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A MODEL STRUCTURE FOR THE HOMOTOPY

THEORY OF CROSSED COMPLEXES

by Ronald BROWN and Marek GOLASINSKI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFF.8RENTIELLE
CAT.8GORIQUES

VOL. XXX-1 (1989)

R&#x26;SUM6. Les complexes crois6s sont analogues a des

complexes de chaine mais avec les propri6t6s non-ab6lien-
nes des modules crois6s de dimensions 1 et 2. Ils inter-

viennent dans la th6orie homotopique et la cohomologie
des groupes. Ici on montre que la cat6gorie Czs des

complexes crois6s a une bonne structure de cat6gorie avec
modele pour la th6orie d’homotopie, en prenant les clas-

ses d6ja connues pour les equivalence faibles et les fibra-

tions, et une nouvelle notion de cofibration. Les preuves
utilisent la structure monoidale ferm6e sur les complexes
crois6s developpee par Brown et Higgins, laquelle fournit
des objets cylindre et cocylindre adequats pour Czs.

INTRODUCTION.

The definition of crossed complex is motivated by the

principal example, the fundamental crossed complex 1tX of a fil-
tered space

([8]? 5). In this crossed complex, 7toX is the set TToXo; TEX is
the fundamental groupoid TT1(X1,Xo); and for n &#x3E; 2, 1tnX is the

family of relative homotopy groups TTn(Xn, Xn-1, p), for all p in

Xo . This structure is also equipped with boundary maps from

TTnX to 1tn-1X, n z 1, and operations of 1ttX on xnX for n z 2,
all satisfying appropriate axioms (see Section 1). It is because of
the widespread use of crossed complexes (summarised below)
that it is necessary to discuss their appropriate homotopy theo-
ry, and this is our aim. Crossed complexes with a single vertex
and satisfying a freeness condition were used by Whitehead in

[261, under the name "homotopy systems", for discussing reali-
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sation problems and models of low-dimensional homotopy types.
They were also used in his famous paper [27] on simple homo-
topy types, again for realisation problems, although this applica-
tion has been neglected up to now. These aspects are taken up
in [1]. where free, reduced crossed complexes are seen as con-

stituting the first level in a tower of approximations to homo-

topy theory. The functor

x : (filtered spaces) - (crossed complexes)

satisfies a Generalised Van Kampen Theorem; i.e., it preserves
certain colimits [8]. This result includes the usual Van Kampen
Theorem, and other basic results in homotopy theory, for exam-

ple the relative Hurewicz Theorem, and the result of Whi-
tehead that TT2(X U{e2k},X) is a free crossed TT1(X)-module. It

also implies new results on second homotopy groups [6]. There

is a classifi,ing filtered-space functor

B: (crossed complexes) - (filtered spaces)

such that 1tB is naturally equivalent to the identitv ([81, Section

9. and [11]). For a crossed complex C, the space (BC)oo is written

BC and called simply the classifiing space of the crossed com-
plex C. The main result of [11] is the homotopy classification
result. that if X is the filtered space of skeleta of a CW-

complex X, then there is a bijection of homotopy classes

[X,BC] = [TTX.C] (see 151 for a summary).

A crossed complex is of rank n if it is zero above di-

mension 11. The crossed complexes of rank 1 are the groupoids,
and these are well known to be models of homotopy 1-types.
The crossed complexes of rank 2 are the crossed modules (of

groupoids). These are model s of homotopy, 2-types. Thus the

Generalised Van Kampen Theorem enables the computation in

some cases of the 2-type of a union of spaces.
In homological algebra. it is common to consider a ft-ee

resolution of an algebraic object, for example of a module, and
such a resolution is a chain complex of free modules. It is

explained in [13] how crossed modules arise in considering
identities among relations for a presentation of a group, and the
general idea of a crossed resolution is explained in the survey
article [4]. From this point of view, it is not surprising that
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crossed complexes have been used to interpret the cohomology
H’(G,A) of a group G with coefficients in a G-module A (cf.

[15,17,20,21]).

It now seems reasonable to regard the replacement of

chain complexes by crossed complexes as the first step towards
a non-abelian homological algebra. It is these twin relations of

crossed complexes to homological algebra and to homotopy
theory which make it essential to have a satisfactory homotopy
theory for crossed complexes.

The definition of a homotopy of morphisms of crossed

complexes is well known and due to Whitehead [26]. It is ex-

ploited in [17] for the representation of cohomology of a group
and in [9] for the theory of extensions of groups. However the
theory of chain complexes has another type of homotopy theory
due to Quillen [22], which is important in homological and ho-
motopical algebra, and which involves defining notions of weak

equivalence, fibration and cofibration, to obtain the structure of
closed model categor,v. For crossed complexes, weak equivalen-
ces are defined in [7] and fibrations in [16]. We use the me-

thods of [22] to define cofibrations of crossed complexes and

we prove in Theorem 2.12 that the weak equivalences, fibrations
and cofibrations satisfy the axioms for a closed model category-
in the sense of [22]. However, we do not know if one further
axiom is satisfied: is it true that a pushout of a weak equiva-
lence bv a cofibration is again a weak equivalence?

The proof of Theorem 2.12 requires machinery on crossed
complexes developed by R. Brown and P.J. Higgins in [10]. They
use w-groupoid methods from [7] to give the category Czs of
crossed complexes a symmetric, monoidal closed structure, with

internal hom functor CRS( -. - ) and tensor product -O-. analo-

gous to corresponding functors on chain complexes. If B and C
are crossed complexes, then CRS(B,C) is: in dimension 0. the

morphisms B -&#x3E; C ; in dimension 1, the homotopies of mor-

phisms ; in higher dimensions, the higher homotopies. Thus the
closed structure on Czs includes a satisfactory theory of homo-
topy equivalences. But, in a similar manner to chain complexes,
the definitions and applications of fibrations and cofibrations are
not so straightforward, and it is useful to take weak equivalen-
ces rather than equivalences as basic. It is this theory that we

develop.
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In § 1 we recall some basic definitions of crossed com-

plexes, and weak equivalences. In § 2 we follow [16] in defining
fibrations, and follow [22] in deriving a definition of cofibration.
We then prove that, with respect to these classes of morphisms,
Czs is a closed model category. In § 3 we derive a Whitehead

type Theorem: If a morphism of cofibrant objects in Czs is a

weak equivalence, then it is also a homotop.y equivalence. In § 4
we point out other homotopical results for crossed complexes
which may be obtained using the methods of double categories
with connections due to Spencer [23] and Spencer-Wong [24].

A different approach to abstract homotopy theory is given
by Kamps-Porter [19] in terms of homotopy and cohomotopy
systems. In these, a category is enriched over the category of

cubical sets, and certain Kan extension conditions are imposed
to allow manipulation of homotopies. This approach is useful
for crossed complexes because the equivalence of crossed com-
plexes and w-groupoids [7], which is used in [10] to obtain the

monoidal closed structure on Czs , also allows the category Czs
to be enriched over w-groupoids. The latter, as cubical sets, sa-

tisfy a strong form of the Kan extension condition. The conse-

quences of this will be developed elsewhere by the second

author and Kamps.

The second author would like to thank Prof. R. Brown for

arranging from the University College of North Wales, Bangor,
support for his visit as Academic Visitor in 1986/87 where this

work was carried out.

1. PRELIMINARIES.

A crossed complex C of groupoids [7] is a sequence

satisfying the following conditions:
(i) C1 is a groupoid with Co as its set of vertices and

8° ,81 its initial and final maps. We write C1 ( p, q) for the set

of arrows from p to q ( p, q in Co ) and C1 (p) for the group

C1 (p, p).
(ii) For n z 2, Cn is a family of groups {Cn(p)}P E C and
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for n z 3, the groups Cn(p) are abelian.
(iii) The groupoid Cl operates on the right on each Cn

(for n z 2) by an action denoted (x, a) -&#x3E; xa . Here, if .x E Cn( p)
and a E Cl (p, q), then we have xa E Cn(q).
We use additive notation for all groups Cn( p) and the groupoid
C1 . 

(iv) For n &#x3E; 2, 8: Cn -&#x3E; Cn-1 is a morphism of groupoids
over Co and preserves the action of C1 , where C1 acts on the

group C1 (p) by conjugation: xa = - a +x + a .

(v) 88=0: Cn -&#x3E; Cn_2 for n z 3 (and 8°8 = d 1 d: C2 -&#x3E; Co,
as follows from (iv)).

(vi) If c E C2 , then 8c operates trivially on Cn for n &#x3E; 3
and operates on C2 as conjugation by c, that is

In any crossed complex C, pc denotes the base point of
c, that is, if c E Co then pc = c, if c E C1 (p,q ) or c E Cn(q)
for n &#x3E; 2, then Bc= q .

A morphism of crossed complexes f: B -&#x3E; C is a family of
morphisms of groupoids fn: B,, Cn (n &#x3E; 1) all inducing the

same map of vertices fo : Bo -&#x3E; Co and compatible with the

boundary· maps 8: Bn -&#x3E; Bn-1, Cn -&#x3E; Cn-I and the actions of B1,
Cl on Bn, Cn. We denote by Czs the resulting category of cros-
sed complexes.

The basic example we have in mind is the fundamental
crossed complex xX of a filtered space X, as described in the

Introduction.

It follows from observations by Brown-Higgins in 171,
p.238; that the category Gzs is complete and cocomplete. The

coproduct in Czs is just disjoint union II , while colimits in Czs
are constructed in Section 6 of [8]. Moreover the paper [10]

defines for any crossed complex B an internal hom functor

CRS(B,-) and its left adjoint, a tensor product -0B This gi-
ves Czs the structure of a symmetric, monoidal closed category.

Write C(n) for the crossed complex freely generated by
one generator cn in dimension n . So C(0) is *; C(1) is the

groupoid D; and for n &#x3E; 2 , C(n) is in dimensions n and n-1 an

infinite cyclic group with generators cn and dcn respectively, and
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is otherwise trivial. Let S(n-1) be the (n-1 )-skeleton of C(n),
with inclusions S(n-1) -&#x3E; C(n). If En-1 and Sn-1 denote the

skeletal filtrations of the standard n-ball

and (n-l)-sphere Sn-1 - eo U e n-1, then it is clear that

We now define a particular kind of morphism j: A -&#x3E; D

which we call a crossed complex morphism of relative free tjpe.
Let A be any crossed complex. A sequence of morphisms j,:
Dn-1 -&#x3E; D" may be defined inductively as follows. Set DO = A.

Supposing D"-l given, choose any family of morphisms

and any m,, and to construct jn: Dn-1 -&#x3E; D" form the pushout:

Let D = colimnDn, and let j : A -&#x3E; D be the canonical morphism.
We call j: A -&#x3E; D a crossed complex morphism of relative free
type. The images xmk of the elements c InÀ in D are called
basis elements of D relative to A. We can conveniently write:

and may abbreviate this in some cases. For example we may
write D = AU xnUxm, analogously to standard notations for CW-
complexes.

We remark that for A = 0 we get by this construction the
crossed complexes of free ope which were considered in [9]

under the name "free crossed complexes" and in 1111 -

If {xk}kEA are all the cells of the crossed complex of

free type C, then
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Hence the morphism S(n-1)OC-&#x3E; C(n)OC is also a morphism of
relative free type. The functor-OC on Czs has a right adjoint,
and so preserves pushouts. Let f: A-+B be any morphism. If j:
A -&#x3E; D is a morphism of relative free type, then so also is the

pushout y : B-4Q of j and f. Therefore we get the following

PROPOSITION 1.1. Let C be a crossed compl ex of free type. If

A- D is a morphism of relative free type then AOC-&#x3E;DOC is al-

so of relative free type. In particul ar if D is a crossed complex
of free type then the tensor product DOC is also of free tj--pe.

We now follow [10] in defining, for n &#x3E; 0, the n-fold left

homotopies B-C from a crossed complex B to a crossed com-

plex C. These homotopies may also be taken to be the elements
of CRS( B,C) in dimension n ([1C], Proposition 3.3). A 0-fold left
homotopy B -C is simply a morphism B -&#x3E; C. For n k 1, an n-fold
left homotopy B -&#x3E;C is to be a pair (H,f), where f: B-C is a

morphism of crossed complexes (the base morphism of the

homotopy) and H is a map of degree n from B to C (i.e., H:

Bk-&#x3E; Ck-. for each k &#x3E; 0) satisfying
(i) BH(b)=Bf(b) for all b E B;
(ii) if b, b’ E B1 and b+ b’ is defined, then

H( b+ b’) = H( b)f(b) + H( b’) ; 
(iii) if b, b’ E Bn (nk2) and b+ b’ is defined, then

H( b+ b’) = H(b) + H(b’);

(iv) if b E Bn (n &#x3E; 2), bi E B1 and bbi is defined, then

Let £3 be the crossed complex which has vertices 0, 1 and

is freely generated by an element c1 from 0 to 1 of dimension
1. Thus D may be regarded as a groupoid. Put PC=CRS(D, C)
for any crossed complex C. Then P is a functor on Czs and
there are natural transformations

such that

Hence the quadruple P = ( P; p° , p1, s ) forms a cohomotopy co-
homotopy in the Kamps sense [18].
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For crossed complexes B, C we have the induced cubical

set Q(B,C) such that Q(B,C)n= Gzs (B,PnC ), for n &#x3E; 0. By [8],
Corollary 9.6 and [10], Proposition 2.2

Czs(B,PnC) - Czs (OnDR(B,C)) - (kCRS(B,C))n, n z 0,
where X is the functor inducing an equivalence of the category
of crossed complexes and w -groupoids (171, Theorem 6.2). The-

refore Q(C,D), being an w-groupoid (181, Corollary 9.6), satisfies
the Kan extension condition for all dimensions ([71, Proposition
7.2).

According to [18], the cohomotopy system P defines in

Czs a notion of homotopy between morphisms. In fact, this is

essentially the notion of 1-fold left homotopy given above. This
notion of homotopy also leads to the notions of homotopy
equivalence, Hurewicz fibration and Hurewicz cofibration, as

defined in [18].

Following Kamps [18] and using the analogue of the well-
known standard procedure for spaces we get

LBMMA 1.2. For anj. crossed complex morphism f:B-C there

e.vists the following factorisation

where q is a Hurewicz fibration and j is a strong deformation
retract morphism. hence a homotopj- equivalence..

Suppose C is a crossed compl.ex and p E Co . Following
Brown-Higgins [7], p. 258 and Howie [161 we define no (C) to be

the set of components of the groupoid C1. Define 1tt (C,p) to

be the cokernel of d2:C2(p) -&#x3E; C1 (p) and, for n z 2, define

TTn(C,p) to be the subquotient Ker dn (p)/Im dn+1 (P) of Cn (p).

A morphism f: B-&#x3E;C in Czs is said to be a weak equiva-
lence if the induced maps
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are isomorphisms, for all n &#x3E; 1 and p E Bo. It follows by stan-
dard arguments that any homotopy equivalence of crossed com-
plexes is a weak equivalence.

2. CLOSED MODEL CATEGORY STRLIC?’uRE ON Czs.

Recall that a morphism f: G-&#x3E;H of groupoids is a fibra-

tion [3] if, whenever p EGO and y- E H with Soy = f p , there

exists z E G1 such that f z = y and 8°z = p.
This notion was extended to morphisms in Czs by Howie

in [161 in the following way. A morphism f: E- B in Czs is a fi-
bration if each groupoid morphism fn: En-&#x3E; Bn (n &#x3E; 1) is a fibra-
tion of groupoids. Other equivalent descriptions of fibrations in

Czs will be given by Brown-Higgins [28] using the notion of

what we call here "crossed complex of free type", which is the

same notion as that of "free crossed complex" in 191. A main

fact we need is that if X is the skeletal filtration of a CW-

complex, then the fundamental crossed complex xX of X is of
free type.

PROPOSITION 2.1 128 1. Let f: E-&#x3E;B be a morphism of crossed

complexes,. Then the following conditions are equi valen t:
(i) f is a fibrations;
(ii) (Covering homotop.y propert).) if C is a crossed com-

pl ex of free t.ype, g : C - E is a morphism, n &#x3E; 1, and (H’, f g) is

an n-fold left homotopy C -&#x3E;B, then there is an n-fold homotopy
(H,g): C-&#x3E;E such that fH = H’;

(ii)’ the covering property holds for n = 1;
(iii) if C is a crossed complex of free (Jpe, then the

induced morphism f. : CRS(C,E)-CRS(C,B) is a fibration..

Note that this Proposition implies that each Hurewicz
fibration in Czs is a fibration.

A morphism which is both a fibration and a weak equiva-
lence is said to be a trivial fibration.

We will say that a morphism f: A -&#x3E; D has the left lifting
proper(v (LLP) with respect to the class 7’ of morphisms in Czs
if the dotted arrow completion exists in any commutative square
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of the form

where p is in the class F. Similarly p has the right lifting
property ( RLP) w ith respect to 7 i f the dotted arrow comple-
tion exists in any commutative square of the above form, where
f is in 7.

Following Quillen [22] we define a cofibration in Czs to be
a morphism which has the (LLP) with respect to trivial fibra-

tions. Trivial cofibrations are morphisms which are cofibrations
and weak equivalences. It is easily checked that in a pushout
diagram

if f is a cofibration, then so also its 1’ ([22]. chap.II. §3.
Let 0 (resp. *) denote the initial (resp. final) object of

Czs. An object C is called cofibrant if the unique morphism
from 0 to C is a cofibration. Not all crossed complexes are co-
fibrant. However for an) C the unique morphisms C- * is a fi-
bration.

The next proposition. which is analogous to Proposition 2.1.

is the key to our results on cofibrations. The proof uses expli-
citly the structure of CRS(B,C) defined in [10]. and which is

given above.

PROPOSmON 2.2. The following are equivalent for a morphisn1
f : E - B in Czs:

(i) f is a trivial fibration:
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(ii) &#x3E; fo is surjective; if p. q E E and b E B1 (fop, foq), then

there is e E E 1 such that fie = b: if n &#x3E; 1 and d E En satisfies

8° d = S1 d for n = 1, S d = 0 for n &#x3E;2. and b E Bn+1 satisfies S b -

fn d . then there is

such that

(iii) f has the RLP with respect to S(n-1) -&#x3E;C (n) for all

n&#x3E;0:

(iii)" if C is a crossed complex of free t.rpe then f has the
RLP with respect to S(n-1 )O -&#x3E; C(n)OC for all n &#x3E; 0;

(iv) if C is a crossed complex of free tJ’pe then the indu-
ced morphism f*: CRS(C,E) - CRS(C,B) is a trivial fibration.

PROOF. The equivalences (ii) =&#x3E; (iii) and (iii)’ =&#x3E; (iv), and the im-

plication (iv) =&#x3E; (i) are evident.

The implications (i) =r (ii) for n k 2 and (ii) =&#x3E; (i) are

straightforward and can be proved by standard procedures in

homological algebra. So we prove only the non-Abelian case n=l 
of (i)=&#x3E;(ii).

Let p . q E E 0 and b EB1 (fop , foq). By the fibration pro-

pert) there is an element u in E1 (p, q’), say, such that f1 u = b.

Hence fo0’= foq and the isomorphism TTo(E)-&#x3E; 1to(B) determines
an element V E E1 (q’, q). The isomorphism TT1(E.q)-&#x3E;TT1(B.foq)
shows that there is an element w E TT1(E,q) such that f1 w= 
- f 1 ,,:. Let d = u+v + w. Then f1d= b.

To prove (I) - (iv) we assume (i) and show that the mor-

phism

satisfies the condition (i). which can be represented diagramma-
tically bj

for n z 0. where the morphisms b , d and 8 are defined by their
images b, d, e respectively. For n = 0, we write H for b(Co). For
n= 1. we write go, g for d (0) . d (1) respectively and (H.fh) for



72 

b (c1), this last being a homotopy from fg° to fg . For n &#x3E; 2,
we write (K, g) for cÎ(Scn) and (H , fg) for b (cn) . Thus if n =2,

and for Also for n z 2,

Recall that C is of free type. Let Xk be a basis for Ck ,
k z 1. We will construct by induction on k &#x3E; 0 a family of maps
Hk: C -&#x3E; En+k.

If n - 0, then H. is to be a morphism C-E. This H. is

easily constructed on the basis X using the fact that f: E -&#x3E;B is

a trivial fibration. Hence H, extends over C to give a morphism,
also written H.: C -&#x3E; E. For n &#x3E; 1, we require the explicit formulae
given in [10], Proposition 3.14 for the boundaries of n-fold left

homotopies. These formulae (akn) are as follows:
If (H, g) is a 1-fold left homotopy from gO to g, so that

If n z 2 and (H, g) is an n-fold left homotopJr, then

S(H..g)=(K.,g), where

The above formulae will be used with H, g, K replaced by H ,
fg, K in CRS(C,B), in order to construct an appropriate element
(H, g) in CRS(C,E). Thus for all n, k &#x3E; 0 we require also

Suppose now that Hi is defined for 0ik-1, so that

(ani) and (Bin) are satisfied for 0  i s k-1. Then Hk is defined
using the fact that f is a trivial fibration and C is of free type.
With the above information, the details are straightforward and
are left to the reader. D

COROLLARY 2.3. Let C be a crossed complex of free type. Then
the morphism S(n-1)OC-&#x3E;(n)OC is a cofibration for all n z 0.

In particular, C is cofibrant. D
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COROLLARY 2.4. Let j:A:-&#x3E;D be a morphism of relative free

(Jpe. Then j is a cofibration.

PROOF. By the definition of relative free type, we are given that
D is a colimit colim,,D", where Do= A and each jn:Dn-1 -&#x3E;Dn is

a pushout of a coproduct of inclusions of the form

S(mk-1)-&#x3E; C(mk). By Proposition 2.2 (iii), such inclusions are

cofibrations. Hence jn is a cofibration. Hence j: A -&#x3E; D is a cofi-

bration. ·

To obtain a description of trivial cofibrations we need

LEMMA 2.5. (i) Let C be a crossed complex. Then the canonical

morphisms p° , pl : PC -C are trivial fibrations and the induced

morphism (po,p1): PC -&#x3E; C X C is a fibra tion;
(ii) for any fibration f: E-B the induced morphism

( p°, Pf ) : P E - ExBP B is also a fibration.

PROOF. (i) We prove only that the morphism (po , p1): PC-
CxC is a fibration. (Using the same methods one can also show
that the canonical morphisms po, pl : PC -&#x3E; C are trivial fibra-
tions.) For n z 0, the elements of (PC)n are the n-fold left

homotopies (H, f) : D -&#x3E; C. The formulae for the boundary opera-
tors S° , S1 and 8 of the crossed complex PC were given in the

proof of Proposition 2.2. Let n &#x3E; 1 and let

be such that for n = 1

and for n z 2

We define a morphism f : .0-4C and for k &#x3E; 0 a family of maps
H:Dk-4Ck-,,, as follows. For n =1 let f(c1) = -X+Y+X’ and for

We let H: Dk-&#x3E;Ck+n be trivial for and

be given by H(0) = x, H(1) = x’ for k = 1. Then for n &#x3E; 1,

and for n = 1 ,

(ii) The required property of the morphism
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is to be that for n k 1 there is a completion H of the following
commutative square

where v means the union in Czs with base points 0EC(n), 0,E.0
identified. But this completion exists by the fibration property
of the morphism f : E -&#x3E; B. D 

Now we can follow Quillen’s proof ([22], p.3.4) to get:

PROPOSITION 2.6. The following are equivalent for a morphism
j: A-D in Czs:

(i ) j is a trivial cofibration;
(ij) j has the LLP with respect to the fibrations;
(iii) j is a cofibration and a strong deformation retract mor-

phism. D

It follows from Lemma 2.5 that each cofibration j : A-&#x3E;D is

a Hurewicz cofibration, because j has the LLP with respect to

the trivial fibration p° : PC-&#x3E;C, for any crossed complex C. Hen-
ce j has the homotopy extension property. We do not expect the
converse to hold, since for example in chain complexes Hurewicz
cofibrations are not necessarily cofibrations in the Quillen sense.

PROPOSITION 2.7. Any morphism f:A-B in Czs may be facto-
red f = p j where j is of relative free type (and hence a cofibra-
tion) and p is a trivial fibration.

PROOF. The essential fact needed to apply Quillen’s small object
argument ([22], chap. II, p. 3.3 and 3.4) is the characterisation

by Proposition 2.2 of trivial fibrations in Czs by the RLP with

respect to the set of morphisms 1S(n-1) -&#x3E;C(n)}n&#x3E;o where each

S(n-1) is "sequentially small" in the sense that Czs(S(n-1) , - )
preserves sequential colimits.

For completeness and the convenience of the reader we

give more details. We are given f : A-&#x3E; B. We construct a diagram
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as follows. Let E-1 = A and p- 1 = f . Having obtained En-1, con-
sider the set A of all commutative diagrams X of the form

Define jn: En-1 -&#x3E; En by the pushout

Define pn: En-&#x3E;B by

Let E = colim En, and let j : A-E and p : E-B be the canonical

morphisms. By the above construction j: A-E is a morphism of
relative free type. Proposition 2.2 implies that p: E-B is a trivial

fibration. ·

If B is any crossed complex and O-&#x3E;B is the unique mor-
phism from the initial object then from the above result we get:

COROLLARY 2.8. Any crossed complex B is weakl i- equivalent
to a crossed complex of free type. D

COROLLARY 2.9. If f: A -&#x3E; D is a cofibration then it is a retract



76

in the categorv of maps of Czs of a morphism of relative free
tjpe. In particular, each cofibrant object in Czs is a retract of a
crossed complev of free type.

PROOF. By Proposition 2.7 f = pj where j is of relative free

type and p is a trivial fibration. Hence by the LLP of f with

respect to trivial fibrations, there exists a completion of the

following commutative square

So the following diagram commutes

Hence p g = idD and f is a retract of j..

The next corollary generalises Corollary 2.6.

COROLLARY 2.10. Let C be cofibrant. If A -&#x3E; D is a cofibration
then AOC-&#x3E;DOC is also a cofibration. In particular, if D is

cofibrant then DOC is also cofibrant. D

COROLLARY 2.11. Any morphism f : B -&#x3E; C in Czs mqy be factored
f = pi where i is a trivial cofibration and p is a fibration.

PROOF. By Lemma 1.1 f - q j ’where q is a fibration and j is

a homotopy equivalence. But by Proposition 2.7, j = p i where p
is a trivial fibration and i is a cofibration. Also j and p are
weak equivalences, so i is a trivial cofibration. Finally,
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where q p is a fibration and i is a trivial cofibration. ·

THEOREM 2.12. The category Czs of crossed compleyes, toge-
ther with the distinguished classes of weak equi val ences, fibra-

tions and cofibrations defined above, satisfies the following
axions:

C M1: Czs has all finite colimits and limits.
C M2: Suppose given a commutative diagram of the form

in Czs . If any two of f. g or h are weak equivalences, then so

is the third.

CM3: The classes of cofibrations, fibrations and weak

equivalences are closed under retraction in the category of maps
of Czs .

CM4: Suppose given a commutative diagram

in Czs, where p is a fibration and j a cofibration. If either j or
p is tri vial, then there is a map h: D-E such that p h - g and
hj = f.

CMS: An..y crossed complex morphism f maj, be factored as:
a) f = pi, where p is a fibration and i is a trivial

cofibration and

b) f = qj, where q is a trivial fibra tion and j is a

cofibration.

CMI-CM5 are the closed model axioms (cf. 1221); one says that
the category of crossed complexes is a closed model category.
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PROOF. CM1 follows, because of the Brown-Higgins result from
[8] that Czs is a complete and cocomplete category.

CM2 and CM3 are completely trivial.
CM4 follows from the definition of cofibrations and

Proposition 2.5. The factorisation axiom CMS was proved by
Proposition 2.7 and Corollary 2.11. ·

3. WHITEHEAD THEOREM FOR CROSSED COMPLEXES.

By Proposition 2.5 a cofibration j : A-&#x3E;D in Czs is a trivial
cofibration if and only if it is a strong deformation retract. Now
we prove a dual fact for fibrations of cofibrant objects in Cts.

PROPOSITION 3.1. If p:E-B is a fibration of cofibrant objects
in Czs then the following are equivalent:

(i) p is a trivial fibration;
(ii) p has the RLP with respect to cofibrations;
(iii) p is a fibration and a strong deformation coretract.

PROOF. (i) =&#x3E;(ii) follows from the definition of cofibration.

(ii) =&#x3E;(i), In particular, p has the RLP with respect to

S(n-1) -&#x3E;C(n) (n &#x3E; 0), hence p is a trivial fibration by Proposition
2.2.

(iii) =&#x3E; (i). This follows from the fact that a strong de-

formation coretract is a homotopy equivalence, and hence is

a weak equivalence.
(i) =&#x3E; (iii). Let q : EOD -&#x3E; E denote the canonical morphism.

Thus q is the constant homotopy of the identity morphism on
E. The coretract and strong deformation may be constructed by
completing in

which is possible, since 0-B, by assumption, and
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by Corollary 2.3 for n = 1 and Corollary 2.10, are cofibrations.. ·

THEOREM 3.2 (The Whitehead Theorem). If a morphism f: C - D

of cofibrant objects in Czs is a weak equivalence then f is also
a homotopy equivalence.

PROOF. By Theorem 2.12 we have the following factorisation of
the morphism f :

where p is a fibration and i is a trivial cofibration. But f is a

weak equivalence and so p is a trivial fibration. Now C is a

cofibrant object and i:C-&#x3E;C is a trivial cofibration. So by lifting
in the following diagram

where q is a trivial fibration, we obtain that C is also a cofi-
brant object. By Proposition 2.5, i is a strong deformation re-

tract and by Proposition 3.1, p is a strong deformation coretract
and so, finally, f is a homotopy equivalence. ·

4. DOLIBLE CATEGORY METHODS FOR CROSSED COMPLEXES.

Another view of abstract homotopy theory is given by
Spencer and Spencer-Wong in 123,241. Recall first that Gabriel-

Zisman 1141 derive exact sequences in homotopy theory- in the

context of a 2-category in which all 2-morphisms are invertible.
Spencer shows in [23] that 2-categories are equivalent to special
double categories with connection or with thin structure [24],
where the thin squares of the double category derive from the
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constant 2-morphisms of the 2-category.
Thus for crossed complexes one obtains a double category

with thin structure from the 2-category of crossed complexes,
morphisms of crossed complexes, and homotopies of morphisms.
The general results of C23, 24J now give the following applica-
tions to crossed complexes. Recall first that Vogt [25] has

shown that for spaces strong homotopy equivalence is equivalent
to homotopy equivalence. This result is placed in the abstract

setting in [23], Proposition 3.1. So we obtain

PROPOSITION 4.1. A homotopJT equivalence of crossed com-

ple.,ves is also a strong homotopy equivalence..

The paper C23 J has results on homotopy pullback and

homotopy pushout squares - for example, a composite of homo-
topy pushouts is a homotopy pushout. The paper [24] has re-

sults on homotopy commutative cubes and homotopy pushouts
and pullbacks. For example, Corollary 4.8 of [24] and its dual

apply to give cogluing and gluing theorems for homotopy equi-
valences of crossed complexes. Roughly speaking, homotopy
pullbacks (pushouts) of homotopJT equivalences are homotopy
equivalences.

(4.2) OPEN PROBLEM. Are homotopy pushouts of weak equiva-
lences also weak equi val ences ?

Note that the paper [2] obtains a type of model structu-
re, there called a cofibration category, for the category of redu-
ced crossed complexes of free type. In this category, all objects
are cofibrant, weak equivalences are homotopy equivalences and
standard arguments show that homotopy pushouts of homotopy
equivalences are homotopy equivalence. However in many cases

one wishes to deal with the non- free case, and it is in this

context that (4.2) remains open.
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