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HOMOTOPY PRESERVING FUNCTORS

by L. STRAMACCIA

CAHIERS DE TOPOLOGIE

ET GÉOHÉTRIE DIFFTRENTIELLE
CATTGORIQUES

VOL. XXIX-4 (1988)

RÉSUMÉ. On et udie dans cet article le comportement des

épiréflecteurs et des pro-épiréflecteurs topologiques par rapport
A 1’homotopie. Des applications A la Th6orie de la Forme sont

donn6es.

INTRODUCTION.
Let r : TOP - TYCH be the usual reflector from the category of

topological spaces to its full subcategory of Tychonoff spaces. Morita
has shown in ( [9], Theorem 5.1) &#x3E; that every topological space X has the
same shape as its reflection r(X) in TYCH. It is worth noting that the

same is not true with shape replaced by homotopy type (e.g., consider

any countable set with cofinite topology; it cannot have the homotopy
type of any Hausdorff space). Morita’s Theorem depends essentially on

the fact that r preserves products with the unit invterval I [12].
In this paper we extend Morita’s result to every epireflector r;

TOP- R such that

(i) I E R and (ii) r(XxI) = r(X)xI, for every topological space X.

We show that, in case R is quotient reflective in TOP, then condition

(ii) is automatically satisfied whenever (i) holds. We show furthermore

that, in such a situation, the given epireflector induces a functor at

the homotopical level, which is st iil a reflector.

In the second part of the paper we extend the results obtained

to the case of a pro-reflector [6] p: TOP - Pro-R giving conditions in

order that the category Pro-Ho(R) be reflective in Pro-Ho(TOP), thus

providing connections between non-homotopical shape theories and

homotopical ones. Moreover we prove the analogous result concerning
the categories n(Pro-R) and 03C0 (Pro-TOP) which are obtained by passing
to homotopy classes of morphisms in Pro-TOP with respect to the cyl-
inder functor (-)xI defined by extension on Pro-TOP.

Finally, we point out that all results above are still valid when

TOP is replaced by any epireflective subcategory S of TOP itself.

-----------

*1 This work was partially supported by funds (40%) of M,P,I,, Italy,
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1. In what follows R will denote a full epireflective subcategory of
TOP with reflector r : TOP a R. Then, for every space X, there is an

onto reflection map r,,: X -1 r(X) such that, for every continuous map
f: X a R, R E R, there is a unique continuous map

with

Let us assume that R contains the unit interval I. This is equi-
valent to say that TYCH c R.

We refer to [7] for all that concerns the theory of reflections.

Let X be any topological space and consider the objects rCXxI)

and r(X)xI of R. By the universal property of the reflection there

exists a unique map

which renders the following diagram commutative

We shall say that r preserves products with I, and write

to mean that the map tx is a homeomorphism, for every space X.

1.1. DEFINITION. We say that r preserves (resp. reflects) homotopies
with respect to R if, given maps fg.- X a R, R E R. f = g implies
r (f) = r (g) (resp. r (f) = r (g) implies f = 8,.A

1.2. THEOREM. The following statements are equivalent:
Ci) r(XxI) = r(X)xI, for every space X.

(11) r preserves and reflects h.omotopies with respect to R.

PROOF. The implication (I) n (ii) is obvious. Assume that (ii) holds.
Given a homotopy H: Xxl a R, R E R, there is a commutative diagram
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In fact, since r preserves and reflects homotopies with respect to R,
if f,g; X - R, R E R, are homotopic maps by means of H, then there is

a homotopy K: r(X)xI - R between r(f) and r(g). The composition
K. (rx x id) is then a homotopy H’ between f and g. We can suppose, with-

out any restriction, to have taken H = H’ from the beginning. Now,
since rx is onto, it follows that rxxid, and hence tx , are onto maps.

Finally, taking R = r(XxI), it is easily seen that tx has a left in-

verse, so that it is a homeomorphism.

As an immediate consequence of the theorem one obtains:

1.3. COROLLARY. If r: TOP e R satisfies either of the conditions (i),
(li) of the theorem, then Ho (R) is reflective .tn Ho (TOP).

By the prefix "Ho" we denote the passage to the homotopy cat-

egories.

1.4. PROPOSITION. Le t R be a quotient reflective subcategory of TOP.

Then, If R satisfies condition (i) of the theorem, it follows that R

also satisfies (il) and, moreover, Ho(R) is reflective in Ho(TOP).

PROOF. For every space X the reflection map rx: X - r(X) is a quotient
map. By the Whitehead Theorem ([5], p. 200) it follows that rx x id;
XxI -i r(X)xI is also a quotient map. Let us define a function dx:
r(X)xI - r(XxI) by

for every , and

Since
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it follows that dx is continuous. From

one realizes that dx. tx = id and, since tx is already an onto map, it

has to be a homeomorphism.

1.5. EXAMPLES.

(a) The following categories are all quotient reflective in TOP,
hence they satisfy conditions (i) and (ii) of Theorem 1.2 and their

homotopy categories are all reflective in Ho (TOP) :

TOP,, i = 0,1,2,3.
URY, the category of Urysohn spaces.
FHAUS, the category of functionally Hausdorff spaces [2].
S(a), the category of S (03B1)-spaces, for every ordinal a [10].
HAUS(a), a an infinite cardinal, the category of spaces in which every

subspace of cardinality a is Hausdorff [2].
HAUS(COMP), the category of spaces whose compact subsets are

Hausdorff [2].
HAUS(Noc), N« the Alexandroff compactification of N, the category of

spaces in which every convergent sequence has a unique cluster point
[2].

(b) As mentioned in the Introduction, it was proved in [12] that

the category TYCH of Tychonoff spaces satisfies conditions (i) and

(ii) of Theorem 1.2. Ho( ( TYCH) is reflective in Ho (TOP).

(c) Let UNLIT and CUNIF be the categories of uniform, resp.

complete uniform spaces. Let r : UNIF « COUNIF be the functor- "comple-
tion with respect to the finest uniformity", r preserves and reflects

products with I [12]. By techniques similar to those of Theorem 1.2,
one shows that Ho(COUNIF) is reflective in Ho(UNIF).
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1.6. THEOREM. Let r be one of the epireflectors listed in the exam-

ples. Then, for every X E TOP (X E UNIF, X and r(X) have the same

sh a pe.

This theorem extends Theorem 5.1 of [9], which is concerned with

the Tychonoff reflector. Morita’s proof works as well since each of the

categories considered in the examples contains that of ANR-spaces.

1.7. REMARK. After proving Proposition 1.4 we became acquainted with

the paper of Schwarz [13] , where he proved, in Theorem 3.5, a similar

result. In fact, the unit interval I is a so called exponentiable object
for the category TOP. However our proof is much more immediate and

topological in nature, and it allows easily the generalization we have
in mind (see the Remark at the end of the paper).

2. The Shape Theory of topological spaces is based on a property of
the homotopy category HoCW&#x3E; of spaces having the homotopy type of

CW-complexes. Namely, Ho (CW&#x3E; is pro-reflective (also called "dense" in

[8, 15]) in Ho(TOP). The concept of pro-reflection is a weaker form of

that of reflection and it allows one to define non-homotopical (also

abstract) shape theories [6].

Let now R be a pro-epireflective subcategory of TOP, then there

exists a pro-epireflector p: TOP - Pro-R, where Pro-R is the pro-

category over R. As for notations, let us recall that p assigns to

every topological space X an inverse system p(X) = (Xa,pab,A) in R, and

the pro-reflection map for X, denoted p: X a p(X), is a natural cone

with respect to the bonding morphisms Pab of the system. Moreover, Pk
is an epimorphism in Pro-TOP, and this means that, for every a E A,
there is an index b ; a such that A6 : X - X, is onto [14].

For all matters concerning Shape Theory and pro-categories we

refer to the book of S. Mardesic and J. Segal [8], see also [6].

Let us recall also that a morphism f X - Y in Pro-TOP is an

equivalence class of continuous maps from some X," a E A, to Y. f,:
Xa - Y and fb: X, 4 Y both represent f if and only if there is a
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such that

The usual homotopy functor TOP - Ho (TOP) extends in a natural

wav to a functor from Pro-TOP to Pro-Ho(TOP) (iust replace everv

continuous map involved by its homotopy class). It follows that two

morphisms f,g, X - Y in TOP give rise to the same morphism from Xh =
(X., [Pab],A) to Y, that is [f]= [g], if and only if there is an index

a E A such that f,,: Xa - Y are homotopic, say, by means of a homo-

topy Hl : X-I -i Y. This last then defines a homotopy H: XxI 4 Y.

We note that, if X = (X.,p.b,A), then XxI is the inverse system

where

The following theorem extends the main result of the first

section to the case of a pro-epireflector.

2.1. THEOREM. Let p; TOP - Pro-R be a pro-epireflector, I E R. The

following statements are equivalent:
(’I) p(XxI) = pCX)xI, for every space X.

(ii) Given fIg: X - R, R E R, then

if and only if

PROOF. The proof is quite similar to that of Theorem 1.2. Only part
(ii) = (i) needs some explanation. Call tx: p(XXI) -1 p(X)xI the unique
morphism in Pro-R such that

Since R is pro-reflective, for every a E A, there is a b &#x3E; a such that

pxbx id: XxI - X,xI is onto. Hence the corresponding txb : p(XxI) - XbxI
is epi in Pro-R. Finally, by ([14], Prop. 3.2), tx is epi.

2.2. COROLLARY. Let p: TOP - Pro-R be a pro-epireflector, I E R. If

either of the conditions (1), (ii) of the theorem is satisfied, then

Ho (R) is pro-epireflective jn Ho (TOP).

2.3. EXAMPLES.
(a) Let R be one of the following subcategories of TOP :

(pseudo-)metrizable spaces, first countable spaces,
second countable spaces, separable spaces.
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Every such R is pro-bireflective [6] in TOP. If (X,t) is any space, its

pro-bireflection, p(X) is given by the inverse system ((X,ta),Pab,A),
where, for every a E A, X. = X as sets, while i, ;  T, and (X,,Ir.) E R;
each pb is the identity on the underlying sets.

Note that I E R, hence p(I) is isomorphic to I in Pro-R. From this

it follows at once that p(XxI) = p(X)xI. Then R satisfies conditions

(i) and (ii) of Theorem 2.1 and Ho(R) is pro-reflective in Ho(TOP).

(b) Let R be as above and let

ToR = { X E TOP I the To-identification of X belongs to R}.

Then ToR is pro-epireflective in TOP ; the pro-epireflection is

obtained by composing To: TOP -i TOPo with the previous pro-bireflec-
tion. By Theorem 2.1 Ho (ToR) is pro-reflective in Ho(TOP).

Theorem 2.1 and Corollary 2.2 have indeed an autonomous interest,
also they reproduce, for a number of subcategories of TOP, the situa-

tion one has with the categories Ho (CW) and Ho (TOP), as recalled at

the beginning of the section.
It is known, however, that Pro-Ho (TOP&#x3E; cannot be considered as

the homotopy category of Pro-TOP. Edwards-Hast ings [4] and Porter

[11] have described a closed model structure on Pro-TOP and have

obtained the right homotopy category Ho(Pro-TOP), by formally invert-

ing levelwise homotopy equivalences.
Our methods here do not allow us to attach Ho (Pro-TOP) directly,

but do give information on the related category TT (Pro-TOP) obtained by
passing to homotopy classes of morphisms in Pro-TOP with respect to

the extended cylinder functor

f,g E Pro-TOP(X,Y) are homotopic if there is a "homotopy" H: XXI e Y

connecting f and g

2.4. THEOREM. Let R be a pro-epireflective subcateg-ory of TOP with

pro-reflector p: TOP - Pro-R such that p(XxI) = (X)xI, for every space
X. Then TT (Pro-R) Is re flecti ve in 1’( (Pr’o-TOP).

PROOF. One has only to recall that (cf. [15], if R is pro-reflective in

TOP by means of p: TOP - Pro-R, then the functor
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is left adjoint to the embedding Pro-R c Pro-TOP ; in other words,
Pro-R is reflective in Pro-TOP. Since p*(XxI) - p*(X)x I, for every pro-

space X, then it is clear that one can adapt as well the arguments of
Theorem 2.1 to obtain the assertion.

Let us recall briefly the construction of Ho(Pro-TOP) as illus-

trated in [1], A morphism f : A - X is a trivial cofibration whenever

it has the left lifting property with respect to every (Hurewicz)

fibration p; E -4 B of topological spaces.
A pro-space Z E Pro-TOP is fibrant if, given any trivial cofibra-

tion i : A -4 X and any morphism f: A - Z, there is an extension

such that

If 7i(Pro-TOPB denotes the full subcategory of Ti(Pro-TOP) whose

objects are all fibrant pro-spaces, then there is a reflector

with a trivial cofibration 1.: X A k as reflection morphism.
The category Ho (Pro-TOP) has the same objects as Pro-TOP while

morphisms can be defined by means of the bijection

induced by composition with [ix].

From Theorem 2.4 one easily obtains the following

2.5. THEOREM. Assume the hypothesis of Theorem 2.4. Moreover, let p*
take fibrant pro-spaces to fibrant pro-spaces. Then Ho (Pro-R) is

reflective in Ho (Pro-TOP).

A strong version of Shape Theory is based on the introduction of

the category Ho (Pro-TOP). In [1] Cathey and Segal have shown that

every topological space admits a "reflection" in Ho(Pro-ANR), that is,
there exists a pro-reflector, at the homotopical level

Using the homotopy inverse limit functor
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as defined in [4] and [11], one can show that the composite

is a reflector. This shows that the converse of Theorem 2.4 is not

true in general.

We conclude with the following

2.6. REMARK. In this section and in the first one, we have assumed

that R was a pro-epireflective, resp. epi-reflective, subcategory of

TOP. We point out that all results are also true if we replace TOP by
any subcategory S which is epireflective in TOP. The point is that

epimorphisms in TOP coincide with the onto maps; hence the reflection

map rx: X A r(X) of every space X is onto, so that rxxid: XxI e r(X)xI

is also onto. Similarly in the case of a pro-epireflection morphism.
See the proofs of Theorems 1.2 and 2.1.

In [2] the epimorphisms of any subcategory S of TOP were char-
acterized. Namely, f E S(X,Y) is epi in S if and only if the map f has

dense range in Y with respect to S-closure. The S-closure of a subset

N c Y is the least regular subobject [7] of Y containing N. Recalling
that the product of two regular monomorphisms is again regular, it

follows at once that if f: X -i Y is epi in S, then fxid: XxZ - YxZ is

also epi for every Z in S.
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