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PECULIAR BEHAVIOR OF CONNECTED LOCALES

by Igor K0159Í017E and Ale0161 PUL TR

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. ,XXX-1 (1989)

ReSUMe. Si X et Y sont des espaces topologiques et si

X est connexe, alors pour des raisons triviales XxY se

decompose le long d’une d6composition de X. Cependant
pour des "locales", ceci n’est pas vrai en general. On

donne un contr’exemple ou X est localement compact
(donc spatial). Par contre on obtient des 6nonc6s positifs
si X est compact ou h6r6ditairement Lindelbf.

Although locales have found a broader area of ap-

plication, the original aim to study them as a useful generaliza-
tion of the classical topological spaces (to name just a few

pioneering works, let us mention here e.g. [2,4,5]; the reader

will find further references in [8]) is still a most important
aspect of the theory.

Some facts about topological spaces generalize to locales
in a straightforward way. Some need a more involved translation
or modification of the original procedures. Then there are topo-
logical facts with no reasonable generalization at all. Of a par-
ticular interest, however, are the cases in between: those where

a statement can be generalized (at least to some extent), but

where the proofs have to be led along quite different lines than

before. Here one profits in two ways (at least). First, a deeper
insight into the fact in question is gained, and more fundamen-
tal reasons for the fact are discovered. Second, counterexamples
for the validity of such a statement over some extent can indi-
cate flaws in natural notions and stress the importance of some
additional properties (as, e.g., the facts presented in this paper
indicate that the bare notion of connectedness may not be quite
so natural as it seems to be).

In this paper we are going to study some aspects of the

behavior of connectedness in products, which we will show to

belong in among the intermediate cases mentioned. Consider a
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connected topological space X and an arbitrary Y. There is a

trivial fact that whenever XxY decomposes into U, U U2 with

disjoint open Ut. U2. there is a decomposition V, U V2 of Y such
that Ui = XxVi. The statement is easily proved using points of
Y (one considers the connected subspaces Xx(j I of XxY). This,
of course. cannot be mimicked when trying to prove an analo-

gous statement on locales. It does not immediately follow that

a more involved modification may not do. But indeed, it may
not. which follows from a counterexample we present. On the

other hand. the fact does hold in some important special cases,

and the mechanism of these positive cases is perhaps not wi-

thout interest.

To simplify the following survey, let us agree to say a

locale A to be p-connected if (in the frame notation) for any
locale B. whenever the unit 1 (AEÐB) of AOB can be written as

U1 A U2 with u1A U2 = 0, there are

v1. vz E B such that ui = 1(A)EÐ "’i.

(0) Let us recall that any connected locally connected lo-

cale is p--connected (this is proved elsewhere - in 1111 - but we

mention it here to complete the overall picture).
(1) We will show that there is a locally compact (and

hence spatial (!)) locale which is connected but not p-connected.
(2) For compact locales, however, the notions of connec-

ted and p-connected coincide, and.

. (3) &#x3E; Furthermore, the same holds for hereditarily Lindeldf

locales.

BN [11], a locale with a dense p-connected part is p-con-
nected. and if a locale is covered by a chained system of p-con-
nected parts it is p-connected again. This yields an immediate
extension of the positive statements above.

1. PRELiMINARIES.

Wishing to make the reading easier for those who are not
(yet) locale enthusiasts we have made some of the points of
this section more explicit than absolutely necessary. We hope
the reader acquainted with the notions will agree that trying to
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save space here would not bring much gain.

1.1. The class of ordinals will be denoted b) Ord and

considered ordered by the natural ordering. The set of natural

numbers will be denoted by IN. If X is a set, card X is its cardi-

iialitn.

1.2. A frame (locale) is a complete lattice A satisfying the

distributive law

J J

(see. e.g., 17,81). The bottom resp. top of A will be denoted bN
O(A) resp. 1(A) (or simply 0 resp. 1). Frame morphisms are map-
pings preserving unions and finite meets. The category obtained
will be denoted by Frm. its opposite, the categori, of locales, by
Loc. It is well-known that the functor D: Sob - Loc. where

Sob is the category of sober topological spaces,

constitutes a full embedding (see e.g. 171).We will consider.

therefore, Loc as a natural extension of the category Sob.

Although it is the locale point of view we have in mind.

the notation will be kept for obvious technical reasons as in

Frm. Thus, we may speak about a product of locales and count

with the corresponding coproducts of frames (see 1.5): a sublo-

cale B of A will be represented as a surjective frame morphism
A - B. In particular, we stress that the symbol AxB stands for

the product of frames, not that of locales: it will play a tech-
nical role.

A cover of a frame (locale) A is a subset U C A such

that VU = 1 .
The complement of an B E A, denoted by B, is the largest

J such that j- A X = 0. An element k is said to be complemented
i f XVX = 1.

A basis of a frame is a subset U C A such that for each
B in A.

If a E A we denote by [a] the locale
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It will be considered a sublocale of A in view of the surjection
X -&#x3E; XAa.

1.3.
1.3.1. Let A be a poset. A subset X C A is said to be decreasing
if

The set of all decreasing subsets of A , endowed by the relation
of inclusion, will be denoted by D(A). Obviously, D(A) is a fra-
me. For a E A, X C A, we will use the notation

It is easy to see that if A is a lower semilattice, SA: A -&#x3E; D(A)
defined by 8 (a) = la preserves meets.

1.3.2. We will use the following fact from [12]:

PROPOSITION. Let A be a lower semilattice, B a frame. Then

for any meet-preserving f: A - B there is evactly one frame

morphism g: D (A) - B such that g o 8A = f .

1.3.3. Let X be a set. Denote by FLS(X) the free lower semilat-
tice generated by X. It can be obtained e.g. as the set of all fi-
nite subsets of X with the union for meet; we will use, howe-

ver, the more handy notation of formal meets /Bn Xi.
i =1

According to 1.3.2, FF(X) = D(FLS(X)) is the free frame

generated by X.

1.3.4. Note that if T is the quasidiscrete space corresponding to
the poset A, D (T) = D(A) .

1 4 Quotients of frames.
1.4.1. A relation R on a frame is called pre-congruence if, for

each ( a, b) E R,

is a basis of A. An element U E A is said to be R-coherent if

For a pre-congruence R on a frame A and a E A put
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Denote by A/R the set of all R-coherent elements of A. Ob-

viously, j is a mapping of A onto A/R and j(j(a)) = j( a) . Follo-

wing the lines of a slightly less generally formulated theorem
from 191 one can easily prove (see [10]):

1.4.2. THEOREM. The mapping jR preserves meets. If we define
the joins VR in A/R by putting VRX = j(V X), A/R becomes a
frame and j: A -&#x3E; 4 A/R a frame morphism. For any frame mor-
phism f: A - B such that

there is exactly one frame morphism g: A/R - B such that

1. S. Products of locales (coproducts of frames).
In particular, one can construct the coproduct of frames

A, B as (see, e.g., [7], cf. 13,61)

where the relation S consists of all the couples

We immediately see that an X E D(AxB) is S-coherent iff

whenever (xi, y) resp. (x,)’j) E X for

Let us write a O b f or js (l (a, b)). We will use the following ea-
sy facts:

I.S.I. The elements of the form a% b constitute a basis of AOB.

1.5.2. If X is an S-coherent subset of AXB and

then (a, b) c X.

1.5.3. We have aOO = 0%b = 0 for all aEA, be B, but if x +0, 
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then aOX a’ O X implies a K a’ and, similarly, xO b  xO b’
implies b b’ .

1.6. A non-trivial locale A (i.e., such that O(A) #- 1(A)) is said

to be connected if there is no complemented element but 0 and
1. An element a is connected if [a] is (which amounts to non-

existence of a non-trivial decomposition

A locale is said to be locally connected if it has a basis consis-

ting of connected elements.

1.6.1. Note that if A is a poset, D(A) is always locally connec-
ted.

1.7. We say that a couple of non-trivial locales (A,B) has re-
gular cuts if each complemented element in AOB is of the form

1 (A) O b.

Obviously, if (A,B) has regular cuts then A is connected.

We say that A is p-connected if ( A, B) has regular cuts for

each non-trivial B.

1.7.1. By a result from [11] we have

THEOREM. Each connected locallj- connected locale is p-con-
nected.

1.8. Let A be a frame and let X be a subset of A. We say
that x,y are joined by a chain in X if there are x1, ..., xn E X

such that

A subset X C A is said to be chained if any two x,j-- E X are

joined by a chain in X.

1.8.1. oBSBRVATION. Let U be a cover of a connected A, and
let 0 / U. Then U is chained. (Realize that

is complemented for any u. &#x3E;
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2. A COUNTEREXAMPLE.

2.1. Let B be a boolean algebra. Denote by C = C(B) the set

of all disjoint covers of B by non-zero elements and by FinB

the set of all finite subsets of B. Put

On D(M) (= FF(XB)) define a pre-congruence R as that con-
sisting of all the pairs

and

Put

We will write briefly aue&#x3E; for j(l(a u s )) and, more generally,
X&#x3E;for j(lX)(XE M). ·

2.2. Some more notation. For

Further put

For a E C and O+J C a finite put

2.3. Counting in AB .
2.3.1. The condition of R-coherence for a decreasing X C M is

easily rewritten to the pair of conditions
(C1) Va,b E C, ueoc and v E (3,

(C2) V A E M, a E C and u, v e a
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2.3.2. We immediately see that

and  a u 1 &#x3E; n a u 2 &#x3E; = a(a) does not depend on the choice of u E ex.
Further, obviously,

V{a(a) l aEC}= 1.

By induction on the size of J we easily obtain that for any a

and J, 

Consequently, for any x E M and any collection of finite J(a)+0,
J(a) C a,

2.3.3. LEMMA. For each x E N ,  x&#x3E; + 0 .

PROOF. Put X = MBN. Since N is obviously increasing, X is de-

creasing. Obviously the condition tC1) is satisfied. Now, let

Take u E a. If it is joined by a chain in «U%(z) with some ui
where

put n = Ei (since )’ EN, 1) is uniquely determined), otherwise choo-
se 1) arbitrarily. Then we have (aun)A Z E N (and hence ¢ X). Thus,
also the condition (C2) is satisfied, and hence X is coherent.

Since X E X, X&#x3E;  X.

2.4. THEOREM. The frame ABEÐB has a decomposition

such that ai 1OV implies v=1 for both i = 1,2.

PROOF. Put

We have

since all the summands are zero

by 2.3.2) and
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by 2.3.2. Let . for all a E C , and
u E a, and, since aui&#x3E; + 0 by 2.3.3., we obtain u s v by 1.5.3.

Hence v =1. D

there exist finite

such that for all.

Then X is R-coherent and, since obviously X D m, we have X D
j( m).
PROOF. If X E X and z  X, we have T ( z) D 1: (.-’(); put loc( z) = Joc( x)
for a E T (x), otherwise choose Ja(z) arbitrarily. If ya E ç (a, Ja( z) ) ,
we obtain

Since m is decreasing, we conclude that X is, too. Since XD m

and m D j(O), the condition (C1) is obviously satisfied.
’The condition (C2): Let (auE) AX E X for 2=1,2. For

put

Thus,

and

Since

we see that (avE)AX E K for E = 1, 2 . ·

2.6. LEmmA. Let j(O) C 7n E J. M and let x E j(m). Let t(.r’()
= {a1,...,an}. Then there are finite Jl C al such that, for all
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PROOF. Use 25: since x E j( m) , we have X EX. N

2.7. In the following theorem we adopt the terminology
and use a result from [1].

THEOREM. Each AB is a continuous lattice. Consequentlj,, it is

an D (T) for a sober locally compact space T.

PROOF. Obviously it suffices to show that for each x&#x3E; with AT

E M we have X&#x3E; « x&#x3E;.
Let x&#x3E; V X, with X, coherent. Thus, x E x&#x3E; c j(U Xi).1,,El

Put m - UXi. Use 2.6 and put

Thus, Y is f inite. For Y= (y1, ... , yn ) E Y choose (iy) E I such that

y1 A ... A yn A x E Xi(Y). We have, hence

On the other hand we have

by 2.3.2 and hence

2.8. We say that a boolean algebra B has the property
( P) if the following holds:
For each C’C C(B) containing refinements of all a E C (B), and

for each cp : C’- Fin B such that p (a) C a for all aeC’, there exist
a, B E C’ such that no u E P(P) is joined by chain in au B with a

2.9. PROPOSITION. Let (X, p) be a metric space such that

for each non-void open U c X we have card LI z 22w (such as, e.g..

any Y’ with a sufficiently large discrete Y). Then the boolean

algebra B of the regular open subsets of X has property (P).

PROOF. The closure of a subset Z in X will be denoted by cl(Z)
(recall that the bar indicates the complement). We easily find

onEC’ such that
(1) for m &#x3E; n, om is a refinement of On
(2) for each u E on, diam u s 1/n.
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Choose finite Zn C X meeting all the elements of p (on) and put
Z=UZn. Thus, card cl (Z)  2W and hence cl (Z) is nowhere dense

we obviously have and

hence

where V indicates the join in B. Thus, if we put
we obtain (A is the meet in B)

Consider the system

For k &#x3E; m we have ak s am and hence aK &#x3E; am so that

Thus, by (3), y is a cover, obviously disjoint. Moreover,

(Indeed, let us take 
and hence , 

such that x  y and we have either j
again. )

Choose an a E C’ which is a refinement of y . Then we can

find, for u E a, numbers k( u) such that u 5 ak(u). Put

Now, a refines (recall (4)) and

so that Vp(a)Ap(p) = 0 . Hence, no U E p ((B) is joined by chain

is a cp : C (B ) -&#x3E; Fin B such that

each a .

PROOF. Use Lemma 2.5. Now, X=M. For a E C choose a u E a

and put
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Let J’ E ç (a,p (a)). Then

Hence Yi A(aui)E m and hence finally Y E m. D

2.11. THBORBM. Let B have the property (P). Then AB is
connected.

PROOF. Let m1 , m 2 E A be such that

By 2.10 there is a p : C (B) -&#x3E; Fin B such that

i for some

I. Let C’ contain a subdivision for any a E C. Because of
(P) we can choose a, B E C’ such that a U E p(a) is never joined
by chain in aup with a v E p(a) u p(B), v + u. Since

we have, say,

since B o Co there are EV such that

Now, however,

by 2.3.3 in contradiction with m 1 Am 2 = 0.

II. Thus, there is an a E C such that each of its subdivi-

sions is in Co. We will show that C’= 0. Indeed, let B E C’.
Then 

Le t, say, . There are s, such that

For U E p (a A B) put Eu = Ev whenever u c V E p(B). Put
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Now we have xn y E N, hence XAY&#x3E;+0, and we have a contra-
diction XAY&#x3E; m1 A m2 again.

III. Consequently, C = Co . If we had

and

we would again obtain a contradiction

Thus, say, Ç(cx,cp(cx» C m1 for all a and by 2.3.2

2.12. From 2.4, 2.7, 2.9 and 2.11 we immediately obtain

CoNCLLISION. There evists a localty compact connected sober
space T which is not p-connected (more exactly, such that D(T)
is not p-connected).

3. POSITIYE RESULTS.

3.1. A semitree is a couple (T, R) where R is a binary re-
lation on T such that there is no infinite sequence t1 Rt2 Rt3.... 
A semitree with ordinals (T, R, p) is, moreover, endowed with a

mapping cp: T-Ord such that

3.2. Conventions and notation.
A subset U of a semitree is always viewed as the semi-

tree (U,R A (UxU)). We set

and usually write just i(T). Thus, in particular, if UcT,

Let A1 A2 be frames. For x = (x1, X2) E A1 X A2 and i = 1, 2 we write

to indicate that Xi = V (yi lY E Y} (where, of course, Y= (Y1, Y2)) and

all the coordinates Y3-i of ir E Y coincide.
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3.3. PROPOSITION. Let A , B be frames and let me A x B be
a decreasing set such that

Then there is a semitree with ordinals (T, R, cp) and subsets

T1, T2 c T such that

PROOF. First, let us construct a transfinite sequence T(a)
(a E Ord) of subsets of Ax B as follows: T(O) = m, and for a&#x3E; 0,

such that

Obviously all the T(a) are decreasing sets and if T(a) = T(a+1)
then T(a) is coherent (recall 1.5). Also obviously

and hence there has to be an ao with T(Xo)=T(ao+1). Since

we conclude (recall 1.5.2) that 1 O 1 ET (ao).
Consider the least a with (1,1) E T(a) and put T = T(a). For

x E T denote by p (x) the least ordinal B such that x E T(p).
Now if x E T, p (x) + 0, choose arbitrarily (but fixedly) an i = i(x)
and a Q x C T(y) with Y  p (x) such that x = i VQ. Put

3.4. We will use the abbreviation Ch (A) to indicate that a

frame A has the following property:
For each frame B and any m C A x B such that

whenever ( a, b) and (c,d) are in m and a, b, c + 0 then aEÐ band
cED d are joined by chain in {XOY l (x,y) E m}.

3.5. PROPOSITION. If Ch (A) then A is p-connected.
PROOF. Let x E AEÐ B be complemented. Put
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we have X  1 O u and, similarly, x  1 O v and we immediately
conclude

3.6. LEMMA. Let A be a frame, let

in X be such that

Then there is a j, E Y such that

PROOF. We have

3.7. Denote by K the class of all mappings k: Ord-&#x3E;N

such that k(a) + 0 for finitely many a only. Write k &#x3E; k’ if

OBSERVATION. There is no strictly decreasing sequence in

(K, ) .

3.8. Let (T, R, p ) be a semitree with ordinals. For a finite

X c T define K(X) E K by putting

3.9. THEOREM. All compact connected locales A are p-
c onnected.

PROOF. By 3.5 it suffices to prove Ch(A). Consider a frame B, a
fixed non-zero b cB and an m c Ax B such that
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We will construct a finite M c m such that

so that Ch(A) will follow by applying 1.8.1 for the cover (x1 I
X EM} of A.

Consider the semitree from 3.3. Put M, ={(1,1)}. Let us

have Mn constructed so that

If Mn C m put M = Mn . Otherwise choose one of the x E Mn with
p (X) maximal. Obviously p (x) + 0. If V E T2 choose by 3.6 a yr

such that

and set

If XE T-l’ we have

and hence we can find a finite

using the compactness.
In any case K ( Mn+ 1) K ( Mn) and hence, by 3.7, there is an

n with Mn C m . ·

3.10. LEMMA. Let A be a frame, (T,R) a semitree and f:

T -A a mapping such that

and

PROOF. Let

Choose a t 1 E T such that f( t1) = 1. Thus, Let us have

found t1, t2, ..., tn such that ti-1 R t; and a &#x3E; f(ti) for i  n.

Then, in particular, t n;’ itT) and hence

Thus, there is a tn+1 such that tn Rtn+1 and The
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sequence ( tn)n=1,2,... contradicts the definition of a semitree. ·

3.11. THEOREM. All hereditarily Lindeldf connected loca-
les are p-connected.

PROOF. Again, we will prove Ch(A). Let B be arbitrary, let

and let a, b, c +0, (a, b) E m , (c,d) E m. We will prove that ( a, b)
and ( c, b) are joined by a chain by finding a finite M c m such
that

and

is chained.

Let us take the semitree ( T, R) from 3.3 again. Now, we will
construct by induction a system of elements

such that, for Mi = {x(i,j) l j E ji),

and

Put Jo = 0 and x(0,0) = 1O1. Let the x(i,j) be determined for i

 n-1. If t(Mn-1) C i(T) we put Jn = Jn-1 and x(n, j) = x(n-1, j) .
Otherwise choose in t(Mn-1)Bt(T) one of the x(i, j) with the
least possible i+j. Denote this element simply by x.

If x E T2 we have x = 2V {y l xRy} and we can choose, by
3.6, a y such that

Put Mn = Mn-1 u {y} and order this set into a sequence x(n,0),
x(n,l),....

If AT E Tj, X = 1 V{y l x R)’} and hence x1 = V{y1 lxRy} and,
according to the Lindeldf property there is an at most countable
Q CX R such that x1 = V{yl y E Q) . Put Mn = Mn-1 U Q and order
this set into a sequence x( n, 0) , x(n,1), ....

For -

we easily see that T(M’)Ct(T)Cm. Since the f: M’-A defined by
f(X) = x. satisfies the assumptions of 3.10, we must have
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Hence, by 1. 8.1 there is a (finite) MCt(M’) (cm) such that

forms a chain. Since M is finite, it is contained in some of the

mn and hence

3.12. RBMARICS. Generalizing 1.8 we say that a system f
of sublocales of A is chained if f or any f, g E F, there are

f1, f2 ,..., fn in F (fi A -&#x3E;A1;) such that f = f1, g = fi and for any
i =1,...,n-1 there is a commutative diagram

with a non-trivial Bi 
A system 7 of sublocales of A is said to be collection-

wise dense i f

By a result from [11], if (fi: A-&#x3E;) i E J is a collectionwise dense

chained system and if all the Ai are p-connected then A is.

Now let C be a class of locales. Denote by DC(C) the

class of all the locales A for which there is a collectionwise
dense chained system of connected sublocales (fi: A-&#x3E;Ai) iJ with
Ai E C .

In consequence of the above mentioned fact, if we already
know that each connected locale from C is p-connected, we can
conclude the same for all locales from DC (C). Thus, e.g., if we

denote by C 1 the class of compact locales and by C2 that of

hereditarily Lindelbf ones, we see that each locale from

DC (C1 U C2) is p-connected.
In particular, if a dense sublocale of A is covered by an

expanding system of compact connected sublocales then A is

p-connected.
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