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ON THE GEOMETRY OF COMPUTATIONS, II
by René GUITAR T

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATEGORIQUES

VOL. XXIX-4 (1988)

RÉSUMÉ. Cet article complète [7] par les r6sultats suivants:

1. Les propri6t6s dlorthogonalit6 de morphismes sont incorpo-
rables dans 1’esquisse des structures.
2. Il existe une esquisse dont les mod6les dans TOP sont les

corps topologiques.
3. En termes de "diagrammes localement libres" on peut decrire

des ultraproduits utiles pour des théories non finitaires.

4, On peut esquisse la finitude des mod6les, et d6finir cor-

rectement les esquisses finies.

5. L’arithmet ique 616mentaire (Bezout) et la logique 616mentaire
(Boole) sont des aspects sp6ciaux du "diagramme localement

libre",

Ces r6sultats etablissent le contact entre 1a th6orle abstraite

des esquisses et programmes de L r7] e t 1a théorie élémentaire des

modè1es.

INTRODUCTION.

This paper is a companion to [7].
In 91 we explain how we can sketch the properties of morphisms,

and, especially for the analysis of topological partial algebras, we

introduce the "continuous cutting".
In g2 we develop a (new) theory of ultraproducts (available for

infinitary algebras) in terms of mixed limits and of locally free

diagrams.
In §3 we explain how we can sketch the finiteness of models and

also what are the finite sketches. Iterative categories are introduced

here in order to explain the calculus of "domain’s errors".
In 94, Arithmetic and Boolean Algebra are seen as aspects of the

"locally free diagram" construction.
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1 , PROJECTILE AND INDUCTIVE SPECIFICATION OF

STRUCTURES AND OF MORPHISMS.

1.1. Two sketches for PILE. In sorting problems it is useful to know

how to specify by a sketch the datum of the set PILE(C) of finite

stacks or piles (without repetitions) of elements of C. The set C* of
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arbitrary finite tuples is specified as C* = II neN Cn For PILE(C) we

proceed as follows: let pi n, Cn - C be the ith- projection from C, to C;
then

With the help of this specification we get a sketch S*PILE with

projective cones and only sums as inductive cones, equipped with two

objects X and Y such that for every realization R we have

In this description PILE(C) is analyzed as a subset of C*, and so the

natural transformations between realizations of Sp PILE are described by
applications f: C - D such that fW C*" -4 D* sends PILE(C) in PILE(D);
such an f is just an injection. In fact we can construct another

sketch S.PILE specifying PILE(C) and such that the natural transforma-

tions between realizations of S*PILE are described by arbitrary applica-
tions f: C - D. For that we have to analyse PILE(C) as a quotient of C*

by the identification with the empty word 0 of every word with at

least one repetition; i.e., PILE (C) is the cokernel of

This more natural presentation exhibits the theory in which PILE(C) is

the free algebra generated by C: it is the theory of monoids in which

REMARK. A slightly different way of constructing PILE is as

where PILE+ (C) is the UI-free object generated by C, with UL: T - PAR

defined as follows: PAR is the category of sets and partial maps; T
has for objects the (M, a: MxM- M) with M a set, a a partial map such
that

(for On: M - MxM the "diagonal map" and 0,,,g: A - B the "empty map"); a

morphism in T is an h: M - N a partial map such that
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PROPOSITION 1. Although Sp PILE and S"P1L&#x26; have the same models in SET,
SETs"PILE is only (SETSS** PILE) Mono the subcategory of SET s** PILE whose

morphisms are monomorphisms in SET S** PILE. 

1.2. Specifications of morphisms, categories of monomorphisms.

PROPOSITION 2. Let S be a category, k: A - B a morphism of SET’ and

(SETa), the subcategory of SET’ whose morphisms are the (p: M A N such

tha t

Then there is a mi.xed sketch Sk&#x3E; such that SETs)k= SETsk&#x3E;.

In fact the proof is concentrated in the picture below, where the
dashed arrow, corresponding to the global naturality, is equivalent to

the condition *. 

We have

and this object is specified as the projective limit of the system

where each M (s)A (s), M (s’)A (s) is a product indexed by the set A (s)

(independent of M) of the objects M (s), M(s?, We have also
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where R, (resp. RN) is the image of MB - MA (resp. of NB- NI).

If k is replaced by k = (k,: V -) C i) leI I a set of morphisms of SETs
with the same domain V, we consider (SETs&#x3E;k the subcategory of SET%

whose morphisms are the cp: M - N such that

i.e., 

PROPOSITION 3. If S = (S_P,Y) is a sketch and if k is as hereabove

with, for every i f I, k1 E SETS we define in the same way the

category (SETS)k ; and the same proof shows that there is a sketch

Sk&#x3E; such tha t (SETs)k= SETsk&#x3E; ,

For example if S is such that SETs = RING and if

then RING, is the subcategory of RING whose morphisms are thE cp:

M -4 N such that

So this category RINGk is naturally sketchable.
If Yon: S °p -) SETs is the Yoneda embedding, let for every S E So,

k,: Yon(s)+Yon(s) - Yon(s) be the codiagonal. Then the monomorphisms
of SET;5 are the elements of Qs(SETs)ks, and so they constitute a natur-

ally sketchable category. And this works again for the category of

monomorphisms of SETs with S an arbitrary sketch:

PROPOSITION 4. For very sketch S there is a sketch S",ono such that

REMARK. If k is an epimorphism, then in * the morphisms MB - MA,
NA fl NA are monomorphisms, and it is no longer necessary to specify
the epimorphism MB - RM, NB -- RN : : so Sk&#x3E; is constructed by adding
to S only some projective limits and some sums.
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REMARK. We have not to take (SET3)k for k(SETs) the full subcategory of
(SETs)2 whose objects are the (p E (SETs)k. k(SETs) is sketchable follow-

ing the picture

Especially if k is an epi, the specification of the epi becomes the

specification of an isomorphism, and the sketch is projective:

PROPOSITION 5. If X = SETS for S a sketch, f then is sketchable
but generally is not algebraic in X but Mono (X) is algebraic in X2.

1.3. Partial maps, partial laws, continuous cutting.
REMARK. There are different kinds of partial laws:

- The first situation is sketched in the form

Here I is a total law on a subobject A of B defined by an equation
u = v. In this case we use only of a kernel specification, and the

sketch stays a projective sketch.
- The second situation is sketched in the form

Here I is a total law on a subobject A of B. In this case we use only
of a pullback (in order to specify that i is a monomorphism) and the

sketch stays a projective sketch.
But this second situation is also sketched in the form

where is specified a final element 1 and a sum D+1: so here the sketch

is a mixed one (i.e., with projective and inductive limits).

Although the specifications (1), (2) and (3) are equivalent, if we

realize in SET or in a topos, we have to be careful if we have in mind

to realize elsewhere, e.g., in various categories of topological spaces.
Finally, for the description of partial topological structures as
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models of a sketch in TOP (category of topological spaces) we shall

use of the continuous cutting specification (c. c.). It consists of the

sketch See pictured by

with the specifications: E’ = A+B, g epi and mono, (p,q) cokernel pair
of a = g.u, 0 = ker(p,qJ, (r, s) cokernel pair of v= g.v, v - ker (r, s). A

model in SET of Sec is a set with a subset A and its complement B.

PROPOSITION 6. A model in TOP o f Scc .is a space E with two subspaces
(i.e., subsets equipped with the induced topology) A and B, such that

the set B is the complement of the set A in E.

Shortly we will say that

"is" a continuous cutting, and we write that CCEA = B.

1.4. Bad and good sketches for the fields.
A field is a model of the sketch generated by (among other

things):

where the specifications are:

projective: 1 is final, KX K is a product of K and K,
inductive: K is a sum of 1 and K*.

Let us call this sketch Sfield. So in a model we have

and so

Then the inversion operator ()-I is defined just for the .x E K which

are not 0. This sketch is good only for the study of fields in SET;
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the theorem in §4.2 in the special case could be used.
But we have to notice that a model of this sketch in the

category TOP of topological spaces Is not a topological field (e.g., in

TOP we have not R = 10 I-IJR-", because 0 is glued to Rw, 0 is not

isolated).

Fortunately we can modify this sketch and consider the following
sketch:

where the specifications are as in Stield hereover except that K = 1+K*

is to be replaced by: " cck1 = K*’’ (continuous cutting specification
defined in §1.3). Let us call this sketch S"field’

PROPOSITION 7. A model O f Sgfield in SET is a field, and a model of

Sg field jn TOP is a topological field.

REMARK. Because in Sg field there are other specifications than sums,

with S"1ield we can’t see that we are in the special case in Theorem

§4.2. On the other side Sg field allows us to study TOP59 field as the

category of topological fields. And as in fact the theorem in 94.2 is

extendable to situations where SETs is replaced by TOP8 (cf. Guitart-

Lair [12b]), the existence of S "1 leld is useful for example to study the
link between topological rings and topological fields.

2. ULTRAPRODUCTS AND THE WEAK REPRESENTATIONS
OF GERMS OF LOCAL CONCEPTS,

2.1. Diagrams and machines.
Let X be a locally small category. Then D-X is the locally small

category of small diagrams in X. So an object of D-X is a functor p:
A -4 X where A is a small category, and a morphism in D-X from p to p’
is a (F,f) with F: h..’ -) A a functor and f: p.F - p’ a natural trans-

formation.
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We define

Then if X is complete (resp. cocomplete) we have the functor

The fundamental property of D-X is that it is the strong lax-

cocompletion of X (Guitart-Van den Bril [9]). This fact can also be

related to the facts that CATx°p is a 2-cocompletion of X and the

existence of a "good" 2-functor (cf. Guitart [10] , p. 474):

A machine from a category U to a category X is a functor M:

U - D X, or equivalently, a functor M°p: U°P - D (Xop). Machines can be

composed in series or in parallele, and we get the bicategory MAC of

machines (Guitart {8] ). In fact in [8] D- is denoted by D, and a

machine is a functor, from U to DX. But now, in order to agree with

the terminology on fibrations and cofibrations, I prefer to call these

old machines by the name comachines.
The main idea with diagrams and machines is that

i.e., the machines play in CAT the role played by relations in SET, and
in particular D-X is an analogue of FE.

2.2. Spaces and germs of local concepts.
We think of a functor F: Xop - SET as a concept on X. For example

if Xop is the category Eucl of euclidean spaces, the concept of a

sphere is described by the data for every space E of the set Sph(E) of
the spheres in E, and Sph is a functor from Eucl to SET. Let R-" be the

set of positive real numbers. For x,y E R-’ with x  y, we define
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SphKJ )’ (E) as being, for every euclidean space E, the set of spheres E

in E such that

Clearly Sph = colim (x,y)Sph x,y and we say that Sph is the ultimate

concept associated to the local (system of) ) concept (s) (Sphx, y)x, yER+ , 
or the germ "at the infinite" of (Sph,,. y)x, ,,iR+.

From now on, we consider that a machine "is" a space, because we

think of a machine M: U - D-X as a parametrization (by U) of a local

system (i.e., a family of variable diagrams) in X.

A classical topological space T = (E,O) with E a set and 0 the

ordered set of opens (for T) in E, is actually a space in this gener-
alized form, because T is the machine

In this case the composition with pPep provides the functor

with

In [11] I introduce the category SPA of spaces, a space being a

triple (X,U,R) where X is a category (of "points"), U a category (of

"opens") and R: U - GATr°p a functor "realization" (for U E U and

x E X°p, R(U)(x) E CATo is the value of the sentence "U is around ,e’).

The structure of a space is precisely the dialectic between opens and

points described by R. So this point of view is different from the

point of view of Grothendieck (where the points are forgotten). Fuzzy
spaces and stochastic spaces live naturally as objects of SPA.

The following description of local concepts and germs works in

fact in SPA. But in this paper I choose to work only with the (special
case of spaces associated to) machines.

DEFINITION. Let U X and Y be categories.
1 ’ A machine from U to X is a functor M: U - D-X.
2’ A X-local concept on Y is a functor C: D-X- SET:!op.
3 . For a machine M and a local concept C we define the germ of C

at M by

so gMC: Yop - SET is a concept on Y.
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2.3. Projective cones as a local concept.
The Yoneda embedding

does not preserve inductive limits which exist in X, but it preserves

projective limits. If d A - X is a diagram in X and if pA=-
(P- d(A))AxA is a projective limit of d, then HomX(-,P) is the

projective limit of the HomX(-, d(A)). But in fact, for X’ E X ,

where the right expression is the set of projective cones in X with

top X’ and base d. In this way we get ConesX. DwX A SETx°P as an X-

local concept on X and a diagram d in X has a projective limit in X

iff the functor conesX(-,d): XcP - SET is representable. So, for an

arbitrary X and an arbitrary d: A A X we can substitute Cones,(-, d)
for lim d (because

In fact if for X’ E X we denote by f X’1: 1 - X the diagram constant

on X’, we have

so Conezn is the trace in X of the notion of homomorphism in D-X, and
because of that it can be considered in X as a notion of local homo-

morphism.

2.4. Mixed limits, ultraproducts, weak products.
From Guitart-Lair ([12 a], p. 62 and p. 101), we recall the des-

cription of a mixed limit. For that we suppose that U is a category
and R: U 4 CAT is a functor and we suppose that for all u:

U2 - U, E U"P we have a datum (Ru,ru) (as on the picture)
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which is couniversal in the sense that every similar datum toward a X"

factors uniquely as h.r with h: X’ - X" (so r is a presentation of

X’ E CATo as a 2-colim of R in CAT).

Now we suppose that F: X’ - X is a functor. Then the mixed limit

of (F,r) is (if it exists) ) the object

t =: colimlim (F, r) =: colim"°n (limx. tR" CF. r, CX’ »&#x3E;.

We recover the classical notion of ultrapr-oduct in the case where
U is the category associated to the ordered set (U, with U an

ultrafilter on a set D. Cf. e.g. [3]. If (X,)jED is a family of objects
in X indexed by D, then the ultraproduct of this family is

The notion of a weak product of I. Sain has in fact the following
category-theoretic characterization: Let (X,),,, be a family of objects
in X and F the Fr6chet filter on J (A E F iff A c J and CJA is finite).

For each U E F, we denote by

the kernel pair of the restriction E,X, a ffX,, and by Ku the pullback
of p, and 0 d TIJXJ (with 0 the initial object of X). The canonical map
from Ku to ITJXJ deduced from q,, is denoted by 4,: Ku -1 IIJXj. With K =
colimucFKu and q: IC a IIJXj the map deduced from (qU)UF, we get the weak

product

In this form the weak product appears as a mixed limit.

REMARK. It is also possible to describe WPjXj as an ordinary limit:

where the Ar are all possible objects in a position

for a U. But R is constructed from the data J and all the objects Xj.



309

2.5. Weak representations.

DEFINITION. If G E SETx°F has a reflexion E: G d HomX(-,W) in the

representable functors, we say that W is a weak representation of G.

PROPOSITION 8. colim,X, is a weak representation of colimIHomX (-,X,) = A

and .tn fact A is representable i ff colimx, is an absolute colim1t; so

generally G could h a ve a weak re pres en t a t i on b u t n o representation.

2.6. Ultraproduct as a weak representation of "germ of cone".
J. Rosicky raised the problem of the indirectness (i.e. based on

products and colimits) of the categorical expression of the ultra-

product (cf. Okhuma or [3]). H. Hien, I. Nemeti and I. Sain have intro-

duced, in contrast with the "product- colim"- ultraproduct, another

object called the universal ultraproduct, in which products and

colimits are not explicitly used. They do that "by hands". In fact

(Guitart [8] ) the datum of R,r and F in §2,4 is equivalent to the

datum of a machine Mu: Uop- D-X (determined by Mu (U) = F. ru) and we

can consider the germ of "cones" (cf. 82) at Mu (cf. 91):

With a more compact notation we have, in SETXop,

PROPOSITION 9. For each U E V, let N,,; J (U) - X be an arbitrary functor
such that

Then gu is weakly representable iff W = colimu. jNu (j) exists in X, and

8-,, is representable iff this colimit .is absolute, i.e.,

is an isomorphism.

PROPOSITION 9. If the "product-coljm"-u1 traproduct exists, it is a

representation of gu, and of course a weak representation of gUt A

weak representation of gu is nothing else than a "universal ultra-

product ".
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2.7. Local formula, local model, covered colimit, Los Lemma.

Let Z be a category. A local formula in Z is a datum

in short (fA, i)AEA, IEEA, or f, where V is a functor from a category A to

Z, and, for every A E fu" fA, ; is a discrete projective cone in Z from

V (A) to a family (CA, i)iEA.
A diagram M: B - Z is called a local model of f, and this is

written M 1= f, if f

This is equivalent to

This condition is sketchable and so, modulo the adjunction of new

symbols, it is no stronger than the case of formula in the sense of

Andreka-Nemeti [1], which is the case A = 1, B = 1. But it is stronger
if we decide to stay inside Z. In any case it is a more flexible

language.

EXAMPLE 1. Let U be an ultrafilter on a set D and (Xi)iED a family of
objects in X. In SETX°P = Z we denote by Xu the functor cone -, (Xi)iEU
(represented by IIiEUX, if this product exists in X) and we consider the

diagram

Let (fj: V - C j)jEE be a formula in X, with E f inite. Then X.,. 1= f if

for every i E D, X, 1= f (with

we have u,,,,U., = U, and there exists j such that U, E U. Then pro jUIj.h
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factorizes through f,).

EXAMPLE 2. In the category of metric spaces and continuous maps, we
consider the formula

where V consists of all the strictly non decreasing maps from N to N.

Then M 1= f (case B = 1) iff M is compact.

Let u = (ui : Xi d S)iEL be a cocone in X and YD c X . Then S is

said to be L-covered by u iff for every v E % and every h:

V a SEX. there is a h in colimiHomX[X,Xi] with EV (h) = h (i.e., E, is

an epi), where

is deduced from u).

In particular if U - Xs) this means that E is an epimorphism.
If S = colimiX;, we shall say that colim Xi is a Vo-covered colim

iff S is L-covered by u.

EXAMPLE 3. In the category of Sets every colim is {1}-covered and

every filtered colim is finitely covered.

Looking to the diagram

it is easy to verify the following avatar of Los Lemma:

PROPOSITION 11. Let (fJ: V a C j) J.E be a formula In X and let (Xu)uCu. be
a diagram in X; then we h a ve:

1. If (Xu)UEu. = f and if colimuXu is {v}- covered, then

colimuXu F f

1. If (Xu)uEu = f, if colimuXu is {Cj j I j E E)-covered, if EV, is a

mono, did if (Xu)uEu js filtered, then (Xu)uEu F= f.
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In the case of ultraproducts (cf. Examples 1 and 3 hereover) in

the category of models of a finitary first order theory, this Lemma

reduces to the usual Los Lemma. So a convenient definition of ultra-

product should be (as in S6 ) as a weahr representation of a germ of

cone; but after that, in order to obtain interesting properties like

the Los Lemma it is necessary to add new condiitions on e; for some V,

EV has to be epi, or mono (see Lemma). But in general the condition "c

iso" Ci.e., the representability) is too strong and under this condition
the ultraproduct does not exist.

Now, with the idea of locally free diagrams (cf. §4), it seems

natural to propose to define the ultraproduct as the locally free

diagram generated by gu in the subcategory of SETXop which consists of

the representables. So the ultraproduct of (XJ)JcQ with respect to the

ultrafilter U on D is defined as a small diagram (L.).cl1. of objects
L. E X equipped with a natural family

inducing an isomorphism for every Z E &#x26;1

3. FINITE SKETCHES, SKETCH OF FINITENESS,

3.1. Creation of FSET by free propagation of errors.
Let N be the set of natural numbers, and for n E N let n be the

set n = {0,1,..., n-1]}. We denote by FSE’T the category with objects the

n n E N, and where a morphism from n to m is just a map from n t o m.

In this category, 1 is a terminal object, and the objects n and m have
a sum n+m such that n+m - n+m .

An iterative category is a category C such that:

1. In C there is a terminal object 1.

2. For every object X of C, there is a sum of X and 1 in C,
denoted by X+l, with the two canonical morphisms

PROPOSITION 12. Every category X generates freely an iterative cat-

egory It(X) which is the free calculus of the propagation of errors of
domains in the description of programs working in the "abstract type"
X. In particular It (0)= FSET.
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Let us explain that. The initiality of FSET is clear, a morphism
of iterative categories being a functor which preserves 1 and (-)+1;
and on the other side it (0), obtained by successive construction of 1

and of the sums 1 + 1, 1 + 1 + 1, ... and the morphisms between them coming
from the universal property of sums, furnishes a construction of FSET

by "free propagation of errors".
In an abstract type X let us consider a fragment like

and the "program"

This program has two "domain errors": 1 (x) is computable only if x E X

is in fact in B, and m (y) is computable only if y E Y is in fact in C.

So a correct version of (P) would be:

(corP) 1, x = k (a),
2. If x E B then y = I (,Y), otherwise y = errory,
3. If y E C then z = m (y), otherwise if y E YBC then

z = errorz, otherwise if y = errory then z = errorz., .

With I/B = I and 1/X BB = ey, and with m and in defined in the same way,
(corP) becomes:

So (P) which is not correct in X becomes correct in It(X), by creating
at each step (at Y, at Z) an "error term" (e.,.,EBz) and by propagating
the preceding error terms. The false path (k,l,m) becomes a correct

path (k,I,Õ1). If (P) contains n instructions with possible errors of

domain, the correction of (P) in (CORP) would necessitate the objects
X+1,...X+n for X E Xo.
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3.2. Finiteness.

It is easy to sketch the structure consisting of a set equipped
with a bijection to N. Now let us sketch the structure "finite set".

Let NSET be the full subcategory of SET which contains FSET (cf. S1)

and N. We add to NSET,,P:
- two objects called FINITE and ENUMERABLE,
- two inductive cones 5 and (p with base FSETop and top ENUMERABLE

and FINITE,
- a morphism k FINITE d ENUMERABLE such that we have for every

n E N, da = k. cpa,
- a (formal) inverse k-1 for k.

Let Sfi, the category generated by these data. We get a sketch

Sfín by specifying in S-
- the projective cones deduced from the inductive cones of NSET

which define

and

- the inductive cones cp and 5.

Then if R: Sf in - SET is a realization of Sfin we have

And R(k) invertible means that a subset of R (1 ) is enumerable iff it

is finite, in other words R (1) is finite. So a realization R of Sfin
consists exactly of a finite set E = R (1).

As a consequence for a sketch S and an object A E S, by glueing
S and S,;" (at the point A), we can add the specification "R(A) is

finite" (for a realization R of S).

PROPOSITION 13. For every sketch S there Is a ske t ch f in (S) such that

3.3. Specification of initial algebras.
If F: S1 S2 is a morphism of projective sketches, then

has a left adjoint Ext,: if R: S1 - SET, let R: S2 - SET be defined by
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with FlX2 the category whose objects are the (X1, f: F CX, ) A X2 ). Then

ExtF (R) - a (R ) with a left adjoint to the inclusion SET 12 - SET12. a is

the "associated sheaf functor" it is actually a special case of the

locally free diagram functor (cf. [7] and here, §4) and it is computed
by inductive limits again. So ExtF (R) is specifiable in terms of induc-

tive limits.

Especially if F: Sl a S2 is given, it is possible to sketch the

property

for M: S2 - SET.

A statement like * is an "initial algebra specification". It says
that M is the SETF- free object generated by the restriction M ·F of M

to S, . Example: N is the free monoid generated by I.

Conversely every inductive limit could be specified in terms of

Ext,: for a given S and a B: I - S colim CR ·B ) for R: S - SET is

ExtF (R) (B) for F: S - SB &#x3E; ("mapping cone"), with SB&#x3E;&#x3E; the category
obtained by formally adding to S an object B and an inductive cone

(b,: Bi -4 (B))iEL

PROPOSITION 14. The specification of lim and colim is equivalent to the

specjfjca tjon of lim and free models of an essentially algebraic theory
c’or "initial algebra specifications’); I.e., both allow to describe the

same categories as categories of models.

REMARK. Now, in the optics of locally free diagram it seems natural to

propose to get specifications in terms of lim and locally free models
of mixed sketches, or "equations and local specifications".

3.4. SPECIFICATION OF OBJECTS UP TO ISO, OF MORPHISMS ON THE NOSE.
For some given R,F,H,q, ExtF (R) is determined up to isomorphism

only by its universal property. And then for a given choice of ExtF (R)
= E with X: R -4 E’F there is a unique O: E - H such that (OF)B = cp.

It is important to observe these two very different parts in the use

of universal specifications: to construct a new object E up to iso, to

construct exactly new morphisms 4).
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For example in order to confirm this point, let us recall that if

f: A - B is given, then the object G, "graph of f is only defined up to

isomorphism by the specification:

But in the other direction, G,., though given only up to iso, defines

exactly f. This remark will be meaningful for th description of recur--

sion : a priori il will be different to speak of recursivity of a map or
to speak of recursivity of the graph of a map.

3.5. Correct def init ion of a f init e sketch.

The first idea would be: the sketch S = (S P,Y) is finite iff S is

a finite category, P and Y finite families of finite cones and cocones

Ci.e., cones and cocones with finite bases). A better idea is to work as

follows:

DEFINITIONS. 1. A finite projective sketch is a sketch

where G is a multiplicative graph and P a finite family of finite

projective cones (i.e., cones with finite bases) in the category
Path (G, k) free generated by (G,k).

We denote by FPSKE the category of morphisms of sketches

between finite projective sketches.

2. A sketch is a datum S = (S*(Ej,Rj,Fjuj)jEJ) where S, E PSKEo is

a projective cone, and (Ej,Rj;Fj,uj);jEJ is a family indexed by a set J of

data of the form
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where

3, A model of S is a morphism M in PSKE

such that for every j we have 111 ’Ei Q! ExtF; (M ·Rj) (of course via M uj).

4. A finite sketch is a sketch S as above such that J is a f ini te

set, for every E J, A, and B, are finite projective sketches and S, is

a finite projective sketch.

In fact in programming we are only concerned with finite models

(i.e., models in FSET) of finite sketches.

Let us consider the following example of a finite sketch:

A and B are finite projective sketches (A = 1 = {*}) equipped with the
specification that * is a final object and the same for S*; in S* * is

a final object. B is Path(G) with

the multiplicative graph with just the arrow s, and 4 = u. A model of

this sketch in a category X is of course a Natural Number Object (à la

Péano-Lawvere) in X, like N in the case X = SET:

We denote this sketch by S,. It is important not to confuse S. with
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the "bad" sketch for N which consists to specify that N = IIneN1. This
is a sketch of N, but a tautological on (i.e., without syntactitcal
information on N) because it is not a finite sketch.

PROPOSITION 15. Herbrand’s schemes are the same thing as programs

in the sense of [7] p. 132, with a, p and 0 finite sketches in the

above sense.

4, FREE MODELS AND BOOLEAN ASPECTS OF SKETCHES,

4.1. The underlying category of a model.
If X is sketched by S, i.e., if

there is no natural forgetting functor from X to SET, but there is a

natural forgetting functor Hs: X A CAT. If R: S --) SET is an object of

X, its underlying category Hs(R) is the cofibred (discrete) category
associated to R (= Grothendieck’s construction), also called the cat-

egory of hypermorphisms of R (Ehresmann’s definition): an object of

Hs(R) is a (S,s), with S E So and s E R(S); a morphism in Hs(R) from

(S.s) to (S’,s’) is an

such that

So the morphisms of Hg (R) are denoted by (f,s); and the composition
law in Hs (R) is

Very often, if it is not ambiguous, R(f)(s) is denoted by fs.

Now if m: R e R’ is a morphism in X, i.e., a natural transform-

ation from R to R’, HS Cm): Hs(R) -i Hs (R’) is a functor defined by

REMARK. Each sketch S of X could define a different forgetting functor
HS: X - CAT; so the study of various sketches of X is related to the

study of forgetting functors from X to CAT. More generally if F:
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S A S’ is a morphism of sketches, we have, with

and

the two diagrams:

Let Diag(CAT) be defined exactly as D-(X) ) in §2.1, except that the

sources of diagrams are not necessary small, and let SKE be the categ-
ory of sketches.

PROPOSITION 16. H: SKE A Diag(CAT)is a functor.

REMARK. We consider H as a fundamental semantical functor, and in

particular for every sketch S and realization R of S, we think of HS (R) 
es the support of the structure R. An immediate application of this

point of view (useful thanks to the Zig-zag Theorem of Isbell which

tests if a functor is an epimorphism) is:

PROPOSITION 17. mi R -) R’ is an epimorphism in X = SETs If Hs (m):

Hs (R) - Hs (R’) is an epimorphism in CAT.

Now let R: S - SET be an arbitrary functor. It is a model of S

(with S = (S, P,Y)) iff:

1. For every projective cone p = (pi : V e Bi)iEI I in P we have:

2. For every inductive cone y = (yi: Bi - V)iEL in Y we have
a) V v E R(V) 3 i[v] E L 3 (B2, b [v] ) E Hs(R) yi[v] (b [v]=v). 
b) If (Bi, bi) and (Bi ., b1 .) satisfy to a, then in Hs(R) there is a zig-zag
Z(CBi,bi),(Bi,,bi.)) from (Bi,bi) to (Bi,,bi,).
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Hence R is a model of S iff in Hs(R) the operator B f-4 v(B) and the

multivalued operators

and

are well def ined,

4.2. The locally free diagram.
If R: S - SET is not a model of S, we can try to generate freely

a model of S with R: this can be performed by a transfinite formal

saturation of Hs (R) with respect to the operators v( ( ), i [], b[ ],
Z( , , ); a precise construction is given in Guitart-Lair [12 a]. At each

step of the transfinite saturation we have to make a choice (for the

part played by some new formal elements), and the ultimate model

produced is of course subordinate to this transfinite (but bounded)

sequence of choices. Just in order to make this paper self contained

(for the readers who have not in hand the paper Guitart [7]), let us

reformulate the theorem of existence of locally free diagrams as:

PROPOSITION 18. Let S be a small sketch, and R: S -1 SET a functor.

There its a small category A and a diagram D: A -1 SETs and a projective
cone d = (dA: R -1 DA &#x3E;AER in SET-’- with base D and top R, such that

naturally for every G E SET9

Specially jf the only distinguished inductive cones in S are discrete

(Le., are sums), then A will be a discrete category (i. e., a set) and

D is called the locally free diagram on R.

We may think of A as a spectrum of R generated by the succes-

sive possible forks in the choices in the attempt to construct the

free model. The description of A is the "arithmetic of R with respect
to S ": A =: Ariths(R).

4.3. Free f ields on Z.

Starting with the ring Z of integers we could try to freely gen-
erate a field. For that we choose a map c. ZB{0} - {0,1) and by induc-
tive limits in the category of unitary commutative rings we construct
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Z, and u,: Z - Z, such that:

1. For every n E Z, uc (b) = 0 if c (n) = 0.

2. For every n c Z, UC (n) is invertible if c(n) = 1.

3. uc is a unitary homomorphism of rings, and {uc (n), n E Z}
generates Z,.

Then there ar-e three cases:

Case 1. If for every n = 0, c(n) = 1, then Zc = Q.
Case 2. If for some n = 0 and some k # 0 we have c(n) = 0 and c (kn)

= 1, then Zc = 1 (the "field" with one element, where 0 E 1&#x3E;.

Case 3. If for some n # 0, c (n) # 0 and if for every n # 0 and k = 0

then we define

In this case, if and

If m  m, we have an m‘ in Z, such that mm’ = 1, i.e., if fi’ is not

formal, mm’ = 1 mod m or mm’ , + krio = 1 and (Bezout) m and no are

relative primes. If this is the case for every m  m, then no itself

is prime. In fact if l10 is not prime, one of the m’ is formal: no = m.p,
therefore m.p - 0 in Z, and m’.m = 1 gives

PROPOSITION 19.

and with Do = Q, D, = 1, Dp = Z/pZ we have

4.4. Free sums and free epis.
Let V be the sketch consisting of the category
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where we specify that c is isomorphic to the sum a + b, via the

cocone

The inclusion functor SETv - SETv has no adjoint. Let

be an object in SETY.

Case 1: u(A)Qu(B) = 0. Then there is no morphism from (u,v) toward a

sum diagram, and therefore the locally free diagram on this object

(u,v) is the empty diagram.

Case 2: u(A)n u(B) = 0. Then write

for f, A et B as in the diagram

Then f factorizes through

Hence we get

PROPOSITION 20. The locally free diagram on (u, v) above is indexed by
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the set of bipartitions of C".

PROPOSITION 21. If I i s a se t and if we try to freely construct an I-

sum diagram g-enerated by an I-cocone (u,: A1 - C), we get a locally
free diagram indexed by the set of I-partitions of C* = CBIIu1. (A1), in

the case where for each i, J, u (Ai)Q u (Aj) = 0, and else we get the

em p t y d iagram.

PROPOSITION 22. If jn SET- starting with the object f: B - C we try
to freely generate an object g: D - E solhich is an epimorphism as a

map in SET, we get the locally free diagram:

In fact the above diagrams is indexed by FSET.

REMARK. These two constructions FS (free sums) and FE (free epis)
could be iterated in a sweeping process, i.e., following the sequence:

eventually with anologous FC (free cokernels), FP (free products), FK

(free kernels), and this will give a new proof for the existence of

locally free diagram at least for sketches with a finite number of

universal specifications.

4.5. Boolean glueings of sketches.
In §4.3 above we have seen that the description of locally free

diagrams is a kind of arithmetic of systems of "choices", and so in

94.4 that it is a kind of boolean algebra (cf. u(A) + C*A, B + CB f(B),
etc). In Guitart-Lair [12c] we construct a functorial boolean calculus

at the level of sketches, i.e., we exhibit functors

where L-SKE is the category of L-sketches, an L-sketch being a sketch

S = (S,P,Y) equipped with a morphism R: L - S* with S* = (S P* Y*) where
p*C P, Y* c Y, such that
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is an equivalence (GrReal (L) being the groupoid of isomorphisms bet-

ween models of L in SET).

,GrReal(S) is the groupoid complementary of GrReal(S) in

GrReal(S). Therefore the operators - and A on L-sketches are such

that: 

4.6. Sheaves and models: Stone duality in terms of sketches.
Let S be a site, i.e., a cat egory S in which for every object A

there is given a set CovA of families (f,: A, -4 A)IEI called covering
families of A.

A sheaf on S is a functor F: SIP -4 SET such that for every (f,:

A1 - A)jcI E CovA we have

A model of S is a functor M: S - SET such that for every family ( fi :

A1 - A)i,, I E CovA the family (Mf,: MA, - MA)iEI I is epimorphic, and M

commutes with finite projective limits (cf. Makkai-Reyes [13].
Let K be the category whose objects are the

and whose morphisms are the canonical maps ix,Aj- i, etc. And

Then M is a model of the site S iff M commutes with finite lim and

On the other hand F is a sheaf iff lim (F.Aop)= F(A).

So: a model of a site S is a sheaf on S which commutes with

finite colim and with values in 5ETop.

But 2(-) : SETop - SET (cf. §1.1) has for adjoint (2(-)&#x3E;op and the

associated monad on SET, denoted just by IT = 2-(-): SET - SET, has for

algebras the complete atomic boolean algebras. This category of alge-
bras is isomorphic to SET°P. So SETIIP is isomorphic to the subcategory
of SET whose objects are the 2x and whose morphisms are the 2 f- then:

a model of S is a presheaf m: Sop - SET such that 21-1 .m =: Mop is a

sheaf commuting with finite colim. As 2(-) preserves and reflects
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colim, a model of S is also an m such that II.m is a sheaf dnd m com-

mutes with finite colim. So:

PROPOSITION 23. The Stone duality in SET "induces" for each site an

injection

We see that the models of a site are some sheaves of complete
boolean algebras. Their theory is contained in that of sheaves of

Heyting algebras and more generally of sheaves of topos. Let us

finally remark that this works for the models of a sketch, because in

Guitart-Lair (12a) it is shown that models of a sketch are models of

a "big site" in which the covering families are not necessarily (f,:
Ai -) A)iEI, i.e., families

which are representable, but families (V - C;),ti with V E SETs and for

every iEI, Ci E SET-L. A model of such a big site is an R E SET2 such

that

(notion of axiomatization and model of an axiomatization due to

Andreka-Nemeti&#x3E;.
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