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ON PRIMENESS AND MAXIMALITY OF FILTERS

by Francis BORCEUX and Maria-Cristina PEDICCHIO
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ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXX-2 (1989)

RÉSUMÉ. Dans un topos arbitraire, on étudie diverses

formulations des notions classiques de filtre premier et

maximal ainsi que les implications entre ces d6finitions.
Dans le cas des algèbres bool6ennes, on associe a chaque
notion de filtre maximal une notion de filtre premier qui
lui est 6quivalente dans un topos arbitraire, et inverse-

ment. On indique aussi des conditions sur la logique
interne a un topos qui forcent certaines 6quivalences
classiquement vraies.

INTRODUCTION.

In this paper we are concerned with the study of prime
and maximal filters in a boolean algebra or a distributive lattice
in an arbitrary topos. Classically, a filter F is prime when, for

every elements a, b

which is equivalent to the fact of being a prime element in the

lattice of filters; thus for filters G, H

Moreover a prime filter F is very often required to be proper,
thus to satisfy

On the other hand a filter F is maximal when it is proper and

satisfies the condition, for every filter G

or equivalently

Notice that the first condition for maximality is equivalent to
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because of the properness of F.

In a topos, the condition of being a proper filter is very

strong and many natural boolean algebras or distributive lattices

in a topos do not have a proper filter. The necessity of consi-

dering in a topos filters which are not necessarily "globally pro-
per" has already been recognized by several authors (cf. C1, 2, 9J).
Therefore we shall study filters which satisfy the conditions P

(prime filter), SP (strongly prime filter), M (maximal filter) or

SM (strong maximal filter) without requiring necessarily the

properness condition p.

In a first part, we extend some results due to P.T.

Johnstone (cf. [7]), For filters in a boolean algebra in an arbi-

trary topos we have

strongly maximal strongly prime - prime - maximal

while in the case of distributive lattices we obtain

strongly maximal strongly prime - prime
strongly maximal maximal.

The converse implications are generally not valid, but are in fact

equivalent to some logical principles in the topos: the implica-
tion

maximal prime

is equivalent to strong De Morgan’s law

in the general case and to De Morgan’s law

in the case of proper filters. The implication

prime - strongly prime
is equivalent to the booleanness of the topos in the case of

distributive lattices, to strong De Morgan’s law in the case of

arbitrary filters in a boolean algebra and to De Morgan’s law in

the case of proper filters in a boolean algebra. The implication
maximal strongly maximal

is always equivalent to the booleanness of the topos.
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In a second part, we extend a result of C.J. Mulvey (cf.
191) by showing that in the case of a boolean algebra B in an

arbitrary topos, each notion of maximal filter is equivalent to an
appropriate formulation of the primeness condition, and conver-
sely for prime filters. For example, in the case of a proper fil-
ter F, the condition (M) of maximality studied by P.T. Johnstone
is equivalent to the primeness condition

while his notion (P) of primeness is equivalent to the maximality
condition:

the strong primeness condition (SP) is equivalent to the maxi-

mality condition: _

while finally the strong maximality condition (SM) is equivalent
to the primeness condition:

where a, b are elements of B and G, H filters of B.

1. MAXIMAL AND PRIME FILTERS.

When D is a distributive lattice in an arbitrary topos E,
we write F(D) E E to denote the locale of filters of D in E (cf.
[1]). When B is a boolean algebra in E, we write b* to denote
the complement of b E B.

DEFINITION 1.1. A filter F in a distributive lattice D is

a) proper when | (0 E F),
b) prime when

c) strongly prime when

d) maximal when

e) stronglj- maximal when



170

where a, bED and G, H E f (D).

It should be noticed that a proper filter F is maximal in

the sense of Definition 1.1 precisely when (cf. [7])

We recall also the following result.

PROPOSITION 1.2. For a filter Fe B in a boolean algebra B in a
topos, the following conditions are equivalent:

(1) F is a prime filter;
(2) F is an ultrafilter, i.e., for b E F,

since since

PROPOSITION 1.3. For a filter F in a distributive lattice D , con-
sider the following conditions:

(SM) F is strongly maximal,
(SP) F is strongly prime,
(P) F is prime,
(M) F is maximal.

Then the following implications are valid :

and

Moreover when D is a boolean algebra

(SM) =&#x3E; (SP): If Gn H C F, apply (SM) to FVG and FVH, where
denotes the supremum in F(D) . One gets

thus also

But since F(D) is a locale and
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so that

(SP) =&#x3E; (P) : If a v b E F, apply (SP) to the principal filters

generated by a, b .
(SM) =&#x3E; (M) : obvious.

(P) =&#x3E; (M) for boolean algebras. Consider G D F such that

0,E G - OEF. For an element a E G,

(Proposition 1.2), but

2. THE FILTERS OF THE INITIAL ALGEBRA.

The object 2 = III 1 is, in every topos, the initial boolean

algebra.

PROPOSITION 2.1. In every topos, F( 2 ) = Q .

A filter F C 2 is determined by the fact that its characte-

ristic map rp: 2-&#x3E;Q satisfies

But for elements a, b E 2 we always have

Therefore the condition cp (1) =1 implies that F is completely de-
termined by the element cp (0) ED, while the second condition on
cp reduces to cp ( 0)  cp ( 1 ) , what follows from cp ( 1 ) = 1 . So F is

characterized by cp (0) which is an arbitrary element of Q. ’

PROPOSIT’ION 2.2. In a topos:
(1) {1} is the onty proper filter of 2 ,
(2) every filter of 2 is prime, thus also mavimal,
(3) the strongly prime filters of 2 correspond bijectively with

the prime elements of Q,
(4) the strongly mavimal filters of 2 correspond bijectivel.y

with the widespread elements of 0 (cf. 181).

(1) and (2) follow immediately from the relations
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for an element ae2, while (3) is an obvious consequence of 2.1. The
element U E 0 corresponds with a strongly maximal filter of 2 when,
in 0,

which is equivalent to

or

or

thus finally, in the locale 1 u, to the property 7 v v v = 1, which
means precisely the booleanness of 1’ u , thus the fact for u to

be widespread (cf. [8]).

PROPOSITION 2.3. (1) A topos satisfies De Morgan’s law iff {1}
is a strongly prime filter of 2 .

(2) A topos satisfies strong De Morgan’s law iff eveJ:v filter
of 2 is strongly prime.

(3) A topos is boolean iff {1} is a strongky maximal filter of
2. which implies that ever - filter of 2 is strongly ma.,vimal.

De Morgan’s law can be expressed equivalently under the
form

where U, V EO. But

So De Morgan’s law is equivalent to the primeness of 0,E Q and

(1) follows from 2.2.3.

Strong De Morgan’s law can be expressed equivalently un-
der the form

where u, v, w E O. Since - ==:o w is the pseudo-complement in the

upper segment t w, strong De Morgan’s law means that every
element w E Q is prime and (2) follows from 2.2.3.

Q is a boolean algebra precisely when 0 E Q is widespread
(cf. 181), which implies that every upper segment ’f w is a boo-

lean algebra, thus every element w E Q is widespread. Thus (3)
follows from 2.2.4. ·
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3. THE COrfVERSE IMPLICATIONS.

In this paragraph, we study the relations between the

properties involved in Proposition 1.3. This extends the result of

[7].

PROPOSITION 3.1. The following conditions are equivalent in a

topos:
( 1) The topos satisfies De Morgan’s law.
(2) Everyr proper maximal filter of a distributive lattice is

strongki, prime.
(3) Every proper ma..yimal filter of a distributive lattice is

prime.
(4) Every proper mavimal filter of a boolean algebra is

strongly prime. -

(5) Every proper mavimal filter of a boolean algebra is prime.
(6) Eveili, proper prime filter of a boolean algebra is stronglj,

prime.

(1) - (2): Let F be a proper maximal filter of the distribu-
tive lattice D and G,H two filters of D such that GfIH CF. The

following implications are valid, where GVF denotes the supre-
mum in the locale F(D):

Thus, by De Morgan’s law

By maximality of F, we deduce

thus also G C F v H C F.

(2) - (3) =&#x3E; (5) and (2) =&#x3E; (4) =&#x3E; (5) are obvious (Propostion 1.3).
(5) =&#x3E; (1) is proved in 171. (1) =&#x3E; (6) follows from Proposition 1.3 and
(1) =&#x3E; (2) . Finally {1} is a proper prime filter of 2 (Proposition
2.2), thus (6) implies that it is a strongly prime filter and we

c onclude by 2.3.1.

PROPOSITION 3.2. The following conditions are equi val en t in a

topos:
(1) The topos satisfies strong De Morgan’s law.
(2) Every ma.,vimal filter of a distributive lattice is strongly
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prime.
(3) Everly maximal filter of a distributive lattice is prime.
(4) Every maximal filter of a boolean algebra is strongly pri-

me.

kb) Every maximal tilter ot a boolean algebra is prime.
(6) Everv prime filter of a boolean algebra is strongky prime.

(1) =&#x3E; (2): Let F be a maximal filter of the distributive lat-

tice D and G, H two filters of D such that GnH c F. The follo-

wing implications are valid, where GVF denotes the supremum in
the locale F( D) .

Thus by strong De Morgan’s law

By maximality of F, we deduce

thus also G C F v H C F.

(2) =&#x3E; (3) =&#x3E; (5) and (2) =&#x3E; (4) =&#x3E; (5) are obvious (Proposition 1.3).
We now prove (5) =&#x3E; (1). One has F(2x2)=F(2)xF(2) (cf. 111),
thus F(2x2)=QxQ (Proposition 2.1) . For elements u, v E Q consi-

der the element

(u =&#x3E; v, v =&#x3E; u) E Q x Q.

We first prove the maximality of the corresponding filter F of
2x2. Let us choose (a, B) E Q x Q which corresponds to a filter G

of 2 x 2. The condition G D F means

while the condition 0 E G =&#x3E; 0 E F means

Thus equivalently

From these relations we deduce

Thus finally a = ( u =&#x3E; v) . In the same way B = ( v =&#x3E; u ) and we have
proved the required maximality. Applying (5), we deduce that F
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is a prime filter of 2x2. Since (1,0) v (0,1) E F, we deduce

( 1, 0) E F v ( 0,1 ) E F , or equivalently, ( v =&#x3E; u) = 1 v ( u =&#x3E; v) =1

thus finally 

which is strong De Morgan’s law.

Now, (1)-(6) follows from Proposition 1.3 and (1)-(2).

Finally since every filter of 2 is prime (Proposition 2.2), (6) im-

plies that every filter of 2 is strongly prime and we conclude by
2.3.2.

PROPOSITION 3.3. The following conditions are equivalent in a

topos:
( 1 ) The topos is boolean.
( 2) Every prime filter of a distributive lattice is strongly pri-

me.

(3) Every proper prime filter of a distributive lattice is

strongly maJ1(imal.
(4) Every maximal filter of a distributive lattice is strongly

maximal.

(5) Every proper maximal filter of a distributive lattice is

strongly maximal.
(6) Every maximal filter of a boolean algebra is strongly

maximal.

(7) Eveij, proper mavimal filter of a boolean algebra is stron-
gly maximal.

(8) Every prime filter of a boolean algebra is strongly maxi-
mal.

( 9 ) Every proper prime filter of a boolean algebra is strongly
maximal.

Clearly the classical proofs of conditions (2) to (7) carry
over in a boolean topos. Moreover the implications

are obvious (cf. 1.3). So it suffices to prove (3) =&#x3E; ( 1 ) and (9) =&#x3E; ( 1 ) .

For elements u, v EO,

so that (1) is a prime filter in Q. As moreover 7 (0 = 1) in Q, {1}
is a prime filter of Q. Assuming (3), {1} is a strongly prime fil-
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ter oaf 0. For any element U E Q consider the two filters

Since Gu n Hu = {1} we deduce Gu= {1} v Hu= {1}; hence, since u = 1

implies 0 E Hu
thus finally

which proves the booleanness of Q.

Now {1} is a proper prime filter of 2 (Proposition 2.2);
assuming (9), {1} is a strongly maximal filter of 2 and we con-

clude by 2.3.3. ..

PROPOSITION 3.4. ( 1 ) In a topos, every proper stronghr prime
filter of a boolean algebra is strong1.y mavimal iff the logical
principle

(De Morgan’s law) - (Booleanity)
is valid.

(2) In a topos. e veri- strongly prime filter of a boolean alge-
bra is strong1.y max-imal iff every upper segment ! u of 0 satis-

fies the principle
(De Morgan’s law) - (Booleanity).

Suppose every proper strongly prime filter of a boolean

algebra is strongly maximal and De Morgan’s law holds. {1} is a

proper prime filter of 2, thus a proper strongly prime filter

(Proposition 3.1), thus a strongly maximal filter (hypothesis).
Proposition 2.3.3 implies now the booleanity condition.

Conversely, assume the logical principle
(De Morgan’s law) - (Booleanity) .

Given a proper strongly prime filter F in a boolean algebra B,
its characteristic mapping cp : B -?O preserves 1 and A since F is a

filter, 0 since F is proper and v since F is prime (Proposition
1.3). Thus cp factors through 2 since B is a boolean algebra.
Now choose elements u, v E G such that u n v = 0 and consider

the corresponding filters Gu, G, of 2 (Proposition 2.1). We

deduce Gu nGv = {1} where the filter {1} corresponds to cp(0) E Q.

Therefore cp-1 (Gu ) n cp-1 (Gv) = F and, since F is strongly prime

This implies
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That proves the primeness of 0 E Q , thus De Morgan’s law (Pro-

position 2.3). The hypothesis implies the booleanity and we con-
clude by Propositions 1.3 and 3.3.

The case of arbitrary filters is analogous and left to the

reader. It suffices to replace 2 by its quotient which identifies 0

and cp(0) in 0 (notations of the first part of the proof - cf. 131

for more details). 

It should be noticed that the logical principle in Proposi-
tion 3.4.2 is by no way equivalent to

(strong De Morgan’s law) - (Booleanity) .
Both conditions in Proposition 3.4 are obviously satisfied in eve-

ry boolean topos, but also in the topos of sheaves on the Can-
tor space since, in that case, De Morgan’s law is equivalent to

the false in every upper segment ’f u of Q (cf. 131).

4. SOME EQLUVALENCES.

In this last paragraph, we extend a result of C.J. Mulvey
(cf. [9]) whose philosophy is the existence of an equivalence
between the notions of prime and maximal filter in a boolean

algebra in an arbitrary topos ... when a careful choice is made

in the formulation of those definitions. To avoid too heavy
technicalities, we prove the results in the case of a proper filter
and just mention the general results.

PROPOSITION 4.1. For a proper filter F of a boolean algebra B
in a topos, the following conditions are equivalent:

(1) F is maximal.
(2) For elements a, b E B,

( 1 ) =&#x3E; (2) : Assuming the hypothesis of (2) we prove first
that F V ! b is proper, where T b denotes the upper segment of b
in B and V denotes the supremum in F(B).

Using the maximality of F, we deduce FV ! b C F, thus b E F.
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(2) =&#x3E; (1): Conversely assume (2) and choose a proper fil-
ter G which contains F. For any b E G we have, putting a = b*,

Applying (2), we obtain b E F. ·

In the case of an arbitrary filter F, the maximality of F
is equivalent to the primeness condition

for elements a, b of B.

PROPOSITION 4.2. For a proper filter F in a boolean algebra B
in a topos, the following conditions are equivalent:

(1) F is prime.
(2) For G E F(B) and a E B,

Proposition 4.2 carries over without any change in the

case of an arbitrary filter F.

PROPOSITION 4.3 .. For a proper filter F in a boolean algebra B
in a topos, the following conditions are equivalent:

(1) F is strongl)’ prime.
(2) For every G E F ( B ) ,

( 1 ) =&#x3E; (2) : F(B) is a locale (cf. [1]), thus for a filter G G F,
we can consider the filter:

From the relation Gn(G-F) C F and the primeness of F, we de-
duce

G C F implies G = F since G D F.

Now consider the condition ( G =&#x3E; F) c F which means
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for every a E B. In particular when a = 0 we obtain GC F - 0 E F,
or in other words 7 (G c F) since F is proper. It remains to pro-
ve

or equivalently

But F is prime (Proposition 1.3) and G3F; thus (Proposition
4.2)

Assuming ) ( 0 E G) we deduce a E G =&#x3E; a E F; thus G c F ; so assu-

ming also 7 (G c F) we obtain the false.
(2) =&#x3E; (1): Now suppose F satisfies condition (2) and choose

filters G,H such that GfIH c F. Applying (2) to the filters GVF
and H V F, we obtain

Combining those two relations we find

Finally we deduce, since F( B ) is a locale, G fl H C F and F is pro-

per,

In the case of an arbitrary filter F, the strong primeness
of F is equivalent to the maximality condition

for every filter G E F( B ) .

PROPOSITION 4.4. For a proper filter F in a boolean algebra B
in an topos. the following conditions are equivalent:

(1) F is strong1..v mavimal.
(2) For every filters G , H E F ( B ) ,

Suppose F strongly maximal. We deduce, for arbitrary fil-
ters G, H:
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Combining those relations, we obtain

We conclude bN noticing that, since F is proper

Conversely suppose F satisfies (2). For each element a E B,
choosing Ga= la and Ha = 1 a* we deduce, applying (2),

which implies that F is an ultrafilter. Now for a filter G D F, let

us apply (2) to G and H = B; we obtain

B C F implies obviously G C F. On the other hand since F is a

proper ultrafilter contained in G,

In the case of an arbitrary filter F, the strong maximality
of F is equivalent to the primeness condition

for arbitrary filters
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