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CATEGORICAL DIFFERENTIAL CALCULUS FOR
INFINITE DIMENSIONAL SPACES

by L. D. NEL

CAHIERS DE TOPOLOGIE
ET GÉOHETRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXIX-4 (1988)

RÉSUMÉ: Nous introduisons une th6orie cat6gorique du calcul différentiel
pour des espaces de dimension infinie. Nous partons de quatre pro-
pri6t6s postul6es pour le corps des scalaires (r6el ou complexe) com-
sid6r6 en tant qu’objet d’une cat6gorie cart6sienne fermeé avec struc-
tures initiales. Les concept centraux du calcul differentiel sont alors
d6finis et les r6sultats classiques d6montr6s de maniere purement alg6brique.
Nous d6montrons aussi les lois exponentielles pour les espaces d’applications
lisses. M.R. Classification: 18D20, 58C20.

Introduction

The well known category (s (sequential convergence spaces, defined by three
Frechet-Urysohn axioms) is a typical example of a category which upholds the
theory of this paper. But several categories are suitable and so it is appropriate to
adopt as general frame of reference a variable cartesian closed topological category
C (whose morphisms are ’continuous’ maps) in which the scalar field fli is postu-
lated to have four crucial properties (given in section 1). The stated program calls
for all concepts to be expressed categorically i.e. effectively in terms of continuous
maps. For ’continuous differentiability’ of a C-map f : U --&#x3E; F, where E and F
are ’injectable’ linear C-spaces and U C E a ’primary domain’, we introduce the
categorical concept ’difference factorizer’ for f : a C-map Q : U x U --&#x3E; [E, F] such
that Q(x, y) . (y - x) = f (y) - f (x). This definition is motivated by the expression
Q(x, y) - (y - x) = f10 Df (x + 0(y - x)) - (y - z)d8 = f (y) - f (x), well know
in analysis. Difference factorizers enable us to study continuous differentiability
without explicit reference to convergence of difference quotients: the ’continuity’
of C-maps already encode all the relevant information. Derivatives become the

values of difference factorizers at points on the diagonal. The standard results
about differentiation such as the chain rule and properties of partial derivatives
follow in elegant manner.

Integration of C-curves c : R -+ E requires on the one hand spaces E which
are separated and complete enough and on the other hand our approach requires
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a category with virtually all the attributes of the familiar category LC of all linear
C-spaces. These two independent demands are simultaneously satisfied by the
category oLC of ’optimal linear C-spaces’, a concept we developed in [16] and [18].
We construct a natural transformation av (’average value’) in oLC, characterized by
two algebraic identities for its components, which embodies the standard features
of Riemann integration of curves (theorems 3cl, 3c2). The construction is largely
based on the reflexiveness of the space of scalar valued curves - a new technique
for vector valued integration.

In section 4 we structure the spaces of Cr-maps to become oLC-spaces and we
derive the exponential law C°°(U x V, G) -- C°°(U, C°°(Y, G)) for smooth maps via
seven useful auxiliary results. An algebraic characterization of difference factoriz-
ers (new to the theory of calculus) provides the link between differentiation and
integration, leading to a Fundamental Theorem of calculus expressed as a natural
transformation.

Up to this point our study of C°°-maps makes no use of higher order derivatives.
We introduce them in section 5 for their own sake. We derive the Taylor formula
and the symmetry of higher order derivatives via the further new concept of higher
order difference factorizer.

Specializations of C to various choices (CS, Cc, Cd, Ch and Cgt) are discussed in
section 6, also how the present paper relates to earlier theories of calculus in special
cartesian closed setting: [2], [19] and [6]. Cs yields a realization of calculus not
studied before. Cc is the filter convergence analogue of Cs defined by the Choquet
axioms [5], perhaps the most important special case because its theory includes
all complete locally convex spaces (cf [2]). These two are the principal motivating
examples. Cd yields a calculus closely related to the recent theory of A. Fr6licher
and A. Kriegl [6]. In general, the smooth maps between locally convex spaces and
the functional analysis intrinsic to these special categories differ conspicuously
from one to another. In view of these differences (tabulated for Cc and Cd in 6c)
it is clear that one single category can never be blessed with all the virtues one
would like to see. This being the case, the study of calculus in a variable category
C, as done here, becomes the more relevant.

Readers are assumed to be familiar with basic categorical concepts: natural

transformations, adjunctions and (co-)limits [8]. Verification of the scalar field

axioms for Cs requires very elementary real analysis and just a touch of freshman-
level one dimensional calculus. Up to these modest prerequisites this paper can
also serve, with considerable logical economy, as a first introduction to infinite
dimensional calculus.

1. The category C and its vector spaces

Calculus requires continuous maps and linear continuous maps. In tliis section
we set up the categories of these basic maps.

la. The category C. In all that follows C will denote a category satisfying the



259

following axioms.

lal. AXIOM. C is a category of well structured sets and functions.

We refer to [15] for a more detailed description, if needed, of the first two axioms.
We will follow the usual practice of denoting a C-space (object) and its underlying
set by the same symbol, so also a C-map (morphism) and its underlying function.
The above axiom includes the fact that C has constant maps.

la2. AXIOM. C has initial structures.

This implies, as well known, that C has final structures too.

la3. AXIOM. C is cartesian closed.

Thus C upholds the exponential law C(W x X, Y) - C(W, C(X, Y)) for its canonical
spaces C(X, Y) of C-maps X --&#x3E; Y.

The remaining four axioms involve the scalar field 1K (real or complex) which
is supposed structured as C-space once and for all.

la4. AXIOM. The arithmetical maps, addition, subtraction and multiplication,
are C-maps IK x R --&#x3E; IK.

A will always denote a variable convex subset of K witlz at least two points
structured as C-subspace of IK.

la5. AXIOM. If f, g E C(A, E), ce E A and f (E) = g(E) for all a, then f = g.

In view of axiom la4 we can form in the usual way the category LC of linear C-
spaces (vector spaces in C) and linear maps. This category has cotensor products:
canonical spaces C(X, F) of C-maps X -4 F, where X e C and F E LC. For our
purposes, affine map At -4 A2 will mean a map ( - uE -f- -y with u # 0.

la6. AXIOM. A unique linear C-map avAK : C(A, K) -+ C(A x A, K) exists such
that tlae following two identitie.s hold: 

Moreover, avAK is natural in A with respect to affine maps.

The LC-subspace [E, F] C C(E, F) consists of all linear C-maps E -+ F. In

particular, [E, K] is the canonical dual space and E is called reflexive if the map
@E : E --&#x3E; [[E, K], K], @(x)(u) = u(x), is an isomorphism.

la7. AXIOM. The space C(A, K) is reflexive.

The purpose of la6 is to provide, via the formula f3 f (O)dO = (B-a)av(f)(a, B),
a categorical expression for the integral of scalar valued curves. Axiom la7 will en-
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able us to extend this to vector valued curves so as to retain the essential properties
of the integral.

The above axioms should not be considered enough to derive the wholc theory
of calculus in all its elaborations: they are just what is needed for the results dealt
with in this paper: results common to real and complex scalars.

The following well known facts are stated for convenient reference and notation.

la8. THEOREM. The following are natural isomorphisms in C:

The following are natural transformations in C

Naturality is always to be understood in all subscripted variables (that is why I’ is
not a subscript on @: this map is not natural in Y.) The map +(f) will occasionally
also be written it where convenient and similarly we put g+ = t(g), f§ = 3(f).
1b. The category iLC. A space E E LC may fail to have non-zero linear C-maps
E --&#x3E; K. So we form the subcategory iLC of injectable linear C-spaces determined
by all E for which the map @E : E --&#x3E; [[E, IK], K] is an injection. It is equivalent to
demand that E should admit a monomorphism of the form E --&#x3E; C(.J"¥’ K). Then
iLC has all the categorical completeness and closedness properties known for LC
(see [16]). In particular, if F E iLC, then so are all C(..-Y, F) and all [E, F].

Subcategories must be understood to be full and isomorphism closed
in this paper, unless otherwise stated.

2. Difference factorizers, (r -n1aps and derivatives

In this section we begin with differential calculus, deriving results which do not
yet require completeness of the spaces.

2a. Primary domains. Two kinds of domains for maps appear in theories
of differential calculus. Primary domains are those on which differentiability of
functions are defined from first principles. Secondary domains are constructed out
of primary domains e.g. by gluing them together, as in the definition of manifolds,
or by taking subspaces. Smooth maps on secondary domains are then constructed
out of smooth maps on primary domains. In this paper we study maps only on
primary domains, defined as follows.

Let E be an iLC-space. By a primary domain in E, will be meant a convex C-
subspace U such that for every x E U the set U - x spans E. Thus every h C E can
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be expressed as a linear combination of the form lz = Eni=1 ki(yi - x) with Ai E K
and yi E Tl. It follows at once that primary domains in li are precisely the convex
subspaces with at least two distinct points i.e. precisely tlie sets 1B appearing in
axioms la4 through la7. In particular, the closed line segment [0,1] is a primary
domain in IK.

2al. PROPOSITION. Let E and F be iLC-spaces.
(1) If U and V are primary domains in E and F respectively, then U x V is a

priraary domain in E x F.
(2) If U is a primary domain in E, tlten there exists a primary domain I in li
such that for every pair x. y E U the line segment {(1- A)x + ky|k E I} lies within

U and contains both x and y.

(3) E is a primary domain in itself.

Proof . Simple algebraic verification.D

The defining property of primary domain is needed for creation of our C1-maps,
property (1) for the definition of C’’-maps and partial derivatives, property (2) for
certain later constructions (see 4b2) while property (3) is used all over. Had we

chosen to define primary domains in E to be nothing but E itself, then proposition
2a1 would still be valid - one would then use IK itself in the role of I in (2) - and
a parallel but weaker theory would follow.

Useful primary domains in E are furnished by those convex subspaces U which
are c-open i.e. open in the final topology on (the underlying set of) E induced
by the family of all C-curves c : IK --&#x3E; E, where K carries its usual topology for
this purpose. In the motivating special cases, C = Cc or Cs with IK = R, c-open
subspaces of Fr6chet spaces are just the usual open sets, but in more general spaces
the c-open sets need not be open in the underlying locally convex topology.

In an earlier draft we attempted to use ’convex c-open subspace’ as definition
of primary domain, but awkward exceptional cases then had to be put in the
statements of the axioms as well as certain propositions.

When R is the scalar field, useful primary domains in R" are also furnished by
n-dimensional rectangles which can be open or closed or compact. But note that
no subspace of Rk (k  n) can be a primary domain in Rn.

Henceforth we assume that E, F and G denote iLC-spaces, while

U c E, V c F, W c G and A C K denote primary domains in
the respective spaces.

In section 3 the spaces E, F and G will becorne further restricted to be complete
in a suitable sense. The value of a linear map u : E --&#x3E; F will often be written u - h

rather than u(h).

2b. Difference factorizers. Suppose f : U --&#x3E; F and (D : U x U --&#x3E; [E, F] are
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C-maps. We call 4l a difference factorizer for f if the following identity holds:

BBC define Ll1e concept VI C+-map recyursively db follows. C0-map liieulib C-map,
we call f a Cr-map if there exists a C’-’-map which is a difference factorizer for
f (r = 1,2,...); we call f a Coo-map if it is a Cr-map for all r. It follows by
induction that

2bl. REMARK. The concept of difference factorizer is motivated by the ex-
pression f (y) - f (x) = fo D f (x + 8(y - x))d0 - (y - x), long known in analysis. If

f : R --&#x3E; R is continuously differentiable in the classical sense then the integral can
easily be seen to be the nothing but the difference quotient (f(y) - f (x))/(y - x)
when x 34 y and nothing but D f (x) when y = x. However, the analytic expres-
sion, unlike difference quotients, still makes sense for infinite dimensional domains.
Thus difference factorizers are effective substitutes for difference quotients. The
following algebraic characterization will be important later.

2b2. PROPOSITION.

For a Cr-map Q : U x U --&#x3E; [E, F] the following statements are equivalent:
(a) Q is a difference factorizer for some Cr+1-map f : U --&#x3E; F.

(B) Q upholds the following triangle identity:

Proof . Let tri(Q)(x, y, z) denote the expression on the left. If (a) holds, then
tri(Q), (x, z) = f (y) - f (x) + f (z) - f (y) + f (x) - f (z) = 0. If (B) holds, choose
a E U and put f (x) = Q(a, x)-(x-a). By applying the identities tri(Q)(x, y, a) = 0
and tri(Q))(a, y, a) = 0 one verifies readily that Q is a difference factorizer for f .

2c. Derivatives. In general a C-map may have infinitely many difference fac-
torizers. This is intuitively clear from the fact that Q)(x, y) is specified only on the
one dimensional vector subspace spanned by y - x, allowing different extensions
to a complementary subspace. Construction of an explicit counterexample in the
case of 2-dimensional domains is no more than an elementary exercise in linear
algebra. Nevertheless, two important uniqueness properties are present, as follows.

2cl. PROPOSITION.

(a) A Cl-map with a one dimensional domain lads precisely one difference factor-
zzer.

(b) If Q and Y are difference factorizers of the same rnap f : U --&#x3E; F, then

Q(x, x) = w(x,x) for all x E U.

Proof . (a) Suppose (1), T : A x A --&#x3E; [K, F] are difference factorizers for f . Then
for E # n and all A E A we have Q(E,n) - k = W(ç, n) - A = [f(17) - f (E)] - À/(17 - E).
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For each fixed E and A the functions n --&#x3E; Q(E, n) - k and n --&#x3E; Y (E, n) - k are C-maps
which agree on the set E # n. Hence they agree everywhere (this is where axiom
la5 enters the picture). It follows that 1) = Y. (b) Take any x C U. It is enough
to show that l(Q(x, x) - h) = l(Y(x, x) - h) holds for all h E E and all linear C-maps
I : F --&#x3E; IK, since the latter form a monomorphic family. So consider such h and l.
Since U is a primary domain, we have h = Eni=1 ki(yi - x) as a linear combination
with yi C U. Let I denote the closed line segment from 0 to 1 in K. Define for

each i the C-maps ci : I -&#x3E; U, ct(8) = x -f- 0(yi - x) and cp i* : I x I -&#x3E; [K, K], where

Since n - F)(ci(1) - c;(0)) = c;(n) - ci(E), we have

This shows Oi to be a difference factorizer for lo f o ci. It follows that cpi (0, 0).l =
l ( P ( x, x ). (Yi - x)) . Now define Yi to be the map obtained when (D is replaced by
IF in the definition of Oi. It then follows as before that Oi is likewise a difference
factorizer for I o fOCi. By uniqueness of difference factorizers for 1-dimensional
domains (part a) we conclude that Oi = Oi. By summing cpi(0,0).Li = Oi(O, 0).Ai
over z we obtain the equation l(cp (x, x). h) = l(w(x,x). h) as required. 0

In view of the preceding proposition, the following definition makes sense. For
every C’-map f : U -&#x3E; F we define the C-map

by putting (Df)(x)= F (x, x), where F is an arbitrary difference factorizer for f.

2c2. THEOREM.

(a) Every constant map
(b) Every linear C-map
(c) Every n-linear C-map

(d) If A is such that the function f : A -&#x3E; K, f (F) = 1/F is a C-map, then f is a
C- -map and D f (F) . n = -n / F2.
(e) (Chain Rule) If f : U -&#x3E; V and g : V -&#x3E; G are Cr-maps (r 2 1) then g o f is a
Cr -map and D(g o f )(x) = Dg(f(x)) o D f(x).
(f) If fi : U -&#x3E; Fi (i E I) are Cr-maps (r 2 1) then tlae ma.p g = (fi) : U - jItEI Fil
induced by the product, is a C’’-map and Dg(x) = (Dfi(x))iEl.
(g) The set (r(u, F) of all C’’-maps U -&#x3E; F forms a vector space (an algebra when
F is an algebra) under the pointwise defined vector operations and D : (r(u, F) -&#x3E;
Cr-1(U,[E,F]) is a linear function.
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Proof . (a) and (b) are trivial. In (c) we obtain a difference factorizer for f by
putting

In (d) a difference factorizer is provided by P(F, n) . L = -/B/Ç17. To obtain (e) we
take difference factorizers P f for f and Pg for g build a difference factorizer for
g o f by putting

In each of the above cases the formula for the derivative follows at once by applying
the definition to the provided difference factorizer. The proofs of the remaining
statements are left as a pleasant exercise for the reader. The last three are obtained
by induction, using the already established results. In the case of (e), one uses
also the fact that composition of linear maps is a bilinear operation.

2d. Partial derivatives. Given the C-maps f : U x V -&#x3E; G and P1 : (U x
U) x V -&#x3E; [E, G], we call p1 a difference factorizer in the first variable for f if the
identity

holds. A difference factorizer in tjae second variable for f is defined similarly as a
C-map ’1)2 : U x (V x V ) -&#x3E; [F, G]. Supposing such Pi to exist for f , we define

Putting fy = f (- ,y) we note that a1 f (x,y).h = D fy(x).h. Similarly a2/(x,y).k
D fx(y) . k. The following proposition will be generalized to the case of Cr-maps
in section 4, when we will have structures available for the spaces of Cr-maps.
The details of the present proof will serve also as basis for that more general
proof. It is convenient in this context to introduce the map t2 def t o xch, so that
f t2(x)(w) = f (w, x) and for the sake of symmetry we put tl def t.
2dl. PROPOSITION. For a C-map f : U x V -&#x3E; G the following statements are
equival e nt:

(a) f is a C1-map.
(B) f t1 : U -&#x3E; C(V, G) and f t2 : V -&#x3E; C(U, G) are C1-maps.
Moreover, if f is a C1-map, then

Proof . Suppose (a) and take a difference factorizer (D : (U x V) x (U x V) -
[U x V,G] for f . To get a difference factorizer for f t1 we begin by constructing
the map W1: (U x U) x V -&#x3E; [E, G] as the following composition (in which
prol : U x V -&#x3E; U denotes the canonical projection and pro2 similarly).
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Now put 1&#x3E;1 = § 0 tl(W1), a composition of the form

The map i&#x3E;2 is constructed in the obvious similar way. Thus we obtain maps such
that

Hence W1 and W2 are difference factorizers for ftt and ft2 respectively and 81 ,f(z , y).
h = D f (x, y) . (h, 0), å2f(x,y). k = D f (x, y). (0, k). Suppose (B) and let WI, W2
be given difference factorizers of ftt and f t2 as above. Compose the map -1) as
follows.
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This construction yields a map I&#x3E; such that

Direct verification shows that I&#x3E; is a difference factorizer for f.

2e. Differentials. For C’-maps f : U -&#x3E; F, with derivative D f : U -&#x3E; [E, Fl,
we define the differential d f : U x E :-&#x3E; F to be the map + (Df). Thus d f is

linear in the second variable. The exponential law of C allows us to recover D f
from this differential. We thus have two equivalent concepts and every statement
about one of them translates automatically into a statement about the other. We
could adapt the definition of difference factorizer in the obvious way to lead to
a differential rather than a derivative. This could be useful if one wishes, for
pedagogical reasons, to develop differential calculus temporarily in a restricted
context which does not uphold an exponential law of mapping spaces.

3. The category oLC and integration of curves.

The map av in axiom la6 provides an integral for scalar valued C-curves. The
main business of this section is to create corresponding integral-providing maps
for vector valued curves in the form of a natural transformation. First we must

create a subcategory of iLC whose spaces are sufficiently complete to allow this.
There is no hope that iLC-spaces will do: it is well known that a continuous curve

f : [a,,8] -&#x3E; E into a normed space may fail to be Riemann integrable when E is
not complete.

3a. Optimal LC-spaces. Recall that a monomorphism m in any category is
called extremal if it allows a factorization rn = k o e through an epimorphism e only
if e is an isomorphism. We define the subcategory oLC of optimal LC-spaces, to be
determined by all E such that @E : E -&#x3E; [[E, IK], IK] is an extremal monomorphism
in i LC. It is equivalent to demand that there exists some extremal monomorphism
rrz : E -&#x3E; C(X,IK). We know from [16] and [18] that oLC is a reflective subcategory
with epimorphic adjunctions and C(X, F) and [E, F] lie in oLC whenever F does.
See [16] for fourteen good categorical properties of oLC.

Let us emphasize that in the definition of oLC it is imperative that extremal
monomorphisms in iLC be considered rather than in LC. In LC the extremal

monomorphisms coincide with embeddings and their use in the definition would
result in the category eLC of errabeddable LC-spaces. The categories in the chain

have very similar properties as categories, but the quality of their spaces differs
significantly.
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To illustrate further the nature of oLC, we mention that in the special case
C = Ce, 1K = R, all extremal monomorphisms in iLCc are closed embeddings.
Since all spaces C(X,R) are complete, all olCe-spaces are complete. But not

all complete ¡LCe-spaces are oLC,-spaces. In fact, the subcategory of all regular
complete ¡LCe-spaces is not closed under formation of spaces [E,F], as a recent
(still unplublished) example of H.-P. Butzmann shows. Thus olCe automatically
selects only the good complete spaces. It is just a fluke that completeness, being
a ’topological’ condition, defines an algebraically well behaved subcategory in the
case of normed spaces.

3b. The spaces X Q K and X O IK. The category iLC upholds the external
exponential laws

where X E C, E, F E iLC (see [16]). The explicit description of X 0 E in LC
given in [14], applies also in iLC because the space X QE constructed in LC lies in
iLC. For the moment we need only recall three facts about this interesting space.
(i) The underlying vector space of X Q E consists of all functions X -&#x3E; E (not
C-maps) vanishing on complements of finite subsets. (ii) X O li is the free iLC-
space on X; in other words, the functor (-) 0 IK is left adjoint to the underlying
space functor i LC -&#x3E; C. (iii) C(X, IK) is isomorphic to the canonical dual space of
X O IK. In fact, by just putting E = F = IK in the above isomorphism we conclude
C(X,IK) = [X 0 1(, IK].

Let us build the commutative diagram

as follows. The map faX (’free adjunction’) is the unit for adjunction of the left
adjoint (-) O IK; it maps each point to its characteristic function. By the universal
property, @X induces a linear map lin@x (not displayed in the diagram) such that
lin@ o fa = @. Now define XO IK to be the intermediate space which arises in the
(epi, extremal mono)-factorization of lin @ X; we will call the factors ocx and RZX.
As such, X(5E is the oLC reflection (’completion’) of ..-Y 8 IK, thus the free oLC-
space on X (see [16]). In this connection we interpret X O IK as a space of abstract

Radon measures, X Q IK as a space of point measures, oc as the oLC-comlletion
map which interprets point measures as Radon measures and we look upon rz as
an abstract Riesz representation map. In the special case where oLC = olCe and
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¿Y is a locally compact space, this is precisely what these spaces and maps turn
out to be. Notice that all maps in the diagram are C-maps and that all but fa and
@ are linear C-maps.

3bl. PROPOSITION. For a C-space x fhe statements are equivalent
(a) lin @X is an epimorpht’RM in iLC.
(b) rzx is an isomorphis7n in oLC.
(c) C(X, IK) is a reflexive space.
(d) If u, v : [C(X, IK), K] -&#x3E; IK are linear C-maps such that u o Ox = v o @X, then
u=v.

Proof . The implications (a) =&#x3E; (b) =&#x3E; (c) follow readily from the facts presented
in the preceding discussion. To show that (c) =&#x3E; (d), let us suppose @ C (X,K)
C(X, IK) - [[C(X, IK), IK],IK] is an isomorphisln. If u and v are maps with u o

@X= v o @x, then we can find f, g E C(X, IK) such that @ C(X,K)(f) = u and
@C(X,K)(g) = v, hence for all x E X we have (u o @x)(x) = @C(X,K)(f)(@(x)) =
@x(x)(f) = f (x) and similarly (vo@x)(x) = g(x); we conclude f = g and therefore
u = v. Suppose this time that (d) holds and consider u, v : [C(X, IK), IK] - G
such that u o @x = v o @x . Then every w : G -&#x3E; li gives w o u o @x = w o v o @X.
By (E), w o u = w o v. Since the maps w form a monomorphic family, we conclude
u = v and @X is an epimorphism.

3b2. REMARK. It is worth pointing out that proposition 3b1 holds in greater
generality than the present context. Its proof made no use of axioms 1a5,6,7. In
this connection, see 3.5 in [13] where the implication (d) =&#x3E; (c) was proved in a
much more general context. The proof of the converse implication, given above,
also applies in that context.

Henceforth E, F and G will denote oLC-spaces.

3c. The natural transformation av. We have now prepared the way for the
promised construction of integral-providing maps for vector valued curves out of
the corresponding one for scalar valued curves.

3c1. TIIEOREM.

There exists a unique natural transformation

natural in A with respect to affine maps and natural in E with respect to oLC-maps,
such that the following average value identities are upheld:
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Proof . We begin by assembling the building blocks needed for the construction
of av E: (1) the linear map AVAK : C(A, IK) -&#x3E; C(A x A,IK) provided by axiom la6,
(2) the linear map lin@EA : AOIK -4 [C(A, E), E] induced by @EA : A -&#x3E; [C(A, E), E]
via the universal property of AOK (see 3b) and (3) the LC-isomorphism rz :

A8I( -&#x3E; [C(A,IK),IK] provided by 3bl. Apply § : [((A, ]IK), C(A x A, IK)] -&#x3E;

C(A x A, (C(A,IK), lK]) (cf. 3bO) to form §(av) and compose the map tavE as
follows.

Then Put

Naturality of av in E means that for every oLC-map w : E -&#x3E; F the following
diagram should commute.

In other words, we should have w o aVE(f) = avF(w o f ) for all f E C(A, E). To
prove this, we begin by noting that the following diagram commutes:

This follows from the universal property of A8JI( via the following equation [C(A, E), 1U]0
OE = [C(A, w), F] i.e. w o 0(6) = @(F) o C(A, w), established by direct verification.
It now follows at once that

Evaluation of the left side gives us w(tavE(a,B))(f) = w(av(f)(a, (3)) wliile eval-
uation at the same points on the right side gives us (tav(a,B) o C(A, w))(f ) =
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tavF(a,B)(w o f ) = avF(w o f)(a, ,8). The naturality in E is thus established. To
verify that avE upholds the average value identities, put F = IK in the naturality
diagram above. Note that the linear functionals w : E -&#x3E; H( form a monomorphic
family and that the functors C(A, -) and C(A X A, -) preserve monomorphic fami-
iies. By using these tacts it can readily be seen that since avAK upholds the average
value identities, avE must do so as well. The stated uniqueness and the naturality
in A follows from the corresponding facts in the scalar valued case (axiom la6).
via the mentioned monomorphic families.

3c2. LEMMA. The following diagram commutes

Proof . We establish by straight forward verification that §X,AxA,F o C(X, avnr) o
§nxF is a natural map which satisfies the identities of 3el for E = C(X, .F). By
uniqueness of such a map, the composition just given must equal aVAC(X,F)- We
now show how the natural transformation av provides in categorical manner for
integration of vector valued curves.

3c3. TIIEOREM. Define fBa f (0)d(0) = (B - 0:). av(f)(a, B) for f E C(A, E). Then
the followinQ hold:

for linear C-maps u.

’ we have

Proof . Property (a) just restates the naturality of avAE in the variable E. The
map in (b) is (B - a). eval(-, (a,,8)) o av. (In classical theory, with E a Banach
space, one usually arrives at the continuity of this map via the inequality fBa f I 
1,8 - al suP arB |f (t)|). Property (c) just restates the first average value identity.
Property (d) follows from lemma 3c2: it is essentially the equation derived in its

proof, where we take E = C(X, F) and g = f t .
We return to integration of curves after the exponential laws for smooth maps

have been established. It will put us in a position to derive quickly a natural
Fundamental Theorem of calculus.
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3d. Generalizations uLC of oLC. One could replace the class of extremal
monomorphisms in the definition of oLC by any class u of monomorphisms such
that the following three conditions are satisfied: (1) u is preserved by the functors
C(X, -); (2) there is a matching class of epimorphisms, u-dense maps (say) such
that every LC-map v has an essentially unique factorization v = m o e with rn E u
and e a u-dense map; (3) the map lin@A : A 0 IK -+ [C(A, IK), IK] is always u-
dense. By properties (1) and (2), u is then an ’upgrading class’ (see [16]). The

subcategory uLC determined by all E for which @E : E -&#x3E; [[E, IK], IK] is a u -map
can be substituted for oLC in the present theory. The closed embeddings in iLC,
(in the sense of filter convergence) form a typical example of an upgrading class f,
leading to the category fLCe (the "functionally complete" spaces of [16]).

4. Spaces of smooth maps

In this section we provide a C-structure for the vector spaces Cr (U, F) intro-
duced in section 2. We will show that these spaces are always oLC-spaces. We
will establish a natural version of the familiar Fundamental Theorem of calculus
for curves into oLC-spaces and the exponential law for the spaces of C°°-maps.

The notations of section 3 remain in force; in particular, E, F and G are always
oLC-spaces. We remind that oLC could be replaced throughout by a more general
category uLC as explained in 3d.

4a. The LC-spaces cr(u, F). We structure cr(u, F) (r E N) recursively as
LC-spaces as follows: C°(U, F) def C(U, F) and cr(u, F) is defined to carry the

initial C-structure induced by the linear functions D : Cr (U,F) -&#x3E; cr-l (U, [E, F])
and inc : Cr(U,F) -&#x3E; Cr-1 (U,F) (r &#x3E; 1). The space C°°(U, F) is defined to carry
the initial C-structure induced by the family of all linear inclusions

These C-structures are evidently compatible with the vector operations and yield
LC-spaces. More generally, we define cr(u, V) to be the obvious C-subspace of
Cr ( U, F). But it can readily be seen that Cr(U, V) need not be a primary domain
when V is not a vector space. For this reason the exponential law to be established
will be restricted to mapping spaces having codomain in oLC.

4al. PROPOSITION. For all r &#x3E; s E IN the triangle
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commute and constitute a projective limit diagram in LC.

Difl’erentiation is a natural transformation in the following restricted way.

4a2. PROPOSITION. Let C’ denote tlae category of oLC-spaces witla Cr-maps be-
tween tlaem. Then

is a natural trans,formatzon from 

4b. The exponential law for smooth maps. A problem to overcome is the
failure of t to lift (by restriction) as a C-map Cr(U x V,G) -&#x3E; (r(u, (r(v, G)).
This failure is not surprising because a C’-map f will clearly not in general yield
a1a2f as C-map. We will show however that t does lift and that t at least lifts in a
weakened form to the C’’ situation. A peculiar technical maneuver is used for this:
neither these two liftings nor any one of five other auxiliary results about Cr-maps
could be proved in isolation. But together they allow proof by induction.

The derivation of the exponential law will include a study of the 3standard
difference factorizer function

defined by the assignment dfac(g)(z, y) . h = fo1 Dg(x + 0(y - x)) - hd6.
In what follows, q, r, s E N and p E IN U {oo}. CP will denote the category

formed by oLC-spaces and CP-maps between them. In the theorem to follow,
naturality must be understood to be with respect to C’’-maps as far as the variables
U and V are concerned and with respect to linear C-maps as far as the variable G
is concerned. The latter naturality will be extended to C°°-maps in the proof of
theorem 4b3.

4bl. THEOREM. The statements (ar) through (g’’) hold for each r E IN and all
U, V and G.
(a’’) The functor C(U, -) : OLC -&#x3E; oLC lifts to a functor cr(u, -) : oLC -&#x3E; oLC and

the latter preserves C-initial families of linear C-maps; hence it preserves cartesian
products in oLC.

(br) There exists a natural oLC-isomorphism 3ÉvG : [E, Cr(V, G)]-&#x3E; cr(v, [E, G])
which lifts §EVG : [E, C(V, G)] -&#x3E; C(V, [E, G]).

(c’’) A map f E C(U x V, G) is a C’’-mdp if dnd only if for all s = 0,1, ... , r we
have f t1 E CS(U, Cr-s(V, G)) and f f2 E C,(V, Cr-s (U, G)).
(d’’) For every s = 0,1, ... , r there is a natural transformation t1r,s UVG Cr(U X
V,G) -&#x3E; (S(U, cr-s(v, G)) which lifts tl and a similar stcztement holds for t 2r,s.

(er) There exists a natural map tr : (r(u, Cr(V, G)) -&#x3E; Cr(U x V, G) which lifts the
corresponding map t in C.
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(fr) The function comp r UVG: Cr(U, V) x Cr(V,G) -+ C(!7,G),
compr(f, g) = g 0 f, is a C-map.

(gr) Cr(U, F) is a oLC-space and when r &#x3E; 0, the function
dfacrF : Cr(U,F) -&#x3E; Cr-1(U X U, [E, F]) is a natural transformation in oLC such
that dfacr(g) is a difference factorizer for g.

Proof . In all cases except dfac the naturality follows at once from that of the
transformations in C being lifted. We use induction. For r = 0 there is nothing
to prove since all of the above facts are known for the category C; indeed, these
properties motivated the concept of functional analytic category (see [16]). So fix
r E N and suppose (ar) through (gr) hold for all spaces.

Proof (ar+1 ). It is clear from theorem 2c2 that for every LC-map w : F -&#x3E; G, the
linear function C(U, w), f -&#x3E; w o f , carries Cr+1 (U, F) into Cr+1 (U,G). Thus the
lifted function Cr+1 (U,w) . Cr+1(U,F) -&#x3E; Cr+1 (U, G) exists as a linear function.
Let us show this function is a C-map. The argument is rather simple, but we
present it in detail in order to identify typical steps to be encountered repeatedly.
We have to show that the compositions

are C-maps. We do this by setting up commutative diagrams which factorize these
functions as compositions of known C-maps, known from the inductive hypothesis.
The first diagram (called inc-check diagram):

obviously commutes. The second diagram (called D-check diagram):
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commutes because D(w o f)(x) = w o D f (x) when w is linear. Thus Cr+1(U, -)
is a functor. It is shown by similar arguments that this functor preserves initial
C-structures induced by families of LC-maps. In the construction of the D-check

diagram one makes use of the known fact that functors of the form (E, -] preserve
such initial structures.

Proof (br+l). Take w E [F, Cr+1(U, G)]. First we must verify that §(w) E
Cr+1U, F, G]). Since Dow C [F, Cr(U, E, G])], we have §r(DOw) E Cr(U, F, E, G]]).
Using the isomorphism §FEG : [F, [E, G]] -&#x3E; [E, [F, G]], we form (T(U,3FUG) and
after evaluating this map at the point §r(D o w ) in its domain, we arrive at

v 
def Cr(U, §FUG)(§’(D o w)) E Cr(U, [E, [F, G]]).

Put I&#x3E;(x, y) ’ h = fo v(x + 6(y - x)). hdB. Then I&#x3E;(x, y) - (y - x) . k = w(k)(y) -
w(k)(z) = (§(w)(y) - §(w)(x)).k by direct calculation. We conclude that I&#x3E; is a

Cr difference factorizer for §(w) (indeed that D (§(w))=v). Thus §rF 1 EG is well
defined as a function and it is clearly linear. It is a C-map by construction of inc-
check and D-check diagrams via the result assumed for r, as in proof (ar+1 ). The
first diagram is straight forward. Construction of the D-check diagram proceeds
via the isomorphism Cr(U, SVUG)’ In the opposite direction the first problem is
again to show that § lifts to §r+1 as a function. Take f E Cr+1 (U, [F, G]) and let
I&#x3E; be a Cr difference factorizer for f . It is readily seen that for every k c F the
map I&#x3E;k = [E, eval(-, k)] o -1) is then a Cr difference factorizer for §(f). k. Thus
§r+l exists as a function and it is clearly linear. It is a C-ma.p, by construction of
inc-check and D-check diagrams much as before.

Proof (cr+1). Suppose (ar+1). Then we have (D : (U x V) x (U x V) -
[E x F, GJ, a C’’ difference factorizer. As in the proof of 2dl we construct the maps
Wi C Cr (( U X U) x V, [E, G]) and W2 E Cr (( V X V) X U, [F, G]). By applying (dr),
we obtain the map I&#x3E;1 is = t 1r,s(Y1) E Cs(U x U, (r-s(v, [E, G])) to serve as the
required difference factorizer for f fl. Similarly for f t2. Conversely, suppose (Br+1).
Then f t1 E Cr+1(U, C(V, G)) and we have a C’’-map I&#x3E;1 : U x U -&#x3E; [E, C(V, G)] and
similarly a map I&#x3E;2 to use for construction of a Cr-map b as in the proof of 2dl.

Proof (dr+1). That t1r+1,s and t2r+l,s exist as functions can readily be con-
cluded from (Cr+1), just proved. To show that t 1r+1,s+1 is a C-map, the construction
of an inc-check diagram is quite straight forward via (dr); the construction of a
D-check diagram proceeds via (dr), (br-s) and the map [(id, 0), G] : [E x F, G] -
[E, G]. Then +1r+1,0 is dealt with separately and it is much simpler. Similarly for
+ 2 .

Proof (er+1 ). Existence of tr+l as a function follows from (cr+1 ) already proved.
Construction of the D-check diagram from ++r+1 proceeds via (er), (b’’ ) with [F, G]
in the role of G, and repeated application of (ar) to embeddings of the form
inc : [F, G] -&#x3E; Cr(V, G). Construction of the inc-check diagram is straight forward.

Proof (fr+1): We express D o com puvw as the following composition of C-maps:
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The inc-check diagram is straight forward to construct.

Proof (gr+1 ): To show Cr+1 (U, F) is in oLC, we will construct a section Sa :
Cr+1(U, F) -i G in LC with G C oLC. This is enough because every section is a
regular monomorphism, hence in u. As a prelude to this construction we show
that the linear function dfacr+l : Cr+1(U,F) , Cr (U x U, [E, F]) is a C-map by
expressing it as a composition of C-maps. For this purpose, let I denote the line
segment [0,1] C IK, c : I - Cr(U x U, U) the C-map c(O)(x, y) - x + 0(y- x),
[u] the constant function with value u and define the C-map const : Y -&#x3E; C(X, Y)
by const(y) = [y]. The factorization of dfac that we are looking for can now be
formed as follows:

By considering f1o Dg o c( 8)df) as member of C(U x U, [E, F]) so that 3c3(d) can be
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applied, we see that f1o Dgoc(0)d0(x, y) = f1o Dg(z+0(y-z))d0 = dfac(g)(x, y). Let
C’’ D F( U x U, [E,F]) denote the null space of the L C-map tri : Cr ( U X U, [E, F]) -&#x3E;
C( U x U x U, F) that was defined in the proof of 2b2. Then Cr D F( U x U, (E, F])
is a oLC-space and it consists of precisely all difference factorizers of maps in

Cr+1 (U,F). Tix some u e (7 and define the function

by putting Sa(g) = (dfac(g), g(a)). S’a is clearly a linear (-map. One verifies

directly that the map dfac’ +1 carries g to a C’’ difference factorizer for g i.e. a

member of CrDF(U x U, [E, F]), moreover that it is natural. To sliow Sa is a

section, we produce a left inverse Ra for it by putting

We can now conclude that C’+’(U, F) E oLC (r C IN).
4b2. REMARK. The appearance of I = [0,1] in the proof of 4b1(gr+1), marks a
situation where we could not avoid the use of a non-open primary domain. For

each fixed pair (x, y) E U x U there is clearly an open convex neighborhood S2xy
of I such that x -f- 6(y - x) E U for all 0 E Qxyi but no single such neighborhood
works for all pairs (x, y). Note that this difficulty does not arise when U = E, the
entire vector space and for calculus of maps with such domains the use of A = IK
for axioms la6 and la7 will be enough.

4b3. THEOREM.

(aOO) The functors C(U, -) : oLC --+ oLC lifts to a functor C°°(U, -) : oLC -&#x3E; oLC
and the latter preserves C-initial families of linear C-maps; hence it preserves
cartesian products in oLC.

(bOO) There exists a natural oLC-isomorphism §EVG : [E, C°°(V, G)] -&#x3E; COO(V, [E, G])
which lifts 3EVG : [E, C(V, G)] -&#x3E; C(V, [E, G]).

(c°°) A map f E C(U x V, G) is a C°°-map if and only if
and

(d°°) Tjae function t1 UVG: C°°(U x V, G) - C°°(U, C°°(V, G)) is a natural map in
oLC which lifts tl and a similar statement holds for t2.

(eOO) There exists a na,tural transformation :
which lifts f.

(f°°) The function compUVG
compOO(f, g) = g o f, is a Coo-map.

(goo) Coo(U, F) is an oLC-space, dfac’ : Coo(U, F) - COO(U x U, [E, Fj) is a natural
transformation in oLC and dfac(g) is a difference factorizer for g.
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Proof . The statements (at), (b°°), (Coo) and (gOO) follow at once by 4al, the
completeness of the category oLC and the corresponding statements in 4bl. The
remaining statements require further reasoning, as follows. If f E C°°(U x V, G) C
Cr(U x V, G), then by 4b1(dr) we have ~(f) C C-(U, Cr-s(V, G)). Since this holds
for all s  r E]N, we conclude that tOO exists as linear function. By applying
4b1(ar), we see that both of the families

are C-initial. One readily concludes from this that tl°° is an LC-map, similarly
for j-2°°. In a similar manner, using 4bl, one shows that tOO is an LC-map. In

view of 4bl we have naturality in U and V with respect to C°°-maps, but in
G the naturality is so far known only for LC-maps. If g : : G - H is a C°°-

map, then the function C°°(U, g) . C°°(U, G) - C°°(U,H) clearly exists and the
diagram expressing naturality in G with respect to C°°-maps will clearly commute
as a diagram of functions. What remains to be proved, is that the functions

C°° ( U, g) : C°° ( U, G) - C°°(U,H) will always be C°°-maps. To do this, let us cast
the space C°°( V, G) in the role of E in the isomorphism ~°°UV established above
(without regard to naturality for the moment). We obtain the isomorphism

By evaluating this map at the point id in its domain, we obtain the C°°-map

The composition map

can now be constructed as a C°°-map by putting compUGH = tl(evalGH o (id x
evaluG)). Finally we are in a position to see that C°°(E, g) is a (oo-n1ap, because
we can express C°° ( U, g ) = compugh o ([g] x id), where [g] is the constant function
with value g.

4c. Integration of curves revisited. We are now in a position to elaborate
on several earlier results. Let us call attention to the fact that the map

is a natural isomorphism in oLC; let up denote its inverse. We define gradF =
C(K, evaiKF( -,1)) o DKF and f’(E) def grad( f)(g) = D1(ç) 1.
4cl. THEOREM. (Fundamental Theorem of Calculus) The maps
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are natural retractions in oLC. Moreover, for a given f E Cr (U, F) the g that

satisfies g’ = f is unique up to an additive constant and upholds the formula
It f (0) dO = g(03B2) - g(a).
Proof Since av (f) AxA 1B - F’ 11nhnlrlc:: the first average value identify, +be
characterization 2b2 shows that up o av(f) : A x A-&#x3E; [K, F] is the difference

factorizer of some g E cr (A, F). It follows at once that

In particular, if g’ = 0, then g must be constant and the stated uniqueness up to a
constant follows readily. Finally, that g g’ is a linear C-map, is immediate from
the definitions.

By applying the chain rule we obtain at once the following familiar formula.

4c2. COROLLARY. We have fo(03B2)o(03B1) f (03C4)dt = f03B203B1 f(~(0))o’(0)d0, for C1-maps O : 
A -- A and C-mapq f : A- F.

4c3. THEOREM. The natural transformation avAE : C(A, E) - C(A x A, E) lifts
to natural transformations

Proof . The first identity of 3el in conjunction with characterization 2b2 shows that
every value av( f ) is a difference factorizer. By uniqueness of difference factorizers
where one dimensional domains occur (2c1) and by 4bl(gT+l ) we have avT o grad =
iso o dfac’+’. Since grad is a retraction in oLC (4cl), avr is an LC-map.

5. Higher order derivatives

Our concept of Cr-map did not require higher order derivatives for its defini-
tion nor for its further development in the preceding sections. But higher order
derivatives are important for their own sake. We show in this section that their
basic properties can be established effectively with the present approach.

5a. Sum closed products and higher order differences. For r E N we put

(r) = {1,2, ... r} while PX will denote the set of all subsets of X and IXI the
cardinality of X. We define the sum closed product to be the following C-subspace
of U x Er:

where J varies as subset of r&#x3E;, hi denotes (hi)iEJ C EJ and 0  0=  1. The

spaces U m E’’ serve well as domains for the usual higher order difference maps of
f : U - F, namely Ar f : U m ET -+ F, defined recursively by the formulas:
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5a1. PROPOSITION. Arf(x, hr&#x3E;) = EJEPr&#x3E; (-1)lr&#x3E;BJlf (x) + LiEJ hi). Hence

Ar f (x, hr&#x3E;) is syrnmetric in the variables h1, ... , hr.
Proof . By induction on r. To match up the sums in the inductive step one uses
the fact that for J C (r) and i E (r)

either and

or and

but not both.

5b. Symmetry of higher order derivatives. For a C’’-map f : U - F
we define higher order derivatives recursively as follows: D1 f - D f, Dm+1 f =
D( Dm f). To simplify notation we define recursively [E’; F] = [E, F], [Em+1; F] =
[E, [Em; F]]. Then Dr f E C(U, [E’’; F]). It follows quickly from the definitions that
Ds(Dr-sf) = Dr f (s = 0, 1, ... , r). There is an obvious natural isomorphism

where [Er’r F]) denotes the oLC-subspace of C(ET, F) formed by all r-linear maps.
A C-map O: U m Er - [Er; F] such that O(x, hr&#x3E;) · h(r) = Ar f (x, hr&#x3E;) will be

called an r-th order difference factorizer for f : U - F. Let us point out that the
map (x, y)- (x, y - x) is an isomorphim U x U - U m E1 and tliat the concept
of difference factorizer defined in section 2 agrees up to this isomorphism with the
present concept of first order difference factorizer. We will not study higher order
difference factorizers in any depth in this paper. They will make only a brief but
important appearance in the next proof.

5bl. THEOREM. For every Cr-map f : U - F, every 11(r) E Er and every
permutation 7r : (r) - (r) we have

Proof . Put

Then IT (f) is clearly a C-map U x Er - [Er; F]. Let us verify inductively that it
is an r-th order difference factorizer for f . For r = 1 this is immediate from the

definition. Assume validity for r = m. We have
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Thus we obtain the required n1, + 1-th order difference factorizer. For any permu-
tation 7r : (r) - (r), we put

It follows at once that

Since ór f( x, hi, - - . , hr) is symmetric in the variables hi, it follows that, for any
two permutations 7r and o, we have q,(A) = qo(B) whenever B # 0. By axiom la5,
qTT(0) = g.(0).

5b2. COROLLARY.

for all (2 -map3

Proof . By 5bl, So the

result follows by 2dl.

5c. The Taylor formula. We will abbreviate Dr f (x).hr ..... hi to Dr f (x). h’’

when all hi = h.

5cl. THEOREM.

If f : U - F is a Cr+1-map, then for all (x, h) E U x E1,

where Rem.(x /h) = (1 /r!) f10(1 - 0)rDr+1f(x + 0h) . hr+1d0.

Proof . One proceeds by induction on r. For r = 0, the result follows at once from
4b3. Assume validity for r = m and put

By computing g’(0) via the product rule (2c2(c) with n=2) and by applying the
Fundamental Theorem (4c2) to g’, one obtains the recursive relation

Remr(x, h) = (l/(r + 1)!)Dr+1f (x) hr+1 + Remr+l(x, h).
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6. Special tlieories of calculus.

It is long known that the classical setting of locally convex spaces has conspic-
uous inadequacies as framework in which to cast calculus: there is no natural way
to structure spaces of smooth maps so that evaluation (f, x) H f (x) is always
a smooth map. In fact, it is not even possible to make evaluation a continuous
operation on spaces of linear continuous maps [9]. The studies of [2], [19] and
[6] showed that these inadequacies can be overcome in suitable cartesian closed
topological categories. Thus there emerged parallel theories of calculus. In this

section we briefly discuss some special choices of C and li to which the preceding
theory applies and we indicate very briefly how they relate to the previous studies
just mentioned. In all cases, K. will be given the obvious ’usual’ structure for the
category in question, so we will make no further mention of this structure.

The peculiar features of special theories are interesting: results which fail for

arbitrary C but hold in the special model of C because the category in question is
cooperative beyond the call of duty, so to speak. Such results, which require real
analysis for their proofs, may determine which special category is best suited for
a particular kind of problem.

6a. Calculus in Ce. The category Ce is defined by axioms which are simply the
filter convergence analogues of the three Frechet-Urysohn axioms for sequential
convergence, thus equivalent to the axioms postulated by Choquet [5] (cf. 6b).

Our first task is to verify that Ce upholds the axioms la. It is well known
that lal, la2 and la3 are satisfied (see [3] or [15] for background about this).
With li = R in its usual topological structure, axioms la4 and la5 are obviously
satisfied. As regards the remaining two, let us recall that every topological space
is a Ce- space via its convergent filters and topological products of topological
spaces agree with their products in Ce. The spaces C,(X, Y) carry the continuous
convergence structure. If X is a locally compact Hausdorff topological space, then
C,(X, R) carries the topology of uniform convergence on compact subsets of X.
We need this background for the following verification of la5.

6al. PROPOSITION. There exists a unique LC,-map av AR : Cc(A,R)- Cc(A X
A, R) such that the following two identities lzold:

Moreover, av AR is natural in the variable A with respect to affine maps.

P roof . Put 

It is a well known elementary fact of Riemann integration that for each f the
image function av( f ): A x A - R is continuous. Thus av is well defined as a
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function and it is clearly linear. Since finite powers of A are locally compact, the
canonical mapping spaces Cc(An,R,) carry the topology of uniform convergence
on compact sets. The continuity of av therefore follows readily from the estimate
supIxI lav( f )(B,u)l supI l f (B), where I is a compact subinterval of A. Via the
well known facL Lhat f03B203B1+J03B103B2+J03B1y = Ù we arrive at the tirst identity. The second
follows by continuity. Suppose avlR and aV2R are both average value maps. Fix

aEAandput

From the first identity one obtains quickly that (gi(n)-gi(E))/(n-E) = avi( f )(E, n]).
Let n] -E to obtain g’i(E) = avi(f)(E,E) = f (E). By elementary one dimensional
differential calculus we deduce that gi - g2 is a constant function. Since g1(a)=
92(a) = 0, we conclude gl - g2. It follows that av1(f)(a, E) - av(f)(a,E) for
all E # cx, hence that aVl = av2. The stated naturality just means that we have
av AR(f o 0) = avOR(f) o (0 x 0) for affine maps 0 : A -4 0. This follows from the
elementary properties of integration by straight forward verification.

That the remaining axiom la7 is satisfied, is implied by the striking result [4]
that Cc(X, R) is reflexive for all Ce-spaces X. This can also be proved via the
Krein-Milman theorem (see [3]). Alternatively, la7 can be verified as for Cs in
6bl.

For functions between locally convex spaces, numerous definitions of ’contin-
uously differentiable map’ emerged in the literature which, by the late sixties,
led to "an impression of chaos" [1]. Nine of these concepts were selected for

special study in [10]. The question now arises: which one agrees with the cate-
gorical concept of C,’-map? For all concepts in [10] the formula f (y) - f (x) =
f.’ D f (x + 0(y - x)) - (y - x) holds, so the difference factorizer exists as a function.
Whether this function is continuous, depends on the structure used for the space
of linear continuous maps. Since [2] used continuous convergence (the canonical
Cc-structure), it comes as no surprise that the concept in [2], while expressed dif-
ferently, agrees with ours (see [1] and [10] for more details, including a reference
to an even earlier equivalent concept due to A.D. Michal in 1938). Cc1-maps were
also used (apparently rediscovered) in the important paper [7] in the context of
Frechet spaces: in this context, or any which has at least finite cartesian products,
one can replace the difference factorizer O : U X U - [E, F] by its natural image
lfl : (U x U) x E ---&#x3E; F for the definition of continuously differentiable.

6b. Calculus in Cs. A Cs-space is a set X structured with convergent sequences
subject to the following three (Frechet-Urysohn) axioms. (1) every constant se-
quence converges to its constant value; (2) if Un converges to x, then so does every
subsequence Us(n); (3) if Un is such that every subsequence us(n) has a subsequence
ut(s(n)) which converges to x, then un converges to x. Cs-niaps are functions which
preserve convergent sequences.

It is well known that Cs satisfies axioms lal, la2 and la3 and it is immediate
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that la4 and la5 are satisfied, where of course 1K --- R in its usual structure is used.

It is also known and readily verified that the convergent sequences in Cs(X, R,)
are those that converge uniformly on sequentially compact subsets of X. Thus

the verification of la6 is almost word for word as in 6a1 above. However, the
verification of la7 requires argument, as follows.

6bl. PROPOSITION. CS(A, R) is reflexive.

Proof . In view of 3bl it is enough to show that linaA is an epimorphism in iLC.
We will do this by showing that for every continuous linear map w : Cc(A, R) - R
there is a sequence vn, in lin@(AOR) which converges to w in lCs ( A,R,),R], where
limits are unique. By the classical Riesz theorem, w is represented by a Riemann-
Stieltjes integral w( f ) = f3 fdo, where 0 is a function of bounded variation. Since
§ is a difference of non-decreasing functions, we may just as well assume 0 to
be non-decreasing. For such 0 one can readily construct a sequence §n of step
functions such that §n(A) converges to o(B) at every point A E [a, 03B2] where 0 is
continuous. By putting v, = f’3 fd§n we obtain a sequence in the image set of
!m@A? because the integral with respect to the step function §n reduces to a finite
Riemann-Stieltjes sum Li f (Ei).[On(Ti)-On (Ti-1)]= Ei @(Ei)(f).(On(Ti) -On (Ti-1)].
By using the fact that the convergence of 0,(A) to O(B) takes place for A that form
a dense subset of [a,,8]’ it can be shown by a typical ‘E/3 argument’ that for any
sequence fn that converges uniformly on [a, 0] to f , we have vs(n) (fn) convergent
to w(f). This means vn converges to w in the Cs-space [Cs(A, R), Rl, as required.

The Cs based calculus is a new theory. Very little is known so far about analysis
peculiar to Cs. We hope to report some results in this connection in a future paper.

6c. Calculus in Cd and the Frolicher-Kriegl theory. The category Cd of
diffeological spaces [17] has spaces which are sets structured with abstract smooth
curves. There is a category of the form u LCd (’derivative complete spaces’), larger
than oLCd, which is isomorphic [17] to the category of convenient vector spaces
of [6]. That Cd upholds axioms lal, la2 and la3 is clear from [17] while la4 and
la5 are obvious (Cd-maps A - R are just the usual smooth functions). That la6
holds, can readily be deduced from the calculus already established for Cc and
Cc°-maps. The last axiom la7 on the other hand, requires lengthy proof. For the
case where A is an open interval, this can be found in [6] and it can also be deduced
from the theory of distributions: AOR, turns out to be the space of distributions
of compact support. On this basis we know that the calculus of [6], at least for
maps on entire vector spaces, can be interpreted as a realization of the calculus of
this paper. However, the mentioned proof in [6] rests on a considerable amount
of theory, including calculus. Therefore there arises the interesting problem of
finding, for arbitrary primary domains A, a direct verification of 1a7. It will make
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the calculus of convenient vector spaces [6] accessible via a different route wliich
may offer a degree of logical economy. We plan to study this in a separate paper.

In terms of what is known, it is interesting to compare the Ce-based theory
with the Cd-based theory as regards the following four statements expressing pe-
culiar teatures. btatement (1) means every bilinear function u : E x F - G which
is a C-map in each variable separately is a C-map. It can also be expressed by
saying that [E,G] carries the initial structure induced by the family of all point
evaluations into G. Statement (2) means [E, R] agrees witli the cla,ssical Banach
space dual when E is Banach. Statement (3) means C°°-maps E 2013F between
locally convex spaces in alCe (resp. oLCd) are continuous in the underlying locally
convex topologies.

For oLCe the statements (1), (2) and (4) are well known results, while (3) is clear
from definition. For convenient vector spaces, hence for oLCd-spaces, the statement
(4) will be found in [12] and the remaining three in [6]. The reflexiveness of all
C,(X, R) forces the false response to (2) and the true response to (3) forces the
false response to (1). Conversely, the true response of the Cd based theory to (1)
and (2) precludes such responses to (3) and (4) (cf. [12]). Thus the two theories
complement each other.

6d. Calculus in Cgt. It is well known that the category Cgt of compactly
generated topological spaces satisfies lal, la2 and la3 while la4 and la5 are
obvious since R in its usual topology is compactly generated. Verification of both
la6 and la7 is similar to the case Cs done above. One can also obtain la7 as

corollary of prop. 4.2 in [13]. The category Cgt also underlies the theory of [19].
The linear spaces used for calculus in [19] (linear Cgt-spaces whose locally convex
modifications are sequentially complete) is not of the form oLC or uLC. Thus the
calculus of [19] is close to but differerent from ours.

6e. Calculus in Ch. This is the category of holological spaces introduced in [11]
(sets structured with abstract holomorphic curves). It provides the only known
special case where the axioms la are satisfied when K is chosen to be the complex
field. Here C(A,K) becomes a space of holomorphic functions. Axioms lal, la2
and la3 are verified in [11] while la4 and la5 are again obvious from the definition.
The first identity of axiom la6 is essentially a version of Cauchy’s theorem. The
verification of la7 (at least for open primary domains A) rests on Runge’s theorem.
We hope to report about this in a separate paper.
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6f. Remark about the Fréchet derivative. The Frechet differential calculus

for functions between Banach spaces is the version of infinite dimensional calculus

first encountered by most students. Since Banach spaces are among the oLC-spaces
in every special case so far encountered, moreover as a subcategory closed under
finite products, the following question arises. Is there a choice of category C whose

concept of C’-map (section 2) will agree, for functions between Banach spaces,
with the classical concept of ’Fr6chet continuously differentiable function’ ? In this
connection one should bear in mind the known fact that continuity of the Frechet
derivative D f : E - [E, F] is not equivalent to continuity of the differential
df : E X E - F as one would like to see. Therefore, a general theory can recover
the Frechet calculus as special case only if that theory is likewise afflicted with
this pathology. Fortunately, the C-theories of this paper are not.
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