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MODELS FOR SYNTHETIC SUPERGEOMETRY
by David N. YETTER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXIX - 2 (1988)

RÉSUMÉ. Les notions de base de la G6om6trie Diff6rentielle

Synth6tique sont modifi6es pour englober la "geometric diff6ren-
tielle avec param6tres commutants et anti-commutants" n6ces-

saire pour les theories de supergravit6.
Des mod6les analogues aux topos de Dubuc et Stein sont

construits, et leurs rapports avec la th6orie de Kostant des

varietes gradu6es sont explicités. Plusieurs faqons de retrouver
des espaces "bosniques" sont explor6es.
Finalernent des resultats 616mentaires de GDS sont étendus au

cas supersymétrique : en particulier on montre que la fibre

(synth6tique) tangente a 1’unite d’un objet groupe assez r6gulier
a une structure d’algebre de Lie gradu6e. Llint6gration de super-
champ est considérée bri6vement dans le cadre synth6tique.

0. INTRODUCTION.

The enterprise of Synthetic Differential Geometry (SDG), begun
in Lawvere’s 1967 lecture on "Categorical Dynamics", may be seen as
an attempt to axiomatize (hence the name synthetic), and to provide a
model theory for the way in which physicists work with smooth

phenomena - for example, in SDG vector fields really are infinitesi-

mal flows, or, equivalently, infinitesimal deformations of the

identity map, on a manifold.
Seen in this light, it is reasonable to attempt to bring the

tools of SDG to bear on the construction of mathematical models for

supergravity in which a "differential geometry with both commuting
and anti-commuting parameteres" is needed. The algebraic-geometric
flavor of both Kostant’s theory of graded manifolds and the model

theory for SDG as developed by Dubuc and others further suggests the
possibility of fruitful interaction.

It is the purpose of this paper to begin that work, but only to
begin: all results contained herein may be seen either "super"
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versions of results contained in Kock’s book on SDG [6], or as "syn-
thetic" versions of results contained in the Proceedings of the NATO

Workshop on Mathematical Aspects of Superspace [9]. We refer readers

unfamiliar with either of the subjects considered to those works as

good introductions, and in particular to Kock’s monograph, since many
of the proofs of results contained herein are more or less routine

generalizations of Kock’s proofs to the "super" case. Proofs of this

sort will in general be sketched briefly, as the reader, armed with

Kock’s book, can easily fill in the details.

Our main result is the construction of "super" analogues of the
Dubuc topos and the Stein topos (cf. [4; 51). We go on to consider

some properties of these categories, both as models for supergeometry
in their own right, and in comparison to Kostant’s theory of graded
manifolds [7] J and standard models of SDG (cf. Dubuc [4] and Hoskin

[5]).

In the presence of these results, it is hoped that any

sufficiently general synthetic proof of a result in differential

geometry will carry the "super" result (provided, of course, that some
care is taken in how definitions are "superfied" and how integration
is handled - the view of Batchelor that Berezin integration is really
odd-variable differentiation is undoubtedly correct in the synthetic
setting).

1. "SUPERFICATION" OF THEORIES.

Had the synthetic approach been considered in Batchelor 111, it

would have been classed among the "geometric" approaches in that we

begin with an algebra with anti-commuting elements. Rather than

living in the category of Sets, and being endowed with a topology,
this algebra will lie in a Grothendieck topos constructed along with
it, and it will be the very structure of the underlying topos that

will carry the "geometric" data. The actual construction of that

algebra will, however, have to wait until after some algebraic
preliminaries:

DEFINITION 1.1. A differentially closed theory, T , over K = R or C is

an equational theory (in the sense of Lawvere [8]), extending the

theory of commutative K-algebras, whose n-ary operations are named

by infinitely differentiable functions K n -&#x3E; K, and satisfying
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DCT1. Any generalized composition of operations in T names an

operation in T, and any equation holding among the functions holds

among the operations they name in T.
DCT2. If : Kn -&#x3E; K names an operation in T, then so does

Kn -&#x3E; K, the I’" partial derivative for I = 1,...,n.

Examples include the theories of polynomials over R or C (the

usual notion of algebra over the base field), the theory of Coo-

functions, and the theory of analytic functions (real or complex).
Note that a model of any DCT over K is a fortiori a commutative

K-algebra. To introduce anti-commuting elements, we modify the

theory:

DEFIITII01f 1.2. The superfication S(T) of a DCT T is the theory
whose operations are named by all formal composites of operations in
T and unary operations, B and F. Two names of operations, and
name the same operation if their values, ||o||v and ||Y||v, in every
Grassmann Instantiation v are equal.

A Grassman instantiation v for an expression in n-variables

X1,...,Xn is a choice of a finitely generated Grassmann algebra (over

K), A, and a vector v = (V1,...,Vn) E An. The value ||o||v of an

expression o in the instantiation v is defined inductively as follows:

||X||v = Vi,

||s||v = s for any s e K (as a 0-ary operation in T ) ,
||B(o)||v= even part of II; II..., ||F(o)||v = odd part of ||o||v,

and if f: Kn -&#x3E; K is an operation of T, then

where I ranges over all ordered multiindices i  ii  ...  i. ;  r (for

all s &#x3E; i), and where

and

The following theorem makes precise the way in which we have

replaced commutativity with (Z /2-)graded commutativity. Throughout
the following we use the subscript B to denote the even grade (which
we call the bosonic grade) and F denote the odd grade (which we call
fer1llionic) .
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THEOREM 1.3. If T is any DCT over K, then any S (T) -model is a

(2/2-) graded commuta ti ve K- algebra; moreover, if T is the theory of
commutative K-algebras, then S(T) is the theory of (Z/2-)graded
commuta ti ve K-algebras.

PROOF. Observe that S(T) has among its operations: for each element
s of K, a constant; two binary operations named by multiplication and
addition as operations in T; and two unary operations B "bosonic

part" and F "fermionic part".
Letting

it is easy to show that A is a graded commutative K-algebra with

these as grades, and B and F as projections onto the grades: all the
relevant equations follow from the fact that they hold in any
Grassmann instantiation, since Grassmann algebras are themselves

graded commutative algebras.
Conversely, letting

B(x) = degree 0 part of x, and F(x) = degree 1 part of x

any graded commutative K-algebra becomes an S (K-alg) model. To

verify any equation of S (K-alg), it suffices to verify it in the free

graded commutative a lgebra over K on n-generators (for n the number

of variables in the equation), but this is the Grassmann algebra on

n-generators F (xi), 1 = 1,...,n over the polynomial algebra
K I B (xi)|i =1,..., n].

To verify an equation in this algebra, it suffices to verify it

at a sufficiently large finite number of instantiation of the vari-

ables B(x¡) by field elements (how many depends on the degree of the

equation). But these are simply Grassmann instantiations in the sense

above, and the equation must hold in all such.

The next few propositions give a wealth of S(T)-models (in

Sets) for any DCT T.

PROPOSITION 1.4. For any K-DCT T, any T -model A becomes an S (T)-
model when equipped with the operations B(x) = x and F(x) = 0.

PROOF. Given any equation in S (T), its even part in any Grassmann

instantiation is an instantiation of an equation of T in a Weil

algebra over K. (It is easy to show that any Weil algebra - i.e.,
finite dimensional algebra of the form KeI, for I a nilpotent ideal -
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can be given a T-model structure for any K-DCT, cf. Kock [6].) &#x3E; Thus

the even parts of the two sides of the equation must hold since A is
a T-model, while the odd parts are equal trivially.

PROPOSITION 1.5. For any K-DCT T, any Grassmann algebra over K is an
S(T)-model, as is any Z/2-graded sub-quotient of a Grassmann

algebra over K.

PROOF. All operations of S (T) are defined on any Grassmann algebra
over K (or any subquotient) by the formulas used in defining
Grassmann instantiations. Likewise any equation mu’st hold in any
Grassmann algebra (and hence in any subquotient) because the

equations of S(T) were taken to be precisely those which hold in

all Grassmann instantiations!

DEFINITION 1.6. A graded weil algebra over K is a finite dimensional

unital graded-commutative algebra A, of the form (KOAB)OAF, where the

part in parentheses is the bosonic grade, and As-OAF is a nilpotent
ideal. A Weil algebra over K is a finite dimensional unital commut-

ative algebra A of the form K4oIA where IA is a nilpotent ideal and K

is spanned by the multiplicative identity. We identify Weil algebras
with those graded Weil algebras with trivial fermionic grade.

We then have

PROPOSITION 1.7. Any graded Veil algebra has an S(T)-model
structure for any K-DCT T .

PROOF. All graded Weil algebras are isomorphic to subquotients of

finitely generated Grassmann algebras.

As a hint to the reader where all these preliminaries are

leading, we could right now define a "topos of superspaces" for any
DCT T: namely, Sets fgs(T)-mod, where fgS(T)-mod is the category of

finitely generated S(T)-models in Sets, and the algebra from which
"supermanifolds" will be built inside the topos is the object named

by the. forgetful functor U. While the algebra U has many of the good
properties we are seeking, this topos lacks some of the geometric
flavor we want, so some more preliminaries are in order.
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2. GEOMETRIC NOTIONS ASSOCIATED TO DCT’S AND
THEIR SUPERFICATIONS,

In this section we shall at first consider DCT’s and their

superfications on an equal footing, and denote theories of either type
by T unless otherwise clear from context. The next three definitions

are extensions of notions found in Kock [6]. 

DEFINITION 2.1. A point of a T-model A is an algebra homomorphism p:
A -&#x3E; K. We denote the set of points of A by pts(A). A model is point
determined if

DEFINITION 2.2. If A and B are T-models, I a (2-sided) ideal in A,
and E a subset of A, then by A/I (resp. A{M-1}, AOT B, A{x}) we mean a

T-model equipped with a T-model homomorphism A e A/I such that I is

mapped to 0, and universal among such (resp. a T-model equipped with
a T-model homomorphism A A A {M-1} such that all elements of E are

mapped to invertible elements and universal among such; the coproduct
in T-mod of A and B; the coproduct of A and the free T-model on 1

generator (x)).

Note that all the above must exist by standard exactness

properties of algebraic theories. For completeness we introduce the

notion of germ-determined algebras, although we use it little in the

sequel.

DEFINITION 2.3. If p: A -&#x3E; K is a point of A, let

then Ap = A {Mp-1} is called the algebra of germs at p. Let (-) p : A -&#x3E; Ap
be the canonical map. An ideal I is germ -determined if

The germ-radical, I", of I is the smallest germ-determined ideal
containing I. A T-model is germ- determined if its 0-ideal is germ-
determined.
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NOTE. The full subcategory of germ-determined T-models is a reflec-

tive subcategory, the reflection being given by A 4 A/0.

It is claimed (Kock [6D that germ-determinedness is a rigorous
version of "geometrically interesting".

We can now construct a large number of interesting models for
our superfied theories. The first observation to be made is that for

any DCT T there are many point-determined T-models: for the theory
of C-algebras, the coordinate ring on any algebraic variety; R-

algebras, the coordinate ring of any algebraic variety whose real-

locus is Zariski dense in its complex-locus; for C--algebras, the

ring of Coo-functions on any smooth (paracompact, Hausdorff) manifold;
and for the theory of homorphic functions, the ring of holomorphic
functions on any Stein space, are all points determined models of

their respective theories. Moreover in each case, the algebraic points
correspond to the geometric points of the undrlying space.

Armed with this, the following proposition provides a wealth of

(germ-determined) S ( T ) -models:

PROPOSITION 2.4. If A is a point-determined T -algebra (for T a K-

DCT), th en A with the trivial grading of Proposi ti on 1.4 is a point-
determined (and hence a fortiori germ-determined) S(T)-model. If,
moreover, W is a graded Veil algebra over K, then A9KW is a germ-det-
ermined S ( T ) -model (and is in fact the coproduct of A wi th the

trivial grading and W).

PROOF. That A with the trivial grading is point determined as a

S ( T ) -model follows immediately from the observation that S ( T ) -
model homomorphisms between T-models equipped with the trivial

grading are precisely T-model homomorphisms.
That AOKW has an S (T) -model structure follows from the fact

that to verify the equations it suffices to verify them pointwise
(i.e., after passing along pOkW), and in W they hold by Corollary 1.6.

That AOKW is a coproduct in S (T) -mod follows from a standard

result: if a (co) limit, in the category of models for a weaker theory,
of models for a stronger theory is a model of the stronger theory,
then it is a (co) limit in the category of models for the stronger
theory. In light of this, we drop the subscript on the tensor product.

To see that AOW is germ-determined, note first that A is a

fortiori germ-determined. Now given any point p: AOW 4 K, this
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factors through the map AOV e A with kernel Aol. where Iw is the

unique nilpotent ideal of W, giving a point p: A e K. Now analysing
this factorization shows that E, is in fact

But since Iw is nilpotent, AoIw is also, and thus inverting E, is

equivalent to inverting Zol. Thus if

for all points p, this is equivalent to

for all points p. Thus this is equivalent to

and hence, since A is germ-determined, to a - ex.., = 0 for all w E Iw,
and thus 

,

Thus AOV is germ-determined.

COROLLARY 2.5. If M is a smooth (Coo) &#x3E; manifold (resp. a Stein

manifold), and W is any graded Weil algebra over R (resp. C), then

Coo (M)OW (resp. Hol (M) OW) is an SCoo-model (resp. SHol-model).

The reader will note that, in particular, W may be taken to be a

finitely generated Grassmann algebra, in which case these algebras
will be useful in our consideration of the relationship between

Kostant’s graded manifolds and the topoi we will construct. The

reader will also note that the restriction to Stein manifolds in the

super-holomorphic case is related to the failure of Batchelor’s

Theorem for graded holomorphic manifolds. (Although it is outside the

scope of this paper, we conjecture that Batchelor’s Theorem is

restored in the holomorphic case if one restricts one’s attention to

graded manifolds whose body is a Stein manifold.)

Finally we define the category of manifolds which are "good"
with respect to a DCT, T.
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DEFINITION 2.6. A (paracompact) manifold is a T -manifold if it is

equipped with an atlas such that the transition functions between the
charts are restrictions of T-operations to the coordinate chart. A

continuous map between T-manifolds is a T - manifold map if its res-

triction to the intersection of any chart in the source, and the

inverse image of a chart in the target, is the restriction of a T-

operation. Given a T-manifold M, the coordinate T-algebra T(M) is

the algebra of global sections of the sheaf of T-algebras associated
to the presheaf of T-algbras whose sections on coordinate charts are
the T-operations restricted to the chart. (Note T  &#x3E; is a contra-

variant functor from T-mf to T-alg). By abuse of notation, we also
denote the sheaf of T-algebras described above by T(M), it being
clear from context whether an algebra or sheaf is meant.

A T -manifold M is (T-)complete if the "evaluation map"
IM i e Pts (T(M)) is epi. M is (T-)separated if the evaluation map is

monic.

A T-manifold M is good if it is complete and separated. M is

locally good if every cover by open sub-T-manifolds admits a refine-
ment by good open sub-T-manifolds.

The reader will note, for example, that all Coo-manifolds are Coo-

good, while for complex analytic manifolds, only Stein spaces are

good, but every analytic manifold is locally good.

3. TORO I 0F SUPERSPACES.

3.1. Construction and General Properties.
For any DCT, we consider the topos E S(T) given as Shv(G,J),

where G is the full subcategory of S (T)-alg consisting of all

S(T)-algebras of the form T (M)OW where M is a good T-manifold, 
and W is a graded Weil algebra; and J is the Grothendieck topology
induced by T ( ) &#x3E; of all open coverings of T-manifolds. In the case

where T is Coo-alg, we call this the "super-Dubuc topos"; in the case

where T is the theory of holomorphic functions, we call this the

"super-Stein topos".

DEFIBITIOH 3.1.1. For a commutative ring k in a fixed base topos S, a
superlined toposlk (resp. lined toposlk) is an S-topos E equipped
with a graded commutative ring object (resp. commutative ring object)
R satisfying
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Ll. For any graded Weil algebra/k (resp. Weil algebra/k) W, the
canonical map ROW -&#x3E; Rspec (w) transpose to

(where Spec (W) &#x3E; is HomR-alg(ROW, R), interpreted internally), is an

isomorphism.
and L2. Spec(V) is tiny for every graded Weil algebra (resp. Weil

algebra) V (i.e., ( )" has a right adjoint, cf. Yetter (11J).

THEOREX 3.1.2. For any k-DCT Es(T) js a superlined topos over k when
equipped with R, the sheafification of the forgetful functor.

PROOF. L1 follows by the proof of Kock [6], Theorem I I I .1.2, when that

proof is taken at its full generality. To see this, it is necessary to

verify that the tensor product of graded k-algebras is in fact the

coproduct in the category of k-algebras, and (for DCT’s other than

the theory of k-algebras) the observation concerning colimits for

models of different theories made in the proof of 2.4.
For L2, note that R is representable, and hence by a result of

Bunge [3] the representable presheaf is tiny (since the site has

coproducts) in Setsc*P. The result then follows from the sufficient

condition in Yetter [11] J for sheafification to preserve tininess.

We now ,turn to a way of recovering purely bosonic spaces which
is intrinsic in the sense that it can be done in any superlined topos
without regard to how that topos was constructed. Recall from Yetter
[11] :

DEFINITION 3.1.3. An object X is A-discrete whenever for all objects Y
and all maps f: YxA -i X, f factors through the projection onto Y

(i.e., "Maps from A to X are all constant", interpreted internally).

DEFINITION 3.1.4. An objects in Es(T) is pure bosonic if it is

Spec(W)-discrete for all graded Veil algebras W generated by their

fermionic grade.

PROPOSITION 3.1.5. The full subcategory of purely bosonic objects is a
reflective, coreflective subtopos of ES(T), which we denote BOSs(T).
We denote the reflection by body ( ), and the coreflection by
cobody( ).
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PROOF. Immediate by results in Yetter [11].

Intuitively, these functors correspond to the two ways to pass
from a graded commmutative algebra to a commutative algebra: body( ) 
is quotienting by the ideal generated by the fermionic grade;
cobody( ) &#x3E; is cutting down the bosonic part. Care is required in

interpreting this, since "bosonic part" means here not the bosonic

grade, but the part of the algebra to which no odd element can be

mapped under any morphism in the topos (internally!). Regretably, the

cobody is the more interesting topos theoretically, and is as yet too
little understood to be of use in applications. As an example of its

interest, we prove:

PROPOSITION 3.1.6. cobody(R) is a line in BOSs(T).

PROOF. Recall from Yetter [11] that the discrete reflection is an

adjoint to the inclusion of discretes as functors enriched over the

topos of discretes. Thus for any purely bosonic Weil algebra W we

have

Note in the middle isomorphism that cobody is idempotent. The last

isomorphism in the sequence follows from the fact that ROW Cresp.
cobody CR)9W) is isomorphic to Rn (resp. cobody(R)n) for n = dim (W).

while cobody C ) is limit preserving. (Warning: cobody( ) does not in

general preserve colimits (e.g. 0) - it does so in this case only
because these instances of 0 can be canonically re-expressed as

limits, which are preserved.) &#x3E;

Although the intrinsic nature of these constructions suggests
that their study is fruitful, the cobody construction depends upon
the little understood, but powerful, properties of tiny objects (see

Yetter [11]), so that some fundamental work is required before this

construction can be properly applied. We turn therefore to a cons-

truction of a subtopos of "bosonic" objects, which is extrinsic in the

sense that it is carried out at the level of defining sites:

DEFINITION 3.1.7. The subtopos of bosonic sheaves- BShs T&#x3E;, in the

topos Es(T) is the topos Shv (G, K), where G is as in the definition
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of Es T&#x3E;, and K is the topology generated by J and all one object
covers of the form As -&#x3E; A (where As is the bosonic grade of A,
considered as a trivially graded S (T)-algebra).

The following proposition then establishes the relationship
between our topoi of superspaces and standard models for SDG:

PROPOSTIION 3.1.8. If Es(T) is the super--Dubuc topos Cresp. super-
Stein topas), then BShs (T) is equivalent to the Dubuc topos (resp. the

Stein topos), and if R. is the sheafification of R, and is the usual

line in the Dubuc topos (resp. the Stein topos).

PROOF. The sites of definition are equivalent. (The defining site for
the latter topos is included in the defining site for the former, and

every object in the larger site is canonically covered by an object
in the smaller.) For the conclusion about the superline, observe that
R and Re are representable, and that R’s representing object in the

site is covered by the representing object for Rat Moreover, it is

easy to see that RB is carried to the usual line, in the Dubuc (resp.
Stein) topos by the equivalence of sites.

3.2. Graded manifolds and topoi of superspaces.

Adapting Kostant’s definition [7] of graded manifolds to T-

manifolds, we make:

DEFINITION 3.2.1. A (Z/2-)graded T-manifold is a pair (X,A), where X
is a T-manifold, and A is a sheaf of graded algebras over X such

that there is an open cover of X by T-manifolds, {Ui} i e I such that

A (Ui) = T (A)OA, for A some finitely generated Grassmann algebra. Maps
are defined in the obvious way.

We let GT-Mf denote the category of graded T-manifolds with
X locally good, and let GT-Mfo denote the category of graded
manifolds with X good and A =T(X)OA ("good trivially graded mani-

folds").

We can now state and prove a comparison theorem showing the

relation between graded manifolds and our topoi of superspaces:

THEOREX 3.2.2. There is a functor i : GT-Mf 4 Es T&#x3E; extending the

composite functor r7L: GT-Mfo -&#x3E; EsT&#x3E; (r being the global section
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functor, y the Yoneda embedding Into the presheaf topos, and L the

sheafification functor) and satisfying :
0. i is full and faithful,.

1. 1 preserves all pull backs wh i ch are transversal pull backs
when restricted to the body.

2, 1 carries open covers to epilnorphjc families.
and 3. i(kOA (i))= R is a superline.

PROOF. We begin by noting that if 1 extends FyL, then we have already
shown 3, since (k,T(k)OA(i)) is in GT-Mfo.

We next note that ryL satisfies 2, by construction of the

topology in the site of definition, while ryL satisfies 1 by applying
results of Kock 161 once it is noted that (M,T (M)OA) is isomorphic to
the product (M,T (M))x(*, A) and that r, y, and L all preserve products.

To see that FyL satisfies 0, it suffices to examine r, since y is
full and faithful and the topology in question is subcanonical. For f,
fullness and faithfulness follow from the product decomposition,
together with the observations that on (*, A) a map of graded T-

manifolds is entirely determined by its behaviour on the ring of

functions, while "goodness" allows us to imitate the classical proof
that C-( ) &#x3E; is full and faithful for any T.

To extend ryL to all of GT -Mf, note that any locally good
graded T-manifold is canonically the colimit of its good trivial-

izations, that is of a canonically chosen diagram in GT-Mfo. We let

i be the result of applying ryL to this diagram, then taking the

colimit in EsT&#x3E;. Note that this extends fyL, since it agrees with

FyL on GT-Mfo, since here the diagram of good trivializations has a
terminal object.

Now since 1 and 2 are local in nature, the colimiting construc-
tion will preserve them. For 0 note that the image of GT- Mfo

generates EsT&#x3E;, and thus I must be faithful, while fullness follows
from 2 by passing to a good trivialization of the target, and then to
a good trivialization of the source which refines its preimage.

Thus the "super-Dubuc topos" plays the same role in the "super"
theory as the Dubuc topos does for classical differential geometry.

3.3. Formal spermanifolds.
Although all objects in the topoi EsT&#x3E; can be regarded as

"superspaces", they do not all possess manifold-like properties. Two
approaches may be taken to isolating "formal supermanifolds". The

first is essentially classical: choose model objects and define mani-
folds as those objects which "look locally like the models". The



100

second is purely synthetic: determine what properties of manifolds

are essential to the problem at hand and consider those objects
which satisfy them (having shown that those objects which

intuitively "should" be manifolds satisfy the properties). We begin
with the former:

The obvious notion of supermanifald arises by taking as model
objects all objects of the form RB FxRFo, where

then considering all objects X such that there is a formal etale

cover {Ui} i E I by formal etale subobjects of the model ob jects, where:

DEFINITION 3.3.1. A map f: X -) Y is formal etale if for any tiny
subobject A of it -(0) C Rn, containing 0, for any n, the diagram

is a pullback.

This notion of "supermanifold" is sufficient to include the

internal versions of graded manifolds, but fails to capture the

"superfunction spaces" which have good local behaviour and are one of
the points of the synthetic approach.

For the purely synthetic approach, we wish to distinguish some

particularly interesting Weil algebra spectra:

DEFICIT ION 3 .3 .2 . Let

D (p, q) = {(x1, ... , Xp1 01, ...0q) I

Xi bosonic, Ok fermionic, x1 x3= xi0k= OkO, = 0) C Rp+q,

Dk(p,q)={(x1,...,xp, 01,...04) I x, bosonic, 8k fermionic,

any (k+l)-fold product of the xi’s and 0k’s is 0) C Rp+q,
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Note that D (0,1) &#x3E; = RF since all fermionic elements are 2-nil-

potents.

We can now formulate "super" versions of infinitesimal

linearity and "Property W"" (see Kock [6]). Both of the following
definitions are to be read internally, so that maps are to be taken

as generalized elements of the appropriate function objects.

DEFINITION 3.3.3. An object in a superlined topos is infinitesina]17
linear if given any family of maps

such that

there exist uniquely

where i(i, o) (resp. i(o,J) is inclusion by setting all coordinates

except the jth bosonic (resp. fh fermionic) to 0.

DEFINITION 3.3.4. An object satisfies Property W(p,q) if for all maps
7: D (1,0) FxD (0,1)a -1 X such that

there exists uniquely t: D (E,A) A X such that

where

(Ë,X) = (1,0) if q is even and (E, A)= (0,1) if q is odd.

PROPOSITION 3.3.5. R is infinitesimal7 linear and satisfies Property
W (p,q).

PROOF. As in the ungraded case (in Kock 161) &#x3E; this follows readily
from Ll.
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THEDREX 3.3.6. T’he class of infinitesimally linear objects (resp.
objects satisfying Property W (p,q)) is closed under:

Cl. formal etale subobjects,
C2, limit,
C3. exponentiation by arbi trary objects,
C4 . passing t o factors of products,

and C5. arbitrary coproducts. ,

PROOF. C3 is immediate from the internal nature of the conditions

involved, while C2 is immediate from the universal property of limits
and the uniqueness in the conclusions of the definitions. For Cl, note
that every map involved factors through any formal etale

neighborhood of the image of 0 in the objects involved.
For C4, note that the maps to AxB in the hypotheses of the def-

initions are uniquely expressed as a pair of maps, one to A, one to

B, which each satisfy the hypotheses; the unique pair, each of which

is given by the existential part of the definitions, defines a map to
AxB which has the same property.

C5 follows from the tininess (and hence connectedness) &#x3E; of the

object involved. (Note: tininess gives the preservation of the

existential conditions in the definitions by arbitrary colimits, but

will not in general give uniqueness.)

COROLLARY 3.3.7. Formal supermanifolds cln the sense above) are

infini tesimally linear and satisfy Property W (p,q) for all (p,q).

It is in fact these two properties: infinitesimal linearity and
Property W(p,q) (for certain p and q) which give most of the "class-
ical" properties of the tangent bundle once the correct definition of
that notion is introduced. Two reasonable notions present themselves.

DEFINITION 3.3.8. The total tangent bundle of X is the object over X

given by

The bosonic tangent bundle is the object over X given by

The latter of these corresponds more or less to the tangent
module for DeWitt supermanifolds, and has similar properties. We

concentrate our attention on the more genuinely "super" notion of

tangent bundle, the total tangent bundle:



103

THEOREM 3.3.9. If X is infinitesimally linear, then the total tangent
bundle is a bundle of R,R- bimodules over X, satisfying moreover

where a E R, x c XD(1,1)p, and I I denotes the 0-1 valued grading in
each case.

PROOF. By infinitesimal linearity we have an isomorphism

Composing this with the map XA: XD12.21 4 XD(1,1) gives the addition on
the total tangent bundle. Verification that this gives a fibrewise

abelian group structure is essentially as in Kock 161.

The bimodule structure is given by

Both distributivity and associativity are easy to verify, while

graded commutativity follows from the graded commutativity of R

(D (1,1) being as subobject of R).

COROLLARY 3.3.10. For M infinitesimally linear, the object of vector
fields on M,

is a graded commutative RM-module.

Property W(p,q) can now be used to provide the additional

structure existing classically on VectCM): a (graded) Lie algebra
structure.

THEOREM 3.3.11. If M is in.f.initesjmally linear and satisfies Pro-

perties V(2,0), W(1,1), W(0,2), then

is a graded Lie algebra over R, wben equipped with the operation
given gradewise by
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which is the unique map given by Property W(p,q) such that

wbere c’a,ba and (a, B) are each one of (1,0) or (0,1), and (E,A) is

(1,0) if b+B is even and (0,1) if b+B is odd.

PROOF. An imitation of the argument due to Reyes and Wraith (see

Kock (61) suffices when the graded commutativity of R is taken into

account.

COROLLARY 3.3.12. If G is a group object, which is Infinitesimally
linear and satisfies Properties W (2,0), W (1,1), V(0,2), then

is a graded Lie algebralR.

PROOF. Identify T.(G) &#x3E; with the object of left invariant vector fields

and restrict the Lie algebra structure of Theorem 3.3.11.

Note that besides internal versions of finite dimensional

supergroups, such exotic but physically interesting objects as the

internal versions of "super-loop groups" satisfy the hypotheses of

the Corollary, and thus are included in the same synthetic
constructions as the finite dimensional cases.

3,4, Order and Integration i n the super-Dubuc
topos.

Finally, we turn to superspace integration in the context of our
models.

Recall that superspace integration in other models of superspace
(cf. Rogers [10] or Berezin t2» is carried out by treating bosonic
and fermionic coordinates differently: bosonic variables are

integrated classically, while fermionic coordinates are integrated
according to the Berezin prescription:

As noted in the introduction, it is the view of Batchelor that

superspace integration is really a hybrid: integration in bosonic

coordinates, differentiation in fermionic coordinates.
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We restrict our attention now to the theory S(C.-alg), and the

super-Dubuc topos, which we now denote E. This will be necessary

only to consider integration in bosonic parameters. For fermionic

ones in any superlined topos we have:

DEFINITION 3.4.1. The Bereain integral map (RFf -&#x3E; R is the composite
a’’ pz, where 0:: RxR e RRF is given by

and is invertible by L1 in the definition of superline.

Note that this definition is internal, and hence "smooth in

parameters". It is also precisely the fermionic parameter version of

synthetic differentiation: in the view of Batchelor, "Berezin

integration is odd parameter differentiation".
Proceeding on to bosonic parameter integration, note that

Theorem 3.1.8 allows us to lift the order structure and "classical"

integration structure on the Dubuc topos to the super-Dubuc topos. To
be precise:

THEOREX 3.4.2. R (resp. RB &#x3E; has two preorderings,  and  satisfying:
01.  and  are transitive.

02.  is reflexive ;  is irrefl ex,i ve.

. x y 4 a y+z ; xy =&#x3E; x+ z z.

04. [x y A 0&#x3E;t]=&#x3E; xt  yt; [x  y A 0  t]=&#x3E; xt  yt.
05. 0  1.

06. x  0 =&#x3E; x  0.

07. d nilpotent (0 d A d ; 0).

08 , x  0 =&#x3E; x invertible.

09. -1 (x 0) =0 (x.

010. x Inver-tible 4 Ex  0 V 0  x].

011. CO  x A x  y]=&#x3E; 0  y.

PROOF. For RB this is a result of Kock (6) for the Dubuc topos. To

extend the orderings of R, note that any element of R is of the form

B (x)+F (x) for B (x) E RB and F (x) c RF. Let

x ( y iff B (x) ( B(y) and x  y iff B (x)  BCy) .

It is then easy to verify that 01-011 are preserved by this

extension (the crucial thing is to note that fermionic elements are

always nilpotent).
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We denote by [0,1] the subobject of Re, {x I 0 E  x ( 1?, and by
(0,1) the subobject of R given by the same formula. Note that

Except for the difficulty that we need our result to hold

"smoothly in fermionic parameters" (i.e., for generalized elements

given by fermionic objects), we could now just lift the integration
from the Dubuc topos to give our superspace integration in bosonic

parameters. Instead we must imitate the proof of the "Integration
Axiom" for the Dubuc topos, and check that the resulting bosonic

parameter integration commutes with Berezin integration in fermionic

parameters.
Before proceeding further, we must note:

PROPOSITION 3.4.3. The functor i: GC*-Mf-&#x3E; E extends to a functor

.from the category of graded CG’ &#x3E; manifolds wi th boundary, so as to

agree with the extension of the functor from smooth manifolds to the

Dubuc topos to smooth manifolds wi th boundary.
We continue to denote this extension by 1.

COROLLARY 3.4.4.

THEOREM 3.4.5. For a n y f E RCO,13 in E , there is a unique g E RCO, 13

such that g(D) = 0 and g’= f, where ( )’ denotes synthetic differen-
tiation in one bosonic parameter Ci.e., a-1 p2, where a: RxR -&#x3E; RD(1, 0) is

given by 

and a is invertible by L1 in the definition of superline).
We denote g(x) by (f (x) dx.

PROOF. Consider generalized elements f c RIO." of type 2(M)xSpec(V) &#x3E;

for M a C’-manifold, and W a graded Weil algbra. We then have a se-

quence of natural correspondences:
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dim(W)-tuples of maps i(Mx[0,1]) &#x3E; 4 Re in E (equiv. in Dubuc topos)

dim(W)-tuples of maps Mx[0,1] -&#x3E; R in the category of smooth
manifolds with boundary.

The passage to the Dubuc topos requires us to note that there are not

global non-zero maps from any bosonic object to RF (equiv. the bos-

onic sheafification of RF is 1).

We now integrate classically in each coordinate and reverse the

sequence of natural equivalences to obtain the (generalized) element

g, noting that each equivalence "preserves (bosonic) differentiation"

in the evident sense.

It is then an easy consequence of cartesian closedness that:

PROPOSITION 3.4.6. The value of iterated integrals in several

parameters (of possibly mixed types) is independent of the order of

integration.

A final note on integration: the synthetic approach makes clear

why the "differentiatiuon backwards" aspect of integration must be

lost in notions of integration applicable to superfields.

Consider the definition of differentiation in a lined topos:

f’ : R-&#x3E;R is the unique function such that
V x E R V d E D f (x+d)- f(x)= df’(x).

When we pass to a superlined topos, and replace D by D (1,1) &#x3E;

(the object of 2-nilpotents in the super setting), no such function

exists in general: instead there is a unique function f’: R e M (1,1),
where M (1 ,1) is the object of (1,1)-square supermatrices. It is thus

impossible to identify functions with vector-fields on the superline
by any "superEuclidean metric" and thus to identify integration of

superfields with genuine anti-differentiation.
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