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COMPLETIONS OF CATEGORIES AND

INITIAL COMPLETIONS

by Walter THOLEN and Anna TOZZI 1

CAHIERS DE TOPOLOGIE

ET GÉOMÉTIRE DIFFÉRENTIELLE

CA TÉGORIQUES

VOL. XXX-2 (1989)

RÉSUMÉ. Des pro-cat6gories g6n6ralis6es sont utilis6es

pour 6tablir une theorie de completion dans cAT/X qui,
d’une part, englobe la th6orie de completion pour les

categories abstraites ( X = 1 ) et, d’autre part, 6tend les

r6sultats sur les foncteurs fideles (compl6tions initiales,
compl6tions concrètes).

INTRODUCTION.

When completing a metric space X one has, in principle,
two different procedures: one may find the completion X as the

closure of JrC in some complete extension of X (the bounded

real-valued functions on X, say), or one describes the points of
X more directly as equivalence classes of Cauchy sequences in

X, thus just collecting the data to which one wished limits to

exist and identifying them whenever they give the same limit. By
the first method one obtains a quick existence proof, but the
second description provides a safer feeling of what the comple-
tion really is. How constructive each method is depends on the

closure process in the first case and on the identification pro-
cess in the second case.

The situation with respect to completions of categories is

very similar: to find a completion K of a category K with res-

pect to a certain type of limits, most people have tried to pre-
sent K as a full subcategory of the dual of the (complete) ca-

1 Partial support by CNR (Italy) and NSERC (Canada) is grate-
fully acknowledged. The first author is grateful for the hospi-
tality of the University of Bremen: work on this paper was car-
ried out during his stay there in 1987.
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tegory CK,SetJ of Set-valued presheaves on K (cf. Lambek CLJ,
Isbell [11,12], Kennison [Knl, Gabriel-Ulmer CGLIJ, and for good
overviews Popescu-Popescu [P], Kelly [K], Adamek CAD. This

way, existence of K at least in a higher universe becomes a tri-

viaiity, and in special cases its description is very simple since

one just has to consider those functors in [K, Set] which pre-
serve certain limits (cf. [A]). But in general, a highly non-con-
structive closure process is needed, and legitimacy of K (that is

the problem whether K belongs to the same universe as K) re-

mains difficult to decide. 

The second method has been followed by Trnkovi [Trl,
Tr2], adding new data to K by a transfinite process. In the case

of cofiltered limits (filtered colimits, dually), there is, however,
the classical one-step construction of the pro-category of K,
due to Grothendieck and Verdier CGVJ. This method has been

extended by the first author [Th4] to more general diagram
schemes, and our first objective in the present paper is to pre-
sent some improvements of results obtained in CThl, Th2, Th4J.
So, without anv iteration process we show that generálized
pro-categories serve as universal completions within the same
universe with respect to fairly general (but always small) dia-

gram schemes. Not only the classical pro-categories, but also

Lambek’s completion as well as the formal product completion
appear as special instances (cf. Sections 1, 2, 5).

In fact, our present approach is much more general as we
investigate different sorts of "universal completions" of arbitrary
functors U: A-X in a way that completions of categories ap-
pear as the special case that X is the terminal category 1. So,
our constructions take place in CAT/X, not just CAT. More

precisely, we shall construct a universal extension

such that T admits initial liftings for all T-cones of a given ty-
pe r (for instance: limit-cones, mono-cones, arbitrary cones)
over a fixed type D of small diagram schemes (for instance
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filtered diagrams, discrete diagrams, arbitrary small diagrams).
The choice

D = small diagrams and T = limit cones

shows that, if X is complete, U admits a universal extension to

a continuous functor with complete domain. The case

D = small diagrams and r - arbitrary cones

shows that one can associate with U a functor T which is uni-

versal with respect to the property that initial lifts to all small

data exist (cf. Section 4).

We mention the last two cases explicitly as they demons-
trate best that we provide an abstract counter-part of what has
been done for concrete functors before: C. Ehresmann [E] and

A. Charles Ehresmann [CE] have shown that the theory of con-
crete (limit-)completions on the one hand (cf. Adimek-Koubek

[AK], Herrlich [H2]) and of initial completions on the other

hand (cf. Brumer [B], Hoffmann (Hol, Wyler [Wyl, Wischnewsky
[Wil for intiality, and Herrlich EH1], Adamek-Herrlich-Strecker

EAHS] for completions) admit a common generalized descrip-
tion. All these constructions, however, take place in the catego-
ry CATff/X of faithful functors into X and are, in general, not
universal in CAT/X. Nevertheless, once one has established a

completion theory in CAT/X it is fairly easy to see which modi-
fications are needed to get to initial completions (cf. Section 6).

Perhaps the most surprising observation in this paper is

that the category Pro ( D, T, U) lives not only over X but also
over the generalized pro-category Pro(D,A) from which it may
inherit certain cocompleteness properties. The reason for this is

the existence of a functor

which behaves somehow dually to T and admits certain final lif-

tings (cf. Sections 3, 4).

Which properties of the class D are needed to obtain such

, a smooth and constructive completion theory is studied in more

detail by an embedding of Pro(D,K) into CAT/K°P. It turns out

that Pro(D,K) inherits good properties from CAT/K°p whenever
the conglomerate of all categories J for which there is a confi-
nal functor I -&#x3E; J with some 1 E D is closed under colimits of

type D in CAT (cf. Section 5).
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In this paper we distinguish between (small) sets, classes

and conglomerates; sets are elements of classes, classes are

elements of conglomerates. Set and Cat denote the (legitimate)
categories of (small) sets and small categories respectively,
whereas SET and CAT denote the (illegitimate) categories of
classes and all (illegitimate) categories respectively. Every cate-

gory (in CAT) is assumed to have small hom-sets. Finally, we
emphasize that our list of references can contain only a small

selection of articles on completions of categories and initial

completions.

1. REVIEW OF GENERALIZED PRO-CATEGORIES
AND INITTALITY.

For a class D of small categories such that the terminal

category 1 belongs to D, and any category K one defines the ge-
neralized pro-category Pro(D,K) as in ETh4]: objects are func-
tors X: I°P- K with I E D; one writes X= (Xj)lEobl (where Xi is

the value Xi); for a morphism v : i -&#x3E; i’ in I its value under X is

again denoted by v : Xi’ -&#x3E; Xi. A morphism f: X - Y = (Yj) j E O b J
in Pro(D, K) is a family (fj) j E obJ where each f is an equivalence
class of the smallest equivalence relation -j on ¿jEObIK(Xj, Yj)
such that

and

the family f must satisfy the coherence condition

for all and

For g: Y - Z = (Zn) n EObN, the composition gf = h = (hn) nE ObN
is defined by

Every K-object X may be considered as a 1-indexed family, so

one has a full embedding IK: K - Pro(D,K).

Without further assumption on D one has

1.1. PROPOSITION. Every Pro( D, K) -object X is a limit of K-ob-
jects. more precisel)-: X is the limit of the functor IKX:
I°P - Pro(D,K).
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In fact, the Pro( D, K)-morphisms §i: X -&#x3E; Xi whose only
equivalence class is represented by (1Xi, i ) form an 1°p-indexed
cone with vertex X which is easily seen to be a limit cone. ·

We list further well-known properties of IK the first of

which formally follows from 1.1:

1.2. PROPOSITION. IK preserves all (existing) colimits of X but
in general does not preserve the existing limits of X. However,
IK does preserve limits of type D if D is a categor.y such that,
in SET, limits of t irpe D commute with colimits of tJpe I for all
lED..

1.3. Recall that a functor F: I j is confinal if for all j E Ob J,
the comma category (jlf) is (not empty and) connected; these

are exactly the functors which leave colimits in any category K

invariant, that is: colim H with H:J -&#x3E; K exists iff colimHF

exists, and in that case both colimits coincide (up to isomor-

phism). Therefore. if D’:) D has the property that every J E D ’
admits a confinal functor F: I - J with 1 E D, the full l embed-

ding
Pro ( D , K ) C Pro ( D ’, K )

is actually an equivalence (since, for every X E Ob (Pro( D’, K) ) ,
1.1 gives

in Pro( D’, K) ) . This remains true even if J is not a small catego-
ry, so Pro(D’,K) will live in a higher universe, but will be equi-
valent to the legitimate category Pro( D, K) .

For the class D of small categories we denote by D the class
of all small categories J which admit a confinal functors 1 -&#x3E; J
with 1 E D.

D-completeness (that is, lOP-completeness for every lED)
of Pro(D, K) can only be shown under an additional hypothesis
on D which we recall from [Th4]: Every diagram

with

gives Pro(D,K)-objects H j =Xj = (Xj)j(Oblj and Pro(D,K)-mor-
phisms
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The related category fi of H has as its objects pairs (j,j ) with

j E ObJ, 7 E Orb/,, and as its morphisms pairs (f,u): (i. i) -&#x3E; (i’ i.)
with 03BC : j -&#x3E; j’ in J and f: xji -&#x3E; Xl in K such that (f, i’) E ffi ;
composition is pointwise. D is called admissible with respect to

K if, for every H as above, the related category H belongs to D
(in [Th4], mistakenly, the more restrictive condition H E D was
imposed). In this case one has a Pi-o(D, K)-object

which serves as a limit of H in Pro(D K) = Pro( D, K) . The proof
of the following theorem is now straightforward (cf. ETh4D:

1.4. THEOREM. Let D be admissible with respect to K. Then

Pro(D, K) is D-complete. and every functor K - L into a D-

complete category L admits an extension Pro( D, K) -&#x3E; L which

preserves limits of type Iop ,. I E D, and which is uniquel.y deter-
mined by this propert.y. up to natural equivalence. G is in fact.
together with the identity- 1: GIK - F, a right Kan extension of F
along IK . ·

REMARKS. (1) The universal property, of course, determines

Pro(D, K) up to equivalence of categories. But note that, in ge-
neral, Pro(D, K) is not equivalent to K if K is already D-com-
plete (since the embedding need not preserve the respective
limits); one just has that K is a coreflective subcategory of

Pro( D, K) in this case.

(2) From the presentation of G as a right Kan ex-

tension one obtains that the functor category [K, L] is equiva-
lent to the category of functors Pro( D, K) -&#x3E; L which are D-con-
tinuous, i.e., preserve I’P-limits for every I E D .

On the existence of colimits one has the following non-trivial
result by Weberpals [We3] which generalizes results by Gro-

thendieck and Verdier [GV] and by Artin and Mazur [AM]:

1.5. THBOItBM. Let D be regular in the sense of Gabriel and
Ulmer [GU, We2]. Then, if K is L(D) -cocomplete, also Pro( D, K)
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is: here L(D) is the conglomerate of categories D such that, in

SBT , D-limits commute with I-colimits for all I E D.

This result is proved in [We3] in the dual situation, that is

for the category

with

Finally, we recall some phrases concerning initiality and

topological functors and adapt them to the present context. For
a functor U: A -&#x3E; X. a morphism f : A - B in A is U-initial if, for

every g: C-&#x3E;B in A and u: UC -&#x3E; UA in X with Uf. u = g, there

is a unique morphism h:C-A in A with Uh = u and fh = g. A
morphism x: X -&#x3E; UB in X (considered as an object of the com-

ma-category (X ! U)) will be called a U-morphism; a U-initial

morphism f: A -&#x3E; B with Uf = x is a U-initial lifting of X. Such a

lifting is unique up to isomorphism; it is unique if U is amnes-

tic, that is: if U h = 7 with an A-isomorphism h implies h = 1.

These notions can be used more generally for cones over D
in A, i.e., Pro(D,A)-morphisms f: A -&#x3E; B with domain in A; such

a cone is called U-initial if it is a 1G-initial morphism in the ca-

tegory Pro( D, K) ; here

is the canonical extension of U (for A E Pro(D,A), ÛA is the

composition UA of functors). Similarly, a U-cone over D is a

Q-morphism x: X -&#x3E; UA with X E ObX, and a U-initial f is a U-

initial lifting of x if uf = x. Dual notions: LI-comorphisms.
LI- cocone , LI- final lifting.

For a class r of cones in X, the functor U: A -&#x3E; X is called

r’-topological if every U-cone in IF admits a U-initial lifting.
Since a U-initial lifting of a limit cone is a limit cone, one has:

1.6. PROPOSITION. If, for a r- topol ogical functor U: A -&#x3E; X, the

category X is D-complete and r contains all corresponding limit
cones, then also A is D-complete and LI preserves the respective
limi ts. ·

In the dual situation, for a class A of cocones in X, U will

be called /1-cotopological.
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2. Pro(D,T,U) AS A CATEGORY OVER X.

Throughout Sections 2-5 U: A -&#x3E; X is a functor, D a class of

small categories with 1 E D, and r is a class of cones over D in
Xsuch that, for all A Ob A, the 1-indexed cone iuA: UA-&#x3E;UA

belongs to F.

The category Pro( D, T, U ) has as its objects all U-cones in r ,
i. e., triples t(X, x, A) with

and

morphisms (u,f ):(X,x,A)-(Y,y,B) consist of an X-morphism
u: X-Y and a Pro(D,A)-morphism f : A -&#x3E; B such that

commutes; this means that, with

. and

for every y E Ob J there exist ij E ObI and f: Aij -&#x3E; Bj with (f, ij) E fj
such that 

commutes.

Pro(D,T,U) is a full l subcategory of the comma category
(Ix ! Ü) and, as such, admits two projections

also there is a natural transformation

defined by



- 135 

Finally, there is a full embedding E: A- Pro( D, T, U) with

and

(hence EA = (UA,’UA,A)). We emphasize:

REMARK. In general, T is not faithful, even when U is faithful.

If the empty category ø belongs to D, then Pro(D,A) has a

terminal object which, again, is denoted by 0 ; trivially, it is

preserved by U. For every X E Ob X, the only cone X- 0 is cal-

led emptj’.

2.1. PROPOSITION. (1) If r contains all empt)’ cones, then T has

a full and faithful right adjoint and, therefore, preserves all co-

limits.

(2) If LI has a left adjoint such that r contains all
units of the adjunction (as 1-indexed cones), then T has a full
and faithful left adjoint and, therefore, preserves all limits.

PROOF. (1) A T-couniversal arrow for X E Ob X is given by

(2) A T-universal arrow for X E Ob X is given by

with a U-universal arrow 1)x: X-&#x3E;UA. 

Assertion (1) of 2.1 is a special case of a more general re-

sult : in 2.3 we shall show that T is r-topological, provided r

satisfies a certain closedness property. For this let cp: X -&#x3E;TH
(=TH) be a T-cone over D (so H E Pro( D, Pro( D, T, U))) ; if D is

admissible with respect to A and X, one has a limit cone

A : L -&#x3E; SH in Pro(D,A) which is preserved by 11 (by 1.4). Then
the unique Pro(D,X)-morphism x: X -&#x3E; LIL rendering the diagram
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commutative, is said to be induced by cp.

2.2. DEFINITION, r is admissible with respect to U if D is ad-

missible with respect to A and X, and if for every T-cone cp

over D which, as a cone in X, belongs to F also the induced

cone x belongs to F.

Admissibility of r is discussed further in Section 4. Here we

first prove:

2.3. PROPOSITION. T:Pro(D,T,U) -&#x3E; X is r -topologlcal if r is ad-
missible with respect to U.

PROOF. For the given T-cone cp in r we obtain a Pro(D,T,U)-
object (X,x,L) . Then cp and A (as above) constitute a cone I&#x3E; :

(X,x,L) -&#x3E; H in Pro(D,T,U) which turns out to be T-initial; sup-
pose we are given a cone Y : (Y,y,B) -&#x3E; H and an X- morphism
w: Y -&#x3E; X with cp w = TT. Then, by the limit property of A, there

is a unique Pro(D.A)-morphism g:B -&#x3E; L with A g =ST. Since the
limit is preserved by LI, one easily checks that

is a morphism in Pro( D, T , U), and trivially it is the only one

over w with I&#x3E;(w,g)=Y. ·

2.4. PROPOSITION. If D is admissible with respect to A and X.
then the full embedding E : A -&#x3E; Pro( D, T, U) is initially f-dense,
that is: every Pro( D, f,U)-object is the vertex of a T -initial

cone with base in A and T -image in r. Also, E transforms all

U-final cocones into T-final cocones.

PROOF. Every Pro( D, r, LI )-object (X,x,A) gives a cone

in Pro( D, T, U ) with TO = x and SI&#x3E;: A-&#x3E; IAA the limit presenta-
tion of A (see 1.1). T-initiality of C is shown as in 2.3.

For the preservation of finality, let ç : H -&#x3E; A be a U-final co-
cone in A with H: D -&#x3E; A (D E D is not required here). Since we

must show that Ecp is T-final, let us consider a cocone ’f’:
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E H -&#x3E; (Y,y,B) with B = (Bj)j E O b J and an X-morphism
with

For every j E ObJ, one can define a cocone

with for all

Since y j u.Uç = UYj one has a unique A-morphism fj: A -&#x3E; Bj with
and for all

Naturality in j gives a Pro(D,A)-morphism f : A -&#x3E; B, and ( u,f) :
EA-(Y,y,B) is the only Pro(D,f,U)-morphism over u with

(u,f).Erp = Y.

REMARK.. (D(.X,,,,_4) is natural in (X,x,A), so for

the diagram

commutes in Pro(D,Pro(D,T,U) ), that is: I&#x3E; : Ipro(D,T,U) -&#x3E; ES is a

natural transformation. 

We now prove the universality of the extension E in CAT/X:

2.5. THEOREM. Let r be admissible with respect to U, and let
V: B-X be T-topological. Then ever:v functor F : A -B with

VF=U admits an e.xtension

with and

and the propertj- that G transforms T-initial cones with T-image
in r into V-initial cones. G is unique up to natural equivalence ;
it is unique if V is amnestic.

PROOF. Every Pro(D,r,U)-object (X,x,A) gives a V-cone

x: X-V(FA) which, by assumption, admits a V-initial lifting
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There is a unique way to define G on morphisms

according to the conditions that VG (u,f) = u and that the follo-

wing diagram in Pro(D,B) i be commutative:

Clearly, G becomes a functor with G E = F and VG = T. Once we

have shown that it preserves initiality, it is (up to natural equi-
valence) the only such functor: G must transform the T-initial

lifting I&#x3E;(X,x,A) of the U-cone x into a V-initial lifting of the

V-cone x, the vertex of which is unique up to isomorphism, due
to V-initiality, and unique if V is amnestic.

It remains to be shown that G preserves initiality. So let

with

be T- initial such that TO E 1. In order to show that GO is V-

initial. let a cone B : B -&#x3E; G H in B and an X-morphism u:VB -&#x3E; X

with Te. u = VB be given. By the construction used in 2.3, SO:

L -&#x3E; SH is a limit cone which, by 1.4, is preserved by

Diagram (2) shows that one has a natural transformation

Y : I BG -&#x3E; F S , hence a cone

Therefore, the limit property of FSO gives a unique Pro(D,B)-
morphism

with

Therefore, the limit property of FS O yields Vf= xu. Since

Y(X,x,L) is V-initial, there is a unique B-morphism

with and
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REMARK. In general, T: Pro(D,T,U) -&#x3E; X is not amnestic. But any
functor V : B -&#x3E; X can easily be "made" amnestic without losing
r-topologicity: take Bu to be a full subcategory of B where

Ob B03BC is a representative system of B-objects with respect to

the equivalence relation

B - C =&#x3E; Vh - 1 for some B-isomorphism h: B -C;

then, let B1= B/= where = is the smallest compatible equivalen-
ce relation on Mor Bu such that k = 1 for every automorphism k
with Vk = 1, and consider the induced functor V1 : B1 -&#x3E; X.

3. Pro ( D , r , LI ) AS A CATEGORY OVER Pro (D , A).

Next we shall describe some properties of the functor

Under some aspects, it behaves dually to T; sometimes even

better than T. For instance, the following statement is easily
verified:

REMARK. S is faithful iff, for every Pro (D, r, LI)-object (X,x,A),
x is a mono-cone (so xu= xv implies u = v). n

3.1. PROPOSITION. (1) If X contains an initial object 0 and if
rcontains all cones in X (over D) with vertex 0. then S has a

full and faithful left adjoint and. therefore. preserves all limits.
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(2 ) If X is D-complete and if r contains the respective limit

cones. then S has a full and faithful right adjoint and, therefore.
preserves all colimits.

PROOF. (1) 

is an S-universal arrow for A E Pro( D, A ) .
(2) With the limit (L,I) of UA in X, 1 A : S (L, 1, A) -&#x3E; A is an

S-couniversal arrow for A E Pro( D, A ).

There are converses of the above statements:

REMARKS. (1) If r contains all empty cones (cf. 2.1) and if S

has a left adjoint, then X contains an initial object.
(2) If r consists of all cones in X over D and if S

has a right adjoint, then UA has a limit in X for every A in

Pro(D,A).
Note that, in both cases, the adjoint need not be assumed

to be full and faithful.

For a certain conglomerate A of S-cocones, we now want
to show that S is A-cotopological. For this, we first consider

any S-cocone Y:SH -&#x3E; B with B = (Bj)j E ObJ and H : D -&#x3E; Pro (D,T,U).
We do not require DE D but assume that there is a colimit X:

TH -&#x3E; L in X. By 1.2, this colimit is preserved by IX; so there is

a unique cone y: L-dB which is determined by the commutative
diagram

and said to be co-induced by 4J.
Let T * be the conglomerate of all S-cocones Y: SH -&#x3E; B for

which TH has a colimit in X and for which the co-induced cone

belongs to r.

3.2. PROPOSITION. S is r*- co topological.
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PROOF. For the given 4; in I* we have to find an S-final lifting
Y : H -&#x3E; (L,y,B ) : this is the cocone given by the above diagram.

To show S-finality we consider a cocone O : H -&#x3E; (Z,z,C) and a

Pro(D,A)-morphism f : B -C with f 4; = S 8. The colimit property
gives a unique X-morphism v: L-Z with vX = T8 for which one

easily shows that zv =Gf.y . Therefore there is a Pro(D,r,U)-
morphism

it is the only one over f with Y ( v, f ) = O.

3.3. PROPOSITION. E transforms all cones in A into S -initlal

cones. (Note that, as IA is full and faithful, every cone in A is

IA-initial.)
PROOF. For every cone 9:A-H with any H:D-A, E rp is S-ini-

tial : indeed, if Y : (Y,y, B) -EH is a cone and f : B -A a mor-

phism in Pro(D, A ) such that S E rp . f = SY, then

gives the unique Pro(D,f,U)-morphism (u,f) : (Y, y, B) -&#x3E; EA over f
with E rp.( u, f) = Y.

RBIISARIC. We do not know whether E, as a functor over the ca-

tegory Pro(D, A), is finally dense (cf. 2.4) except in the trivial
case that every cone in r is a limit cone in X: in this case,

every cocone in Pro(D,r, U) is S-final, in particular the cocone

EO -&#x3E; (X, x, A) where 0 is the empty diagram in A and (X, x,A) is

any given Pro(D,r,U)-object.

We summarize the completeness properties which we can de-
rive from Propositions 1.6, 2.3 and 3.2 respectively:

3.4. THEOREM. (1) Let T be admissible with respect to U.

Then. if X is D-complete. also Pro (D, T, U) is. and both T and S

preserve the respective limits.
(2) Let F consist of all cones in X over D. Then. if X and

Pro(D,A) are D-cocomplete (for ani- category D). also the cate-

gori- Pro(D, r, LI ) is. and both T and S preserve the respective
colimits.
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With 1.5 w e conclude:

3.5. CoROLLARY. If X and A are L(D)-cocomplete, also the ca-
tegori- Pro(D.f.U) is. provided D is repular and T’ consists nf

all cones o ver D . ·

REMARK. As Propositions 2.1 and 3.1 give sufficient conditions

under which X or Pro(D,A) can be, up to equivalence, embedded
into Pro(D,r,U) as (co-)reflective subcategories with (co)reflec-
tor T or S, any type of completeness or cocompleteness of

Pro(D,T,U) will l be inherited by X and Pro(D,A) under those

conditions.

4 . SPECIAL CASES.

In this section we discuss possible choices for D and T.

4.1. PROPOSITION (cf. [Th4]). The following classes D are ad-
missible with respect to any- categori : {1 }, {r- directed sets) or

(small r-filtered categories) for an y- infinite regular cardinal r.

(small discrete categories). (all small categories): in this case

Pro(D,K) is equivalent to k’. to the usual procategory Pro-k’ as
introduced bi- Grothendieck and Verdier for r = 03BC, 

to the for-

mal product completion of K. and to the Lambek completion of
a ca tegory- respectiveJ,,,-.

PROOF. Except in the case D = {r-directed sets) one obviously
has H E D for H: J -&#x3E; Pro(D, K) , JE D. But in that case one still

has H E D (see 1.3) since every small r-filtered category is the

codomain of a confinal functor with r-directed domain (cf. [GV]

p. 65, and LTh3]). -

4.2. PROPOSITION. Let U: A - X be a functor, and let D be ad-
missible with respect to A and X. For the following classes IF

of cones over D in X,. F is admissible with respect to LI :

{limit cones}, {mono-cones}, (all cones}.

PROOF. Nothing is to be shown in case T={all cones}. For the
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other two cases, we consider diagram (1) again and assume that

cp and each xj: Xj -&#x3E;UAj is a mono-cone (limit-cone resp.), with

If x u = xv for u, v: Y - X in X, then xj rp j u = x j rp j v for all j sin-
ce (1) commutes. So yju = rp j v since each xj is a mono-cone,

and u = v since rp is one. Any cone y : Y-L induces a morphism

with

if xi is a limit cone. The arising cone y : Y -&#x3E; TH gives a mor-

phism z with cp z = Y if 9 is a limit cone. Since dA is a mono-

cone, x z = y follows, so x is a limit cone in this case. ·

Considering the case of limit cones, from 1.6, 2.3, 2.5

and 4.2 one obtains for every functor U: A-X and every class

D which is admissible with respect to A and X:

4.3. THEOREM. If X is D-complete, then there is a full embed-

ding E of A into a D-complete categorj- A and a D-continuous
0. e.. Iop-continuous for e veci, lED) functor T: A -&#x3E; X with TE = U
and the following property: everi- other functor F: A-B into a

D-complete categor)’ B such that there is a D-continuous func-
tor V with V F = LI , admits a D-continuous extension G: A -&#x3E; B
with G E = F and VG = T which is unique up to natural equivalen-
ce. ·

RBMARICS. (1) In addition, from 2.4 one has that E is D-coden-
se in the sense that every A-object is an I°P-limit of A-objects
with IE D.

(2) We only have VG = T (rather than VG = T) since,
in the given situation, T is r-topological only in a weak sense:

initial liftings of limit cones exist only up to isomorphisms, so

we are applying here a slightly generalized version of 2.5, in the

special case that F is the class of limit cones over D. One

could achieve VG = T if V is assumed to be transportable (that
is: V B = X implies the existence of a B-object C with B = C and
VC = X).

(3) Theorem 4.3 entails the case X - 1 and therefore
the case of the Grothendieck-Verdier completion and of the

Lambek completion of a category A.
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(4) Theorem 4.3 does not entail the Adamek -Koubek

Completion Theorem for concrete categories (IAKI, see also

Herrlich EH2]) which states that, for D= ( all small categories},
Theorem 4.3 remains valid with the additional requirement that

LI. T. V be faithful and E, F D-continuous.

Also the case D={all small categories } and T={all cones
over D in X) deserves special consideration: a r-topological
functor U:A-X is called small-topological in this case. From

2.3 and 2.5, one then obtains:

4.4. THEOREM. For every U: A-X there is a small-topological
functor T : A -&#x3E; X and a full embedding E : A -&#x3E; A with TE = U and

the following propert.i-: everi- other functor F : A-B such that

there is a small -topol ogical functor V with V F = U factorizes

uniquely (up to natural equivalence) as G E = F for a functor
G with VG = T which transforms small T -initial cones into V-

initial cones..

The category A admits a T*-cotopological functor S into

Pro(D, A) (cf. 3.2). If X is D-cocomplete (for any category D)
and if T={all cones over D in X), then r* contains all cocones

over D in Pro(D, A), so D-cocompleteness is transferred from
Pro(D,A) to i4 (cf. 3.4). Corresponding investigations for A (cf.
4.3) are more complicated; we shortly consider the cases that r

is the class of all mono-cones or all limit cones, and give suf-
ficient conditions for the existence of certain cocones in T*.

For a colimit X: G -&#x3E; L in X (with G : D -&#x3E; X) we say that

bi-pullbacks of X are epimorphic, if for all morphisms u, v:

K -&#x3E; L in X, the family (pd : Pd -&#x3E; K) d E Ob D as defined by the

following diagram is epimorphic; here the solid lines form three

pullbacks, and the dotted lines arise as compositions:
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Now we consider diagram (3) again, with

for

and Y :SH -&#x3E; B, so y d: Ad -&#x3E; B in Pro( D, A ) , and y : L -&#x3E; UB with

for all

4.5. PROPOSITION. Let X be D-cocomplete. and let bi-pullbacks
of D-colimits in X exist and be epimorphic. Then the following
holds (with any D and U):

(1) If r consists of all mono-cones over D in X, then I*
contains all S-cocones 4J for which each U y d. xd is a mono-co-

ne.

(2) If r consists of all limit cones o ver D in X, then r*
contains all S-cocones 4J for which each Ü Y d.xd is a mono-cone
and at least one of these is a limit cone.

PROOF. (1) Suppose that, for the cone y : L -&#x3E; UB which is co-

induced by 4J, one has y u = y 1/, so

Hence gd = hd if U Y d.xd is a mono-cone. In this case, UPd =
vpd follows, hence u = v.

(2) Let z: K-dB be any cone. If d E obD is such that

is a limit cone, then z factors as y(Xdw) = z, and this factori-
zation is unique by (1).

RBMARKS. (1) In finitary algebraic or topological categories over
Set, bi-pullbacks of directed colimits are epimorphic since they
are so in Set.

(2) Suppose, for a certain d E Ob D, yd:Ad -B is in-

duced by a commutative triangle
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with a confinal functor F : J -&#x3E; Id (so (4Jd)j is represented by
(1Bj, Fj) for every j E ObJ ) . Then, if Xd is a limit cone, also

Uyd. xd is one.

Finally we mention a more classical but rather simple case:

D = {1} and r - {all morphisms ( = cones over D) in X} ;

then a r-topological functor U: A -X is simply a fibration [Gy],
and Pro(D,r,U) is the comma-category (XIU). 2.3 and 2.5 just
give well-known properties of the projection T: (X ! U) -&#x3E; X; 3.4
(2) now says:

4.6. COROLLARY. For any categor.y D. (X ! U) is D-cocomplete
if X and A are. ·

S . RtEAKLY ADMISSIBLE CLASSES D.

In this section we shall show that, without losing any of
the results in the preceding sections, one may weaken the con-
dition that D be admissible with respect to the categories in

question. For this we first have a second look at the construc-

tion of D-limits in Pro(D,K) as given in 1.4: certainly, for a

functor H : Jop -&#x3E; Pro(D,K), the constructed functor L : Hop -&#x3E; K is

a limit of H in the category Pro( Cat, K), and in order to have a

limit of H in Pro( D, K) it would suffice that there is a Pro( D, K)-
object M which is isomorphic to L in Pro(Cat, K) . Therefore we
call D c Ob Cat with 1 E D K’eakl)’ admissible with respect to

K if this sufficient condition holds for every H with J E D. A
class r of cones over D is called weakly admissible with respect
to U if, in the Definition 2.2, D is just weakly admissible with
respect to A and X.

Clearly, one has:

5.1. PROPOSITION. Admissibilit) f implies weak admissibility, and
all previous results hold when "admissible" is replaced by "wea-
kly admlsslble". ·

Since the notion of weak admissibility is certainly not ve-
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ry handy in practice, next we shall look for formal properties of
the class D which imply weak admissibility with respect to any

category K. The essential tool for this is the functor

WK sends X E Ob(Pro(D,K)) to the projection Px: Ex -K°P of

the category Ex which is defined as follows: objects are pairs

(A, a) with A E Ob K and a : X -&#x3E; A in Pro( D, K) ,

and a morphism u : (A, a) - (B, b) in Ex is a K-morphism u : B -&#x3E; A

with u b = a ; or in other words, Exop is the comma-category
(XI IK) - WK maps a morphism f : Y -&#x3E; X to the commutative

triangle

in CAT where Ef maps (A, a) E Ob EX to (A, af) E Ob EY.

RB . Wx decomposes as

with Y K: Kop -&#x3E; CK, SetJ the Yoneda embedding and PF: e1F -&#x3E; K
the projection of the category of elements of F (as defined in

[K]). But for our purposes, it is easier to consider this compo-
sition directly.

S. 2. LEMMA. For every X : Iop -&#x3E; K, there is a confinal functor

with 

PROOF. Rx sends i E Obl to (Xi,Zi) with Zi: X-Xi as in 1.1. Sin-

ce v: i -&#x3E; I’ in I induces a morphism (X; Zi) -&#x3E; (Xi,Zi’) in Ex, Rx
is a functor with xop = PXRX’ Its confinality is an immediate

consequence of the definition of morphisms in Pro(D,K). 
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Rx has a remarkable universal property:

S .3. LEMMA. For X, Y E Pro(D, ) and every functor G : I -&#x3E; EY
with PyG = XOP. thprp iS a unique Pro(D,K)-morphism f. Y -&#x3E; X

with Ef Rx = G.

PROOF. There is at most one such f = (fi) iE ObI since

Vice versa, taking this as a definition for fi , functoriality of G

yields that f is a Pro( D, K)-morphism with the desired proper-
ties.

For K small, the category Ex is small too, so by 5.2 Ex
belongs to n (as defined in 1.3). For arbitrary K, Ex belongs to

confinal with .

(so D = D n Ob Cat). D and D define, for every K, full subcate-

gories D/Kop and D/K°p of Cat/Kop and CAT/R°P respectively,
and WK maps into them. Lemma 5.3 now says:

5.4. THEOREM. W K embeds Pro(D, K)OP as a full reflective

subcategori- into D/Kop : even into D/ KOp if K is small.

PROOF. Wx clearly maps objects one-to-one. To see that WK is
full and faithful, one considers X,Y E Pro(D,K) and any

with

With G = F Rx, from 5.3 we get a unique
with

Since E f and F commute with the projections, it suffices to

show that they coincide on objects to obtain their equality. But
every a:X -&#x3E; A in Pro(D,K) admits a factorization a = Uçj, for
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a certain I E ObI and u : X; -&#x3E; A. So one has an Ex-morphism
u : (A, a) -&#x3E; (Xi, Zi) which is mapped to the Ey-morphism

by F , s o

For small K, Wx factors as

with the first arrow an equivalence of categories. When applying
5.3 to D (rather than D) we get that Rx: Xop -&#x3E; WKX serves as

reflexion for X°p E Ob (D/Kop) along WK (so the reflector maps
X’P to X). For arbitrary K we must follow the same procedure
with D (rather than with D ); this causes no difficulties since,

although D contains arbitrary categories, the category EX is

still codable by a class, so it is a legitimate category belonging
to D.

Since WK has a left adjoint, colimits in Pro(D,K) are

mapped to limits in D/K°pP. In addition one has:

5.5. PROPOSITION. If D is weakly admissible with respect to K.
then WK sends D-limits in Pro(D,K) to colimits in CAT/KoP.

PROOF. For H: Jop -&#x3E; Pro( D, K) with J E D we may assume that

its colimit is formed as in 1.4, so we have L: Hop -&#x3E; K and a li-
mit-cone A: L - H where each AJ : L -&#x3E; Xi is induced by the
functor

A cocone I&#x3E; : WKH -&#x3E; Q in D /K°p with Q : D -&#x3E; K°p is given by
functors Fi: Exj -&#x3E; D with QFj = Pxj which are natural in J E

ObJ. One must then find a uniquely determined functor G ren-
dering the following diagram commutative
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Let (A,a) be an object in EL. As in the proof of 5.4, a

can be written as a = u ZjiAj for some (i,y) E Ob H and u : Xji -&#x3E; A;
here Zji: X’ - Xj is as in 1.1. Therefore one necessarily has

For a morphism h : (A, a) -&#x3E; (B, b) in EL and b = vçl:Aj’ one has

so one has a morphism

hence necessarily

It is lengthy but straightforward exercise that, vice versa, one

obtains a well-defined functor G this way, and that the required
properties hold. ·

RB . 5.5 can be also shown using the decomposition of WK
as in the Remark before 5.2: the first arrow preserves D-coli-
mits, and the second preserves all existing pointwise colimits.

We are now ready to prove the main result of this sec-

tion. Slightly modifying a notion used in [Wel] we call a class

D c Ob Cat with 1 E D weakl.y saturated if D , as a full subcate-

gory of CAT, is closed under D-colimits. Trivially, D/Kop inhe-
rits D-cocompleteness from D , so by 5.4 also Pro(D,K)op does
that. So, for a weakly saturated class D and any category K, the

category Pro(D,K) is D-complete. This fact, however also fol-

lows from 1.4 and the following theorem:

5.6. THEOREM. A weakly saturated class D is weakly admissible
with respect to all K.

PROOF. For H: J°P - Pro(D,K) with J E D one forms its limit L

in Pro(Cat, K). By 5.5 WK transforms L into a colimit of WKH
in CAT/K°P which actually lives in D/K°p since D is weakly
saturated. By 5.4, WK has a left adjoint which sends the colimit
WKL - PL to a limit M of H in Pro(D,K) since WK is full and

faithful, so L = M. Therefore, D is weakly admissible with res-

pect to K. ·
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REMARKS. (1) We do not know whether a class D which is

weakly admissible with respect to all K must be weakly satura-
ted. (The classes D we have considered in Section 4 are all wea-

kly saturated.)

(2) That one has to pass from D to D , in the defi-

nition of a weakly saturated class, causes considerable inconve-

nience but is not avoidable. For instance let D be the smallest

subclass of Ob Cat which contains 1 and

and which is closed under D-colimits. One easily verifies that D,
beside the two-object categories

and

contains only monoids (= one-object categories) with at most

two generators. Now let K be the category

Pro(D,K) fails to have equalizers "of the second generation", for

instance an equalizer of a d and c d with d the equalizer of a

and b. So Pro(D,K) is not D-complete although D is closed un-

der D-colimits.

Finally we want to mention another consequence of Theo-
rem 5.4: Suppose that D and K have the property that for every
diagram

with I, J E D also the pullback I x op J belongs to D, then

D/K°p has binary products and pullbacks. Therefore, the reflec-
tive subcategory Pro(D,K)’P has the same limits. Using multiple
pullbacks one could even construct arbitrary products this way.

If K’P belongs to D one has a terminal object in D/K°p hence
also in Pro(D,K)’P. So with pullbacks one could construct all

(finite) limits in Pro(D,K)°p.
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5.7. COROLLARY. Suppose that D with 1 E D has the property
that K°p E D and that D is closed under the formation of pull-
backs in CAT. Then Pro( D, K) is finite]) cocomplete. even co-

complete when D is clospd under the formation of multiple
pullbacks...

Of course, for a small category K one may replace D by
D. So, for D = ObCat = D one obtains the known result:

5.8. COROLLARY. The Lambek completion Pro( Cat, K) of a small
categors- K is complete and cocomplete..

However, that a class D satisfies the assumptions of 5.7

seems rare. For instance. for D={1}, D consists of the catego-
ries which have a terminal object; it is not closed under the

formation of pullbacks in CAT. For D = {all small discrete cate-

gories), D consists of the categories which have a multiterminal

object: again, it is not closed under pullbacks.

6. REMARKS ON INITIAL COMPLETIONS.

From now on we leave the context of D being a class of

small categories; first we just consider the case that D = Du is

the conglomerate of all (not necessarily small) discrete catego-
ries and T = T03BC is the conglomerate of all cones over D, in the

category X, i.e., all sources in X. A F,-topological functor T:
B -&#x3E; X is simply called topological (or (B,T) is called initially f
complete. cf. CH1, .AHSJ). A basic observation on topological
functors is that they are necessarily faithful (in [BT], a general
reason for this is given). Therefore, they admit initial liftings
not only to discrete but to all data; in other words: the res-

triction to discrete data is no restriction once there is no size

restriction on the data.

Since T: Pro(D03BC, T03BC, U) -&#x3E; X in general fails to be faithful,
even when U: A-X is faithful, T is not a candidate for an initial

completion of U, even when we disregard the fact that

Pro(D03BC, Y03BC , U) lives in a higher universe. One therefore considers
the non-full subcategory Pro03BC (D03BC, T03BC, U) of Pro(D03BC, T03BC, U) which
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has the same objects, but as its morphisms (u,f) one considers

only those f = (fj) for which each fj is represented by an identi-
ty map. One may now simplify the description of Pro03BC(D03BC, T03BC, U)
as follows: objects are pairs (X, o-) with X an object in X and G

a class of U-morphisms with domain X; a morphism u : (X,6)
-&#x3E; (Y.T) is an X-morphism with the property that J’U: X-UB is in

o for each u: Y-4UB in r. It is elementary to show that the

restriction

of T is topological; the Tu-initial lifting of a TP-source (= dis-

crete T"-cone) ui : X -&#x3E; T03BC (Yi, Ti) ( i E I) provides X with the struc-
ture d consisting of all compositions of U-morphisms in ri with

ui , i E I .

The embedding E :A -&#x3E; Pro(D03BC, T03BC, U) does not factor

through Pro03BC(D03BC,T03BC ,U); one therefore considers a new embed-

ding

with ElA=(UA,oA) and OA the class of all U-morphisms Uf:

UA-UB (f : A -&#x3E; B in A). Obviously, T03BC E03BC=U; however, E/4 fails

to be initially dense (cf. 2.4) and can therefore not be expected
to have a universal property like in 2.5. So, quite naturally, one
restricts oneself to certain full subcategories of Pro03BC(D03BC, T03BC, U)
and restricts T" and E03BC appropriately, to obtain
- the largest initial completion of U (which is determined by
the universal property 2.5, but with all functors to be faithful),
- the universal initial completion of U (the embedding into the

completion preserves initiality and is universal only with respect
to such functors which, as before, have to be also faithful),
- the least (= MacNeille) completion of U (which may be cha-
racterized as the injective hull of U in CATff/X, with respect to
full embeddings);
for details we refer to Herrlich [H1] and Adamek-Herrlich-
Strecker CAHSJ. The latter paper addresses the problem of when
these completions belong to the same universe as A and X, and
gives sufficient and necessary conditions in terms of fibre-
smallness.

A. Charles Ehresmann’s up-date ICE] on Ehresmann’s work
[E] shows that, in fact, it is possible to perform these con-

structions in a generalized context in which one no longer deals
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solely with discrete data. This way one is able to also include

concrete limit-completions as constructed by Adamek-Koubek
[AKI and Herrlich [H2] (where one needs small non-discrete

data).

The result proved in (ECE], Theorem 4) is as follows: let r

be any conglomerate of cones in X and A a conglomerate of

U-initial cones in A such that the faithful functor U : A -&#x3E; X

maps cones in A into r. Then there is a faithful r-topological
functor T : C -&#x3E; X and a concrete full embedding E: A-C which

sends cones in A to T-initial cones; any other concrete functor
F:A-B sending cones in 0 to V-initial cones with V : B -&#x3E; X a

faithful r-topological functor, factors uniquely (up to isomor-

phisms) through E by a concrete functor G: C-B which preser-
ves initiality.

In the proof, which needs transfinite methods, one has to

pass from r to a larger conglomerate T03BC of sources (whose ba-
ses belong to a conglomerate D03BC of discrete categories) and

then consider an appropriate full subcategory C of

Prou (Du, ru , LI ) through which El 4 factors. The case

- A =0 , T = T03BC gives the largest initial completion,
- A = {all U-initial sources}, T = T03BC, gives the universal initial

completion,
whereas the MacNeille completion needs some extra considera-

tions (cf. ICE] for details). However, the choice

- A = {all limit-cones in A which are preserved by U) and T = { all
small cones} gives the completion described in [AK] and EH2]

which is always legitimate and can be described in a fairly con-
structive way.

Such a result does not hold for non-faithful functors, i.

e.. in CAT/X rather than in CATff/X, even when X=1: in gene-
ral, it is impossible to legitimately (i.e., within the same univer-

se) embed a given category into one with certain limits such
that the embedding preserves the existing limits in K of the

given type; there is a counterexample by Trnkova [Tr2l concer-

ning finite products, and one by Isbell [12] concerning equali-
zers. That is why in the non-faithful context we could not

consider an additional parameter A like in Ehresmann’s result.

NOTE ADDED IN PROOF. Independently from Trnkov4 [Tr2l,
C. Ehresmann gave transfinite constructions for various types of
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completions (cf. Cahiers Top. et G6om. Diff. IX (1967); reprinted
in "Charles Ehresmann: 0152uvres completes et comment6es" Part

IV-1, Amiens 1982 ; see also the "Comments" by A. C. Ehresmann
in that volume for further references.
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