and a E Ah. Con-
sider the corresponding bounded V-preserving mapping ea :
IR-4R(A) from 1.8. Let x E IR and g : R -&#x3E; R be a continuous func-
tion such that g(y) = 0 for y &#x3E; x and g(y) &#x3E; 0 otherwise. Follo-

wing 171 3.2, it holds

where g( a) is defined by the functional calculus. Hence

We proved

Consequently, R is faithful.
If R(f) is one-to-one then ker(f) = 0 and f must be one-

to-one. The converse follows by (13). It is evident that R(f) is

surjective for any surjective f. Consider f: A -&#x3E; B with R(f) sur-

jective. Let -

be the factorization through the inclusion g : f (A) -&#x3E; B . Then R(g)
is an isomorphism and (13) yields that g is an isomorphism.
Hence f is surjective.
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3. REGULARITY.

We say that elements x,y of a quantum frame Q are dis-

joint if xoy= 0. The notation will be x L y. By (QF4), for any x

in Q there is a greatest element xl disjoint to x. The following
properties are evident:

(concerning (16), 

Having a weak homomorphism h, we get

The concept of disjointness makes possible to consider

topological properties of quantum frames. We will write x |y
for x,j,- E Q if x  y and j, v x L = 1. Recall that a set S is direc-

ted if for any s, t E S there i s u E S, s, t  u.

3.1. DBFINITION. Let Q be a quantum frame. An element E Q
is called regular if there is a directed set of elements

such that

Q is called regular if any of its elements is a directed join of

regular elements.

3.2. REMARKS, (a) For frames, we get the usual concept of re-
gularity (see [81) extending that of topological spaces.

(b) There is a weaker concept of regularity for quantum
frames (any element y is a join of elements x |y) and a stron-
ger one (any element is regular).

(c) The disjointness based on the quantale multiplication
(i.e., ,,’t(..y= 0) is too strong. Using it, any regular quantale would
be a frame (see [13]).

We will wri te x || y for x,j-,EQ if there are elements z t
for any rational number 0  t  1 such that

and for any
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Using || instead of | we will get the concept of a completely
regular quantum frame. Any completely regular quantum frame
is regular and we get the usual complete regularity for frames

(see 181).

3.3. PROPOSTTION. The quantum frame R(A) is completely regu-
lar for- an-i- C*-algebra A.

PROOF. Any C*-algebra A is a closed ideal in a unital

C*-algebra A’ derived from A by adjoining a unit. It is easy to

see that the mapping

u: R(A’) -&#x3E; R(A) given by u(J) - J n A

is a homomorphism of quantum frames. Since a homomorphic
image of a completely regular quantum frame is completely re-

gular, it suffices to prove 3.3 for unital C*-algebras.
Let A be a unital C*-algebra. If x, y E A+ and x y then

by [5] 12.4.1. Hence the set

is directed for any J E R( A) . Since

(see [5] 2.9.3), it remains to prove that any element

is completely regular. Let B be a sub-C*-algebra of A generated
by AT and 1. Since B is commutative, R(B) is completely regular.
Following 2.2, R( h) : R(B) -&#x3E; R(A) is a weak homomorphism where
h : B -&#x3E; A denotes the inclusion. It is an immediate consequence of

(17) that weak homomorphisms preserve complete regularity of

elements. Since U belongs to the image of R( h) , it is comple-
tely regular.

An element x of a complete lattice L is called compact if

for any directed set S with x v VS, there is an S E S such that

x v s. L is called compact if 1 is compact.

3.4. PROPOSITION. A C*-algebra A is unital iff R(A) is compact.
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PROOF. Clearly, R(A) is compact for A unital. Let R(A) be com-

pact. Then A is a compact 2-sided element of R(A’) (see the

proof of 3.3). Since R(A’) is regular, A is a directed join of re-
gular elements of R(A’). Using compactness, we get that A is a

regular element of R(A’). Repeating the argument we obtain that

A | A in R(A’), i.e., A V A1 = A’. Assume that A1 c A. Then A1 = 0,
i.e., A = A’, which is impossible. Hence Al r1 A and by [12]

§7.4. VI, 0 = A n A1 is regular ideal of A (do not confuse it with

regular elements in our sense). Hence A = AB0 is unital.

A quantum frame Q will be called normal if for any x,

y E Q, xvj- = 1 there is z |x with z v Jr = 1. Again, it extends the

usual concept of normal frames (see [8]),

3.5. LEMMA. Any compact regular quantum frame is normal.

PROOF, Let Q be compact and regular, .-Y,J-E Q and x v y = 1. Then
A is a directed join of regular elements and any Xi is a di-

rected join of elements xij | ,vi. Hence 1 is the directed join of
elements .-1(j v..v, i.e., 1 = xi V)’ for some i . We can repeat the ar-

gument and we find z E Q (z = xij for some 7 and j) such that

and

3.6. COROLLARY. R(A) is normal for an.y unital C*-algebra A.
Proof follows by 3.3, 3.4 and 3.5.

4. DISCRETENESS.

4.1. DEFINITION. A quantum frame Q will be called discrete if
it is dually atomic (i.e., any element is a meet of dual atoms)
and x = X11 for any x E Q.

Discrete frames, complete atomic Boolean algebras and

open set lattices of discrete topological spaces mean the same

concept. We will show that discrete quantum frames are closely
connected with ortholattices. Recall that an ortholattice is a

lattice L equipped with a unary operation ’ satisfying
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for any x,y E L (see 191). The third condition can be weakened to

(OL3’) x ^ x’ = 0 .

Since ’ is an anti-isomorphism of L, an ortholattice is atomic iff

it is dually atomic. Complete ortholattices are orthoiattices

which are complete as lattices. For .."’,J’ E L, it is said that .x

commutes with .J’ if

The notation is x C y . The centre C(L) of L is defined as the set

for any

(see l101). Central elements have properties

for any

The first is evident and the second is in 1101, p. 603.

4.2. LEMMA. In a complete atomic ortholattice L, (3) holds for

any A E L and a; E C (L) , i E I.

PROOF. Assume that (3) is not true for x E L and aj E C(L) . Since

there is an atom p E L such that p 5 XAV ai but p ^ V x ^ ai = 0.
Hence 

By (

for any

and therefore ai  p’ for any I. Consequently

giving p = 0, i.e., a contradiction.

4.3. LEMMA. Let Q be a quantum frame such that x = X11 for

any A E Q. The
(a) (Q ,1) is an orthol a t tice.

(b) Q is a complete Boolean subalgebra of Q and Q c C(Q).
(c) For any x, y E Q and a E Q,

holds.



107

PROOF. (a) (OL1) is evident, (OL2) is assumed and (OL3’) fol-
lows by (6).

(b) follows by (16) and (3).
(c) If xo y  a then

Hence

Conversely, x  a v y 1 implies

Consequently, if a quantum frame Q satisfies x - x11 for

any ,v E Q, then the multiplication 0 is given by the formula

4.4. PROPOSITION. Let L be a complete ortholattice and B a

complete Boolean subalgebra of L such that B C C(L) and (3)
holds for an)’ x E L and aj E B. Then L is a quantum frame with

xl- = x’ for any xE L, with B = L and with the multiplication given
by (21), i.e..

PROOF. We will start with the verification that L = B makes L a

quantale. Condition (2) follows by (19), (3) is assumed and con-

cerning (4) let x E L and a E B. Evidently

and

by (3). Hence

For proving that L is a quantum frame, we will need to

knosv that (20) holds for any .-",Joe L and a E B. It follows by the
fact that

Now, (QF1) is evident.

(QF2) is an immediate consequence of (20).

(QF3) also follows by (20) because x  a v y’ implies

for any and

(QF4) By (19),
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for any yj E L and a E B . Hence

for anv

for any

We used (20) and, since x o V y i, V.,yo.Yj E B and a E B was arbi-

trary, we proved (QF4) .
(QFS) If for and then

(QF6) Let xo (1 o y)  a for x, y E L and a E B. By (20),

Therefore (x o 1) o y  a and (QF6’) is verified. It remains to apply
1.3.

(QF7) For X,- I- E L and a E B, we have

(QF7) follows.

The next result immediately follows by 4.2, 4.3 and 4.4.

Its formulation uses the fact that C(L) is a complete Boolean

subalgebra of an atomic complete ortholattice L (see 1101 3.3).

4.5. COROLLARY. Discrete quantum frames uniquely, correspond
to couples ( L, B ) where L is a complete atomic ortholattice and
B a complete Boolean subalgebra of C ( L) .

Emphasize that disjointness and orthogonality means the

same for discrete quantum frames. There is another case where

4.3 and 4.4 fit together. It is the case of orthomodular lattices,
i.e., ortholattices satisfying the identity

for any

4.6. COROLLARY. Let L be a complete orthomodular lattice.
Then quantum frame structures on L uniquely correspond to

complete Boolean subalgebras B of C(L) .

PROOF. Any complete orthomodular lattice satisfies (3) for any
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AT E L and ai E C(L) (see 191 §3, 2 and 4). Moreover, C(L) is a

complete Boolean subalgebra of L ([9] §3, Ex. 16).

A quantum frame Q is called simple if Q = { 0,1 } . Follo-

wing 4.5, discrete simple quantum frames coincide with comple-
te atomic ortholattices (via x o y = 0 for x  y’ and x o y = 1 other-
wise). Another possibility for a discrete quantum frame Q is Q
= C(Q). Since C(TT Qi) = TTC(Qi), it follows by E103 3.4 that these

discrete quantum frames coincide with products of discrete

simple quantum frames.

Let A be a W*-algebra and P(A) its lattice of projections.
By [61 §3.4, the lattices P(A) and r(A) are isomorphic and 2-si-
ded ideals correspond to central projection. P(A) is orthomodular

and its centre consists of central projections. Hence P(A) and

r(A) are isomorphic quantum frames (by 4.6).
Let A be a C*-algebra and x: A -&#x3E; X its reduced atomic

representation. It means that rr is induced by a maximal set 1t j:

A -&#x3E; B(Hi), i E A of inequivalent non-null irreducible representa-
tions

The prescription a ( J ) =clx(J) provides, leaning on the isomor-

phism r(A) = P(A) , a mapping a : R(A) -&#x3E; P(Ã), which is the embed-

ding mentioned in the Introduction. It was proved in 141 that a

is a quantale homomorphism and, quite analogously and easily,
it can be shown that a preserves o . Hence a: R(A) -P(I) is an

embedding of quantum frames.

Pursuing the analogy with frames, a quantum frame may
be called spatial if it is a quantum subframe of a discrete quan-
tum frame.

4.7. PROPOSITION. The quantum frame R(A) is spatial for an.y

C*-algebra A.

PROOF. R(A) is isomorphic to a quantum subframe of P(A) and

P(A) is discrete (even

where L(Hi) is the lattice of closed subspaces of Hi).
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