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A RIGHT EXACTNESS PROPERTY
FOR INTERNAL CA TEGORIES

by Dominique BOURN

CAHIERS DE TOPOLOGIE
ET GÉOMÉTRIE DIFFÉRENTIELLE

CATTGORIQUES

Vol. XXIX - 2 (1988)

RÉSUMÉ. Etant donne une categoric E exacte A gauche et

Barr-exacte, on 6tablit une propriety d’exactitude a droite pour
Cat E et plus g6n6ralement pour n-Cat E , tout A fait analogue à
la Barr-exactitude elle-m6me, mais "relative" à une classe

particuli6re de morphismes E. Pour cela, on est amen6 A d6mon-

trer que, si on note In la classe particuLi6re a n--Cat E, la

fibration

est non seulement un champ pour la topologie des épimorphismes
de 1:n mais poss6de encore des propri6t6s plus g6n6rales de

"descente".

Here is the second of the two papers announced in [5] and con-

cerning right exactness properties of the category Cat E of internal

categories in a left exact and Barr-exact category E.
When E is exact in the sense of Barr (Barr-exact, for short)

[1], the category Simpl E of simplicial objects in E is again Barr-
exact. It is very disappointing that the category Cat E does not

seem to behave so well with respect to this kind of exactness pro-

perty and it is probably the reason why the category Simpl E is

often prefered to it C?, 13].

Nevertheless the development of a general cohomology theory for
an exact category E (summarized in [3]), using internal n-groupoids
as a non-abelian equivalent to chain complexes of length n, made it

necessary to understand precisely what kind of right exactness pro-
perty does exist in Cat E and more generally in n-Cat E.

Actually it appeared that some important stability properties
can be obtained, in this direction, for Cat E, when E is left exact

and Barr-exact. The first one (vertical stability) is that the functor

( )o: Cat E .... E is a fibred reflexion (i.e., a peculiar kind of
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fibration) which is a Barr-exact fibration: each fibre is Barr-exact

and each change of base functor is Barr-exact [2]. The second one

(horizontal stability) is that the fibration ( )o is a stack for the

regular epimorphism topology in E 121. The first result implies that
every ( )o-invertible equivalence relation has a ( )o-invertible

quotient, the second one that every ( )o-cartesian equivalence
relation has a ( )o-cartesian quotient.

Now, regarding the complementary aspect of the two stability
properties, a question naturally arises: is there a class of

equivalence relations in Cat E, including the ( )o-invertible and the

( )o-cartesian ones, which always have a quotient? Or, equivalently,
is there in Cat E a class E of regular epimorphisms, including the
( )o-invertible and the ( )o-cartesian ones, towards which the

category Cat E behaves as the category E behaves towards the class

of all regular epimorphisms? In other words, is there a kind of

relative Barr-exactness property for Cat E ?
The aim of this paper is to give a positive answer to this

question. The class E, in concern is the class of internal functors

f1: Xi e Yi, having their canonical decomposition f1c.f1i (where f1c is

( )o-cartesian and f1 is ( )o-invertible) such that f1c is a ( )o-

cartesian and f, ’ a ( )o-invertible regular epimorphism (or equival-
ently, internally full functors which are epic on objects).

In our mind, such a positive answer is of some interest only if

the proposed class has a good stability property with respect to the
iterative construction of the categories n-Cat E of internal rr

categories in E. Actually it is the case. Indeed, the functor ( )1 :

2-Cat E -) Cat E which is known as a Barr-exact fibration is again a
stack for the Ei-regular epimorphism topology in Cat E, and this is

the beginning of an iteration process.

In fact we shall investigate this question for a general fibred
reflexion c : V -) W which is Barr-exact as a fibration and a stack

for a E-topology in W . The main difference with the case of the

fibred reflexion ( )o is that c is no more supposed to be left exact.
An equivalent condition for c to be a stack for a E--topology is the

following one: every c-cartesian equivalence relation in V, above a E-
exact diagram in W can be completed in a c-cartesian exact diagram
above the given E-exact diagram. Then our main result asserts that

this property can be extended from c--cartesian equivalence relations
to c-full equivalence relations, where a c-full morphism in V is a

morphism whose c-invertible part is a regular epimorphism. Or, more

roughly, that something more general than a descent data can even be
descended.
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One of the interest of taking a general fibred reflexion c, is

that this result can be also applied to the quotient functor q:
Rel E -&#x3E; E when E is Barr-exact. Indeed it is a Barr-exact fibred

reflexion and a stack for the regular epimorphism topology.
As a by-product, it is shown that this functor q preserves

(beside products) a large number of pullbacks, namely those with an
edge a q-cartesian morphism, those with an edge a q-invertible regul-
ar epimorphism and consequently those with an edge a composite of

the two previous ones. The obstruction to the total left exactness of

q being only due, for any morphism fi: R1 -&#x3E; R’, in Rel E, to its q-
invertible monic part.
CONTENTS. I . The fibred reflexions

II. The Barr-exact fibred reflexions

III. The c-full morphisms
IV. The main result: c-full morphisms and stacks
V. The E-exactness property

VI. The Mn-exactness property for internal n-categories.

I. THE FIBRED REFLEXIONS.

This first section is devoted to some recalls and results about

fibred reflexions which are the main tool in this setting, and about
the factorization system they produce. A fibred reflexion appears to

be, up to equivalence, a fibration with a terminal object in each

fiber. The two principal examples are introduced: the functor ( )0:
Cat E-) E where E is left exact, the quotient functor q: Rel E -&#x3E; E
where E is Barr-exact.

1. THE FIBRED REFLEXIONS.

Let us consider the following situation:

where d is fully faithful and c a left adjoint to d. Then c is called
a reflexion.

A morphism f : V-&#x3E; V’ in V is c-invertible if c(f) is an isomor-

phism and c-cartesian if the following square is a pullback:
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The c-cartesian morphisms are stable under composition. If the

morphisms g.f and g are c-cartesian, such is the morphism f. A

morph ism dh: dw e dw’ is always c-cartesian. The c-invertible

morphisms are those which satisfy the diagonality condition of a

factorization system 16, 15J with respect to the c-cartesian mor-

phisms [5], A morphism which is both c-invertible and c-cartesian is

invertible. Furthermore, if in a commutative square a parallel pair of
edges is c-cartesian and the image of this square is a pullback, then
the given square is itself a pullback. It is the case when a parallel
pair of edges is c-cartesian and the other one is c-invertible.

The obstruction for c to be a fibration is the lack of an

existence condition for cartesian morphisms. This is the meaning of

the following definition.

DEFINITION 1. A reflexion c: V e W is called a fibred reflexion if

the pullback in V of any c-invertible morphism along a c-cartesian

morphism does exist, the parallel edges in this square being in the

same classes.

REMARK. A fibred reflexion is, up to equivalence, a fibration: let c/V

be the category whose objects are the triples (X,t,Y) with X an object
in V, Y an object in W and t a morphism X -4 dY which is c-invert-

ible. The morphisms are the pairs (f,h) with f: X -&#x3E; X’ and h: Y -&#x3E; Y’

such that f.t’ = t.dh. There are two functors:

with

with

Then 8e is an equivalence of categories and, when c is a fibred ref-

lexion, then c’ is a fibration. For any object w in W , we (improperly)
denote by Fib,[wl the fiber of c’ over w. On the other hand, this

functor c’ has a right adjoint right inverse d’. Consequently each

fiber of the fibration c’ has a terminal object. So a fibred

reflexion appears to be, up to equivalence, a fibration with a

terminal object in each fiber..

If c is a fibred reflexion, we have two important results:
1. Any morphism in V has a unique, up to isomorphism,

decomposition fl-fl, with fc c-cartesian and fl c-invertible, given by
the following diagram in which the right hand square is a pullback
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2. LEMMA 1. The c-cartesian morphisms are stable under

pullback whenever they exist, and such pullbacks are preserved by c.

(Cf. 151.)

THE MAIN EXAXPLES.

1. A category E is called weakly left exact if it has a terminal

object 1, if the kernel pair of a morphism always exists, as well as
the pullback of a split epimorphism along any morphism.

An internal category Xi in E is a diagram in E:

such that m2X1 is the vertex of the pullback of do along di and

satisfying the usual unitarity and associativity axioms. The internal
functors are the natural transformations between such diagrams. We

shall denote by Cat E the category of internal categories in E. It is

again weakly left exact and there is a canonical functor ( )o asso-

ciating Xo to Xi:
( ) o : Cat E --&#x3E; E

which has a fully faithful right adjoint Gr and a fully faithful left

adjoint dis [2). Hence the functor ( )o is both left and right exact.
If E is left exact (i.e., has a terminal object and pullbacks),

then ( )o is a fibred reflexion which is moreover left exact. Thus,
for any object X in E, GrX and disX are respectively the terminal

object and the initial object in the fiber over X.

The C )o-cartesian functors are the internally fully faithful

functors and the ( )o-invertible ones are the "bijective on objects"
functors [2].

2. An internal category is a groupoid when the following square
is a pullback:
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Grd E will denote the full subcategory of Cat E whose objects are

the internal groupoids.
An equivalence relation is an internal groupoid X, such that the

map X, -4 Gr Xo is a monomorphism. We shall denote by Rel E the full

subcategory of Grd E whose objects are the equivalence relations, by
dis: E -4 Rel E the restriction of the previous dis: E -&#x3E; Cat E, and

by ( )o the composite

Now we suppose that E is Barr-exact; it means that E is weakly
left exact and that every equivalence relation has a quotient Ci.e., a

coequalizer making this equivalence relation effective) which is

universal (i.e., stable under pullbacks along any morphism in E which

are supposed to exist). Then the quotient functor q: Rel E -&#x3E; E deter-

mines a left adjoint to dis. It is a fibred reflexion whose q-cart-
esian morphisms are the discrete fibrations [5].

With these conditions, the functor ( )o : Rel E fl E becomes

itself a fibred reflexion. For that, let us consider the following
diagram

If R’, is an equivalence relation and f: V .4 R’o a morphism in E , then
the kernel pair associated to p’.f (where p’: R’o AA Q’ is the quotient
morphism of R’, &#x3E; determines an equivalence relation R, and a functor

o1 : R, -1 R’, with o= f which is internally fully faithful.

Given any morphism f: V -&#x3E; V’, the equivalence relation R1 [f]
associated to the kernel pair of f will be called the kernel equi-
valence of f (or shortly the kernel of f). It is all the more just-
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ified as the following square is a pullback in Rel E and the object
dis Y is the initial object in the ( )o-fiber of Y:

RfiIfARg. According to [1], a diagram

is called left exact if the right hand part is the kernel equivalence
of the left hand morphism, and exact if, moreover, this morphism is

the quotient of this equivalence relation.

2. THE c-D I SCRETE CATEGORIES,

The following construction, recalled from (2), is the basic

construction allowing the iterative constructive process of the

categories n-Cat E and n-Grd E of internal n-categories and internal

n-groupoids in E. It is essential for us, keeping in mind that, when

E = A is an abelian category, the categories n--Cat A and n-Grd A

which are then the same, are equivalent to the category Cn(A) of

abelian chain complexes of length n [4],

Let c be a fibred reflexion. From now on, we suppose that it is

a weakly left exact fibred reflexion: the kernel pair of any c-invert-
ible morphism always exists and is c-invertible, in the same way as

the pullback of any c-invertible split epimorphism along any c-

invertible morphism. Our two main examples are weakly left exact

fibred reflexions.

A c-discrete category in V is an internal category such that

its image by c is discrete, or equivalently such that any structural
map of its diagram is c-invertible. We denote by CatcV the full

subcategory of Cat V whose objects are the c-discrete categories.
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There is a forgetful functor co: CatcV q V associating Xo to X1.

It has a fully faithful right adjoint Gc, given for any object V in V

by the kernel equivalence of V q dcV:

which does exist since XV is c-invertible. Then m(GcV) is nothing but
Vx,V, the product of V by itself in the fibre over c(V).

The restriction of the functor dis is again a fully faithful left
adjoint to co.

The functor E = c.co: CatcV -&#x3E; W has a fully faithful right
adjoint d= Ce.d = dis.d. It is the "fibration" of internal categories
associated to the "fibration" c: V -&#x3E; W . The c-invertible functors 11:

X, 4 Yi are such that fo and mf, are c-invertible.

PROPOSITION 1. The four following conditions are equivalent :
1. The functor f1 is c-cartesian.

2. The morphism fo is c-cartesian and f1 is a discrete

fi bra ti on .

3. The morphisms fo and mf are c-cartesian .

4. The morphism .fo is c-cartesian and the functDr’ f1 is co-

cartesian.

PROOF. The functor f, is c-cartesian iff the following square (*) is a

pullback:

Now, its image by the left exact functor co is a pullback:



117

and consequently fo is c-cartesian. The square (..) is a pullback in

CatcV, but, c being a fibred reflexion, it is a componentwise pull-
back. Furthermore Gc[dcfo], being also dis[dcfo) is a discrete fibra-

tion. Thus the functor f, is a discrete fibration.

If fi is a discrete fibration and fo c-cartesian, the following
square is a pullback and the morphism mf, is again c-cartesian:

Now when fo is c-cartesiant Gc (fo) is a discrete f ibration and foxcfo :

XoxcXo A YoxcYo is c-cartesian. If also mf1 is c-cartesian, then the

following square is a pullback:

since the two horizontal edges are c-cartesian and the two vertical

ones c-invertible. Thus the functor f, is cb-cartesian.

Finally if fo is c-cartesian and f, co-cartesian, then the two

following squares are pullbacks:

Now Gc being left exact, the following one is again a pullback as the
composite of two pullbacks:

It is the square (*) and f, is c-cartesian.
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PROPOSITION 2. The functor c is a fibred reflexion.

PROOF. Let Y, be a c-discrete category and h: W e cXo a morphism in

W . Then c being a fibred reflexion, the pullback of XXo along dh, as
well as the pullback of ÀXo.do = AXo. d1 along dh do exist and they
determine a functor h1: X1 -&#x3E; Y, which is a discrete fibration with ho
c-cartesian. Hence h1 is c-cartesian

Let us now consider the following commutative triangle between
the two fibred reflexions:

The functor cb commutes also with d and d. It associates a ë-

invertible morphism to a c-invertible one. Proposition 1 tells us

that co preserves the cartesian morphisms.
The same property holds for Gc : V -&#x3E; CatcV.

REXARK. We shall denote by GrdcV and RelcV the full subcategories of
CatcV whose objects are the c-discrete groupoids and the c-discrete

equivalence relations.

I I , THE BARR-EXACT F I ERED REFLEXIONS,

1. BARR-EXACTNESS.

DEFINITION 2. A fibred reflexion is said to be Barr-exact when it is

weakly left exact and when every c-invertible (or c-discrete) equi-
valence relation R, has a quotient which is universal.

The functor c being right exact, the quotient morphism p:
Ro -i-i Q is c-invertible. The universality condition means, here, that

the pullback of any c-invertible exact diagram along any morphism
does exist and is a c-invertible exact diagram.
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REMARK. In other words, the fibred reflexion c is Barr-exact if its

associated fibration c’: c/V fl W is Barr-exact: each fibre is Barr-

exact and each change of base functor is Barr-exact.

EXAMPLES. When E is Barr-exact, the two main examples are Barr-exact
fibred reflexions.

1. That the fibred reflexion ( )o: Cart E e E is Barr-exact if

E is Barr-exact is shown in E2h

2. We are going to show that, if E is Barr-exact, the fibred

reflexion q: Rel E -4 E is Barr-exact. First, remark that a q-
invertible morphism f1 : R1 ... R’1 is necessarily an internally fully
faithful functor, since the following diagram is a joint pullback,
p’. fo being equal to p.

Conversely, we have the following result:

LEXKA 2. A morphism f, : R, e R’, is internally fully faithful iff qf,
is a monomorphism.

PROOF. If qfi is a monomorphism, then the kernel equivalence of p is

the kernel equivalence of q(f1).p which is also p’.fo. Then the functor
f, is clearly internally fully faithful.

Conversely let f, : Ri e R’, be an internally fully faithful

functor. We denote by i..r the canonical decomposition of p’.fo as a

composite of a monomorphism and a regular epimorphism. f, being
internally fully faithful, r is necessarily a quotient morphism of R,

and q(fi) is, up to isomorphism, the monomorphism i.

LEXXA 3. A morphism fi: Ri e R’, is a q-invertible regular epimor-
phism in Rel E iff f1 is internally fully faithful and fo is a regular
epimorphism. Such morphisms are stable under pullbacks.

PROOF. If f, is q-invertible, by the above remark, it is internally
fully faithful and, the functor ( )a : Rel E -&#x3E; E being right exact (it
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has a right adjoint Gr), the morphism t’o is a regular epimorphism.
Conversely, if 11 is internally fully faithful, then q(fi) &#x3E; is a

monomorphism (Lemma 2). Furthermore if fo is a regular epimorphism
then q(fi) is a regular epimorphism. Thus f, is q-invertible. Now fo

being a regular epimorphism and f, being internally fully faithful, .f,

is a componentwise regular epic functor and consequently a regular
epimorphism in Rel E. Thus the pullback of fi along any morphism 81
does exist and is componentwise. It is a componentwise regular epi-
morphism. Moreover, it is clear that the internally fully faithful

functors are stable under componentwise pullbacks. Thus the q-
invertible regular epimorphisms in Rel E are stable under pullbacks,..

PROPOSITION 3. Wh en E is Bar:r--exa ct, the fibred reflexion q:
Rel E e E is Barr-exact.

PROOF. 1. The category E being weakly left exact, any morphism fi:

R1-&#x3E; R’, has a kernel pair which is a componentwise kernel pair. Thus
if f, is internally fully faithful, the kernel pair is fully faithful.

But this pair being split, it is a q-invertible pair. Thus any q-
invertible morphism has a q-invertible kernel pair.

2. Let us consider a q-invertible equivalence relation R, in

Rel E and set Ro= Ri and nR = P1 for sake of simplicity:

We denote by Q the common quotient of P, and R, and by Qo the

quotient of the image by the functor ( )0 of the previous diagram:

Then PR.po = pR.p’o and there is a regular epimorphism pQ: Qo A Q such
that pQ.po = pR. The kernel pair of pQ determines an equivalence
relation Q, which is the componentwise quotient of R1. The universal-

ity of this quotient is given by Lemma 3.
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REXARK. By Lemma 2 the canonical mono-epi factorization in E appears
to be, via the functor dis, the image by q of the canonical ( )o-

cartesian-( C )o-invertible factorization in Rel E.

2. PROPERTIES OF THE BARR-EXACT FIBRED REFLEXIONS.

Let Rel,V be the category of c-discrete equivalence relations in

V and co; RelcV-&#x3E; V the restriction of co: CatcV -&#x3E; V.

LEKKA 4. The reflexion co : Rel,,V 4 V is a fibred reflexion.

PROOF. Let R’, be a c-discrete equivalence relation and f: X 4 R’o be a

morphism in V. Its canonical decomposition is fc.fi. We have the

diagram:

where fc.r is the canonical decomposi tion of pl.f,,. The square (*) &#x3E; is a

pullback (a pair of parallel edges is c-cartesian, the other one c-

invertible). Then r is a c invertible regular epimorphism. TT is he

vertex of its kernel pair, which determines an equivalence relation Z,

and a morphism 11: Zi -i R’i which is a discrete fibration such that o
= fc is c-cartesian. It is (Lemma 1) cc-cartesian. TT’ is the vertex of

the kernel pair of Ffl which determines an equivalence relation X,

and a functor ’11: X, A Z, which is internally fully faithful in the

fibre Fibc[cQ], that is co-cartesian.

Now c = c.co: RelcV -+ W admits 0= Gc.d = dis.d as a fully
faithful right adjoint. It is a fibred reflexion as a composite of

fibred reflexions. The functor dis: V e RelcV is cartesian above W :
it preserves cartesian morphisms. Now, if c is Barr-exact, the

functor dis has a left adjoint q,: RelcV -&#x3E; V. It is clear that c.qc is

naturally isomorphic to c.

The aim of this section is to show that qc is again a Barr-

exact fibration and to characterize the q,-cartesian morphisms.
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PROPOSITION 4. Th e functor qc is a fibred reflexion. 

PROOF. Given a c-discrete equivalence relation R’, and a morphism h:

V-&#x3E; qcR’i in V , the pullback along h in V does exist by the univers-
ality condition and it determines a c-discrete equivalence relation R,
with a functor h, : Ri fl R’i, which, by construction, is qc-cartesian.

PROPOSITION 5. The functor qc is cartesian between c and c: the images
by qc of a c-cartesian morphism is always c-cartesian . Moreover a c-
cartesian morphism is necessarily a qc-cartesian morphism.

PROOF. As the fibration 6 is, up to isomorphism, the composite of the
two fibrations c.qc, a c-cartesian morphism is just a qc-cartesian
morphism above a c-cartesian one. ·

PROPOSITION 6. A morphism fi: Ri e R’, is qc-cartesian iff it is a

discrete fibration.

PROOF. For any h: V -&#x3E; V’ in V , the morphism dish is a discrete fibra-
tion. Then if the following diagram is a pullback, f, is a discrete

fibration:

Conversely, let f1: R1-&#x3E; R’, be a discrete fibration, and t1 .Ø1 its

canonical decomposition with ’11 ccartesian and o1 c-invertible. By
Proposition 5, the functor Y1 is qc-cartesian and therefore a discrete
fibration. Thus o1 is a discrete fibration, which lies in the Barr-

exact fibre Fibc[cRo]. Hence §i is q,-cartesian (see 15) Lemma 4) &#x3E; and

f, as f1 .;1 is qc-cartesian. 

REXARK. A qc-invertible morphism is always a c-invertible morphism.

PROPOSITION 7. The functor q,: Relcv e V is itself a Barr--exact

fi bred reflexion.
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PROOF. Let us consider the fibration c : Rel V 4 W . For any object W

in U, the fibre Fibsvl J is the category Rel (Fib,(Wl) and the restric-

tion of qc to Fib,[Wl is just the quotient functor

relative to the Barr-exact category Fibclvl.
Now for any object V of Fib,[W],. the fibre Fibqc [V] is Fibq[Vl

which is Barr-exact following Proposition 3. Thus the quotients of

the qc-invertible equivalence relations do exist and are component-
wise. These qc-invertible quotients, being componentwise, are pre-
served by pullbacks because of the universality conditions given by
the Barr-exactness of the fibration c. 

REMARK. Thus, by Lemma 1, the functor qr preserves the pullbacks in

which one edge is a discrete fibration.

3. THE FUNCTOR rc FOR c- D ISGRETE GROUPOIDS. 
In the same way as in the absolute situation E is a. Barr-exact

category) 151, in the relative case (c a Barr-exact fibration), the

functor qt: RelcV -&#x3E; V can be extended to a functor rc : Grdcv fl V , 
left adjoint to the functor dis: V -&#x3E; GrdcV where GrdcV is the categ-
ory of c-discrete groupoids in V. But, the category V being not

supposed left exact, the functor cb: Grd,V 4 V is not, a priori, a

fibred reflexion and it is not possible to use the same argument. The
aim of this section is to give a construction of xc and to establish

its properties.

The construction of rc. Let X, be a c-discrete groupoid and

denote by A1X1 the canonical projection X, -4 GcXo. Then (XiXi)o = 1xo
and m(A1X1) : mX1 -&#x3E; XoxcXo is the factorization of the pair

in the fiber Fibc[cXo]. It is a c-invertible morphism. Its canonical

decomposition is denoted by ".ø, with a c-invertible regular epi-
morphism and ? a c-invertible monomorphism. Whence the following
diagram:
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Now if T’ is the vertex of the kernel pair of di: T-&#x3E; Xo, we get (Xi

and GcXo being two groupoids) two morphisms

with g’ a c-invertible regular epimorphism and y’ a c-invertible

monomorphism. It is then possible to complete the following diagram
in such a way that the vertical central diagram is a c-discrete

groupoid Z1 :

Now being a monomorphisn, Z, is an equivalence relation. This cons-
truction determines a functor

(the co-support functor) which is a left adjoint to the inclusion 1:

RelcV -&#x3E; GrdcV. On the other hand, the fibred reflexion c being Barr-
exact and a c-invertible regular epimorphism having a pullback along
any morphism in V, the functor co-supp is again a fibred reflexion.

REXARK. The functor co: GrdcV -4 V being equal to

we can prove, by Lemma 4, that this functor oo : GrdcV -4 V is again a
fibred reflexion. Whence a functor

left adjoint to dis: V e GrdcV, which is a fibred reflexion as a

composite of f ibred reflexions. All the .elements of this construction

dealing only with c-invertible morphisms, there is a natural isomor-

phism between C.1r.: and c.
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We are now going to characterize the xc-cartesian morphisms.

PROPOSITON 8. The functor re is cartesian between c and c: the image
by 7r, of any (i-cartesian morphism is c-cartesian. Moreover every c-
cartesian morphism is rc-cartesian.

PROOF. The functor c.7rc is C up to isomorphism. All these functors

being fibrations, a c-cartesian morphism fi is exactly a rc-cartesian
morphism such that re (f1) is c-cartesian. 0

PROPOSITION 9. A functor 11: X, 1 -&#x3E; Y 1 in GrdcV is irc-cartesian iff f1

and co-supp(f1) are discrete fibr-ations.

PROOF. A 1t’ c-cartesian morphism is exactly a co-supp-cartesian mor-

phism such that co-supp (f1) is qc-cartesian. That means that

co-supp (f1) is a discrete fibration and that the following square (*) &#x3E;

is a pullback:

The lower functor being a discrete fibration, the square (*) is a

pullback iff f1 is a discrete fibration, since the vertical arrows are
co-invertible.

Thus, starting from a fibred reflexion c, we have obtained the

following commutative diagram of cartesian adjunctions between the

fibred reflexions c and 2i

REXARK. The functor nc is a fibred ref lexion but is no more Barr-
exact as it is the case for gc. It is not even weakly left exact. To
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see that, we consider the canonical presentation of an internal

groupoid Xi in any Barr-exact category E [5):

The internal functor eX, is a discrete fibration. It is no-cartesian

iff X, is an equivalence relation. If not, let us denote by 1’1.0’1 the

canonical decomposition of eXi with r, ro-cartesian and ri no--invert-

ible. As xo-cartesian, the functor Ti is a discrete fibration, then ri

is also a discrete fibration. The kernel pair of ri lies in Rel E

since DecX, is in Rel E. Its projections being discrete fibrations,
this kernel pair cannot be no-invertible (if not X, would be certainly
an equivalence relation).

III. THE c-FULL MORPH ISMS,

1. DEFINITIONS AND FIRST PROPERTIES.

Let c be a Barr-exact fibred reflexion.

DEFINITION 3. A morphism .f: V -&#x3E; V’ in V is said to be c-faithful

when its c-invertible part fl is a monomorphism and c-full when its

c-invertible part fi is a regular epimorphism.

EXAMPLE. This terminology is suggested by our first main example: if

E is Barr-exact and left exact, the ( )o-faithful and the ( )o-full

functors are just the internally faithful and the internally full

functors.

The class of c-full morphisms will be denoted by c-Full.

Properties of c-Full:
1. An isomorphism is c-full.

2. The composite of two c-full morphisms is c--full.

To see that, we consider the following diagram, where F.gi is the

canonical decomposition of gl.fl. The square (*) is a pullback since
the horizontal edges are c-cartesian and the vertical ones are c-

invertible. Consequently ii is a regular epimorphism when gl is a

regular epimorphism and g.f is c-full when g and f are c-full.
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3. PROPOSITION 10. The c-full morphis1Ds are stable under

pullbacks whenever they exist. gareover such pullbacks are preserved
by c.

PROOF. Let us consider the following pullback where f,,.fl is the can-

onical decomposition of a c-full morphism f :

Then if f’r.fl’ is the canonical decomposition of f’, the diagonality
condition gives us a morphism ti Y -&#x3E; Z making the two squares com-
mutative. Now we consider the pullback of f’ along l which does exist
since c is Barr-exact and fl is a c-invertible regular epimorphism:

Then oi is a c-invertible regular epimorphism, and fli being c-

invertible, the factorization y : U 4 V is c-invertible. The above

square ((1)+(2)) being a pullback, there is a unique X : V -&#x3E; U such

that 

It is clear that X.y = 1. As Y is c-invertible, we have c(X) = c(y)-1.
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Let us prove that Y.X= 1. For that we must prove that; s.’f.X =
; j. But

Then, f’c being c-cartesian, it is sufficent to prove that cY.cX = 1.

That is true.

Hence the square (1) is a pullback. f’i a c-invertible regular
epimorphism and f’ = f’c.f’i a c-full morphism.

Let Ri and R’, be the c-discrete kernel equivalences associated
to fl and f ". The morphisms h and t determine a morphism h1: Ri A R’i
which is a discrete fibration since the square (1) is a pullback.
That the square ((1)+(2)) is a pullback implies that the following
square is a pullback in RelcV :

where the two vertical edges are discrete fibrations and thus qc-
cartesian morphisms. Consequently, following Proposition 6 and Lemma
1, this pullback is preserved by qc and the square (2) is a pullback.
The pullback (1) is preserved by c since f’ and f’’ are c-invertible,
and the pullback (2) is preserved by c since f and f 1,1 are c-

cartesian (again by Lemma 1 ) .. 

REXARK. It is very surprising that, when c is a Barr-exact fibred

reflexion, the functor c, although being not supposed to be left

exact, preserves such pullbacks. The pullbacks with one edge a c-

invertible monomorphism are not preserved in general. The obstruction
to the total left exactness of c is thus only due, for any morphism
f: V A V’ in V, to the c-invertible monomorphism part of fi.

In particular, this result is true for the quotient functor q:
Rel E -) E in a Barr-exact category E, which therefore appears to

preserve (besides products) a large number of pullbacks.

We are now going to establish a proposition which we need later
on and which is a generalization of Proposition 8 and a kind of

particular case of Proposition 10.
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PROPOSITION 11. Let f, : X1-&#x3E; Y, be an internal functor in Grdcv such

that f1 is co- cartesian and fo c-full . Then rc (f1) is c-cartesian. Such

11Jorphisms are stable under pullbacks (whenever they exist) and such

pullbacks are preserved by rc.

PROOF. Let ’11.; be the canonical decomposition of f, with o1 a c-

invertible and ,/1 a c-cartesian functor. Following Proposition 1, y,
is cb-cartesian and consequently such is o1. On the other hand rc (y1) 
is, following Proposition 8, c-cartesian.

Now, is a cb-cartesian morphism in the fiber Fib,(cXol, then

rc(Ø1) is a c-invertible monomorphism, The morphism oo being a c-

invertible regular epimorphism Cfo c-full), rc(o1) is also a c-

invertible regular epimorphism. Thus rc(o1) is an isomorphism and

rc (f1) - - rc(y). rc(o1) is c-cartesian.

The functor o1 is rc-invertible. On the other hand the morphism
fo being c-full and o1 being also co-cartesian, this functor o1 is a

regular epimorphism in GrdcV. Thus, although the fibration rc is not

Barr-exact, the functor f, appears to be a xc-full morphisms.
It is then possible to mimic Proposition 10. For that let us

consider the following pullback where is c-invertible and Y’i is

c - cartes ian :

Then, by the diagonality condition, there is a functor fi: Z’i -&#x3E; Zi

making the two squares commutative. If f1 = Y1-o1 is co-cartesian,
such is P, = ’1’1.;’,. Since Y1 and ,/’1 are again cb-cartesian (Prop-
osition 1), all the horizontal arrows are a-cartesian. The image by
co of the given square (1)+ (2) is also a pullback with the edge fo=
o c-full, hence f’o = Y’o. o’o is c-full and the functor f’, is co-

cartesian and f’o c-full.

On the other hand, following Proposition 10, the image by co of

the squares (1) and (2) are pullbacks. Therefore the horizontal

arrows being co-cartesian, the squares (1) and (2) are themselves

pullbacks. The square 1tc(2) is a pullback (Proposition 8 and Lemma

1). The morphisms rc (o1) and rc (o’1) being isomorphisms, the square
rc(1) is a pullback..
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1 V , THE MAIN RESULT; c-FULL MORPHISMS ANQ

STACKS.

1. STACKS.

A class E of morphisms in a weakly left exact category W will

be called a pr-oper class if it satisfies the following conditions:
1. every isomorphism is in E,
2. E is stable under composition,
3. the pullback of a morphism in E along any morphism in

W does exist and is again in E.

EXAMPLES. The examples we have in mind are the following:
When c is a left exact fibred reflexion:

1. the class of c-invertible morphisms,
2. the class of c-cartesian morphisms.

When c is a Barr-exact fibred reflexion:

3. the class of c-invertible regular epimorphisms.
When c is a left exact and Barr-exact fibred reflexion:

4. the class cFull of c-full morphisms.
When E is left exact:

5. the class of discrete fibrations.

The proper class F will be called topologically proper when,

furthermore, every morphism in r is a regular epimorphism (a

coequalizer of its kernel pair). This last definition is given to

yield a Grothendieck topology in W (also denoted by D.

DEFINITION 4. A ¿-groupoid (resp. a E-equivalence relation) in W is a

groupoid X, (resp. an equivalence relation) in W such that the pair
(d0,d1) : mX1 -&#x3E;X0 is in E.

A E-exact diagram is an exact diagram in which every morphism
is in E.

Given a topologically proper class P in W, we recall that an

equivalent condition for a fibration c: V -7 W to be a stack [11,12]
for the topology T is the con junctipn of the two following properties:

1. every c-cartesian diagram above a r-exact diagram is exact,
2. every c--cartesian equivalence relation above a r-equivalence,

relation, part of a F-exact diagram, can be completed in a c.-

cartesian diagram above this r-exact diagram (see 121).

The aim of this section is mainly to show that if c is, at the

same time, a Barr-exact fibred reflexion and a stack for a topology
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r, the property 2 for stacks can be extended from c-cartesian equi-
valence relations to c-full equivalence relations. More roughly:
something more general than a descent data can even be descended.

EXAMPLES. Our two main examples are stacks for the regular epimorph-
ism topology (where r is the class of all the regular epimorphisms):

1. That, if E is left exact and Barr-exact, the fibred reflexion
( )o: Cat E -) E is a stack for the regular epimorphism topology is

shown in [2].

2. PROPOSITION 12. If E is Barr-exact, the quotient functor q :
Rel E -&#x3E; E is a stack t’or the regular epimorphism topology,

PROOF. It is clear that a q-cartesian diagram above an exact diagram
is a componentwise exact diagram in Rel E and consequentely is an

exact diagram in Rel E.
Let R1 be an equivalence relation in Rel E such that every

structural map is q-cartesian and its image by q is an equivalence
relation (it is certainly a groupoid, but not in general an equi-
valence relation). To simplify, we denote Ro by S, and mRi by Ti.

Whence the following diagram in E:

where K and Qo denote the quotient of the equivalence relations, image
of R 1 by the functors q and ( )o. Since 0, is q-cartesian, the

morphism p1 : (Ri)o -+4 qR1 determined by psi 1 and pT1 is a discrete

fibration and consequently q-cartesian. Then its kernel pair is

preserved by q and determines an equivalence relation Qi, by means of
the factorizations (d0,d1) : mQ1-&#x3E; Qo, and a componentwise quotient
morphism pi: Si -&#x3E;-&#x3E; Q, which is a discrete fibration and thus q-
cartesian.. 0
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2 . THE c- FULL KORPHISKS AND THE STACKS.

From now on, c: V -) W will be supposed to be a Barr-exact

fibred reflexion and a stack for a topology r .

DEFINITION 5. A morphism f: V -&#x3E; V’ is called a c-f-morphism if f is

c-full and c(f) is in r; the class of c-f-morphisms is denoted c-f .

PROPOSITION 13. A c-T-morphism f is a regular epimorphism.

PROOF. The morphism f being in c-r, its c-cartesian part fc is a

regular epimorphism since c is a stack and its c-invertible part fi

is a regular epimorphism, since f is c-full, which is stable under

pullbacks since c is Barr-exact; hence f = fc.fi is a regular
epimorphisrn . ·

PROPOSITION 14. The class c-r is proper. Moreover any pullback wi th

an edge in c-T is preserved by c .

PROOF. Condition 1 is obviously satisfied. Now if f and g are in c-t’,

g.f is c-full and c (g.f) = cg.cf is in f. Let f: V -&#x3E; V’ be a c-f-

morphism and k: U’ -4 V’ any morphism in V. The pullback of c(f)

along c(k) does exist in W since c(D is in r, and consequently the

pullback of the c-cartesian morphism fe above c(f) along k. Since fi

is a c-invertible regular epimorphism, its pullback along any

morphism does exist, hence the pullback of f along k exists:

Following Proposition 10, f’ is c-full and the image by c of this

square is a pullback in W . Then cf is in T according to condition 3,
and f’ is in c-r. ..

COROLLARY. If T is a topologically proper class in W and c: V-&#x3E; W a

Barr-exact fibred refleyion which is a stack for the topology r , then

c-T is a topologically proper- class i n V ,

RENARK. Proposition 13 means that any left exact c-full diagram
above a r-exact diagram is exact. It can be seen as an extension of

the property 1 for a stack from c-cartesian diagrams to left exact
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c-full diagrams. The fact that these diagrams must be left exact is

only an apparent restriction since any c--cartesian diagram above a

left exact diagram is always left exact.

3. THE c-DISCRETE GROUPOID ASSOCIATED TO A c-T’-GROUPOID.

It is much more difficult, and essential for us, to extend

property 2 for a stack from c-cartesian equivalence relations to c-

full equivalence relations.
Let X1 be a c-r-groupoid in V. Then do and d1 are c-full, and,

following Proposition 10, its image cX, by the functor c is again a

groupoid.

PROPOSITIOIF 15. Every c-r-gr-oupold X1 has an associated c-discrete

groupoids X1. If X1 is an equivalence relation, such is X1. 

PROOF. Consider the following pullback in Grd V :

It does exist as a componentwise pullback since the internal functor
X, e dcX, is componentwise c-invertible. The X1 is a c-discrete

category since cX1- is isomorphic to dis(cXo) and it is easy to check

that this construction ( )- is a right adjoint to the inclusion i :

GrdcV -4 Grdc-rV, where Grdc-rV is the full subcategory of Grd V

whose objects are the c-r-groupoids . By construction m(a1X1) :

mX, N e mX1 is c-cartesian above c(so) : cXo --&#x3E; c»Xi and thus it is a

monomorphism. If X, is an equivalence relation, then the pair (do,d1) :
mX1-&#x3E;Xo is jointly manic, thus the pair (do,di): mX1-Xo is jointly
monic and X1- is an equivalence relation..

Let us now consider the following commutative triangle:
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The functor ( )o is no more a reflexion nor a fibration. However

there are two classes of morphisms which are of some interest for us
in Grdc-rV: the discrete fibrations and the internally fully faithful

functors.

PROPOSITION 16. The functor ( )- preserves the discrete fibr-ations.

PROOF. Let fi: X1-&#x3E; Y, be a discrete fibration, then the following
square is a pullback:

d, being in c-T this pullback is preserved by c and the functor cf,

is a discrete fibration. Hence the following- square is a pullback:

and therefore, .m(a1X1) and m(a1Y1) being c-cartesian above the

morphisms cso, the following square is again a pullback, what implies
that f1-: X1- -&#x3E; Y1- is a discrete fibration:

PROPOSITION 17. Let f, : X, -&#x3E; Yi be an internally fully faithful .functor
in Grdc-rV such that fo is in c-T ; then its image by the functor ( )-

is cb-cartesian.

PROOF. That f, is internally fully faithful means that the following
diagram is a joint pullback:
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We first remark that, the morphism for being in c-r, this joint

pullback can be constructed by means of three pullbacks in V with

edges in c-T :

Therefore mf1 is in c-f. These three pullbacks being preserved by c,

the functor cfi: cXi d cY, is internally fully faithful in Grd W .

Let f.,I.fol f be the canonical decomposition of for. It determines a

decomposition y1, o1 of f, where o1 : X, d Z, is internally fully faithful
and ’0 = fo’ f is a c-invertible regular epimorphism and where 11:
Zi d Y, is internally fully faithful and ,/0 = f’o c is c-cartesian.

a) Let us prove that y1- is cb-cartesian. By our first remark

my1, is again c-cartesian. We consider the two following diagrams in

Grdc-rV:

The square (1)+(2) is equal to the square (3)+(4). Now the squares
(2) and (3) are pullbacks by construction. The square (4) is a

componentwise pullback since yo. and 1ll’f1 are c-cartesian. Then the
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square (1) is a pullback, what means that y1- is c-cartesian. It is

therefore co-cartesian (Proposition 1).

B) Let us prove that o1- is co-cartesian . By our first remark mØ1
is again a c-invertible regular epimorphism. We consider the two

following diagrams in V:

The double square (1)+(2) is equal to the double square (3)+(4). The

double square (4) is a joint pullback since o1 is internally fully
faithful. The double square (2) is a joint pullback since o0 is c-

invertible. The square (3) is a pullback since its vertical edges are
c-cartesian and its horizontal ons are c-invertible. Consequently the
square (1) is a pullback and o1- is co-cartesian. 0

4. THE UIT IVERSAL REPRESENTATIVE OF THE INTERNAL NATURAL

TRANSFORMATIONS.

Let E be a weakly left exact category and X, an internal

category in E. The standard simplex [1] J is actually a category and it
is clear that X1 [1] (the cotensor of the internal category X, by [1])

is the domain of the universal internal natural transformation with

codomain X, (see [14]). This internal category will be called the uni-
versal representative of the natural transformations and denoted by
Com Xl- In the category Set of sets, the objects of Com X, are the

morphisms of Xi, and its morphisms are the commutative squares

("quatuors" in [9]).

Whence the following diagram, with the universal natural

transformation 8 : 60 -&#x3E; Ô 1 :
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The trivial identity natural transformation between the identity
morphisms on X, and itself yields a o0 : X, d Com X, such that

Furthermore the universal property of Com X, makes 60 a left adjoint
to ro and 61 a right adjoint. On the other hand the construction

Com Xi extends to a 2-functor Com: Cat E -&#x3E; Cat E. If the category X1

is c-discrete, then Com Xi is c-discrete. If X, is a groupoid, then

Com X, is a groupoid.
In this last case, there is a very strong connexion between the

2-categorical structure of Grd E and the fibration ( )o : Grd E-&#x3E; E.

PROPOSITION 18. An internal category X, is an internal groupoid iff

Ô1: Com X, d X, for equivalently 60) is ( )o-cartesian above d1:

mX, -&#x3E; Xo (resp. do).

PROOF. If Xi is a groupoid, then 61 being a right adjoint between two

groupoids is an equivalence and thus internally fully faithful, that

is ( )o-cartesian. The converse is pure diagram chas ing . 0

In the same way, when c: V d W is a weakly left exact fibred

reflexion, we have the following result:

COROLLARY. A c-discrete category X, is a c-discrete groupoid iff 61 :

Com X, e X, is co- cartesian.

REMARK. If X, is an internal groupoid in a weakly left exact category
E then [60,61] : Com Xi d X, xX, is a discrete fibration.

This result is clearly true in Set and consequently in any

weakly left exact category E via the Yoneda embedding.

5. THE c-CARTESIAb GROUPOID ASSOCIATED TO A c-T-GROUPOID.

Let X, be a c-r-groupoid in V and let us consider the following
internal groupoid in Grdc-rV: 
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where Com2X1 is the universal representative of the triangles of

natural transformations (namely X1 [2]). The functor ( )- is left exact

and yields an internal groupoid in Grd,V:

Now So and 61 are internally full and faithful, moreover (80)0 = do

and (61)0 = di are in c-T. Hence, following Proposition 17, the

internal functors 6o- and 61- are co-car tesian. Then

are again in c-r; and so, following Proposition 11, the following
diagram is a groupoid with every structural map c-cartesian:

We call this groupoid the c-cartesian groupold associated to X1

and denote it by Xi". Now c [rc(60)-)] is, up to isomorphism, c(do) and

consequently lies in r.

Grd,-,.,tV will denote the full subcategory of Grdc-rV whose

objects are the internal groupoids in V such that each structural

map is c-cartesian above a map in r. It is not difficult to check

that the functor ( )- is a right adjoint to the inclusion

6. THE MAIN RESULT.

We are now ready to extend the condition 2 for a stack from c-

cartesian equivalence relations to c-r-equivalence relations.
Let Ri be a c-r-equivalence relation. First observe that if C(R1)

is certainly a r-groupoid, it is not necessarily a r- equivalence
relation.

PROPOSITION 19. Everv c-f-equivalence relation above a r- equi valence
relation, part of a f-exact diagram, can be colnpleted in a left exact

c-r-diagram above the given r-exact diagram.
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REXARK. That means that, under the conditions of Proposition 19, this

c-r-equivalence relation has a quotient, since a c-r-morphism is

always a regular epimorphism (Proposition 13).

PROOF. Let R, be the given c-r-equivalence relation. By hypothesis its

image cR, is again an equivalence relation and it admits a quotient
r : cRo -4-4 K in W. lying in r. We observe that, in our construction of

R1=, R, and Com R, being equivalence relations, such are R,- and

(Com Rlr. Since R1= is a c-cartesian groupoid above c(R1) which is an

equivalence relation, it is itself a c-cartesian equivalence relation.
The fibred reflexion c is a stack for the topology r and consequently
Ri- admits a c-cartesian quotient p: Ro’ dd Q above r: cRo-&#x3E; K. Whence

the following diagram:

The morphism PCoMR1": mR, dd mR,- being a regular epimorphism, we see
that p.pR1- is a coequalizer of the pair (do, d1) : mR1 --4 Ro. It lies in

c-r since PRI- is a c-invertible regular epimorphism and p is c-cart-

esian above r which is in r.

Now we must prove that

is the kernel equivalence of P’PR1-, or equivalently that the functor

ER1: R, -&#x3E; Ri- in Grdc-rV defined by the diagram on the next page is

internally fully faithful. When the category V admits products, as it

is the case for our two main examples, the proof is straightforward:
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Indeed, [60,61] : Com R, -&#x3E; R, xR, is a discrete fibration, and conse-

quently such is

When R, is an equivalence relation, it means that [60,61]- is qc-
cartesian. Now the functor qc always preserves products when they
exist, and thus the following square is a pullback:

which implies that eR, is fully faithful.
There is another but much longer proof when V is not supposed

to admit products. For that, let us consider the following diagram:

with horizontal equivalences in V, and vertical functors. By cons-

truction R1= is the quotient of the componentwise c-invertible

equivalence relation in Grd V:
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The functors do and d, are internally fully faithful for symmetrical
reasons of the ones which make 60 and Si internally fully faithful.

Indeed the double diagram in V giving Com R, is symmetrical with

respect to the diagonal. The functor j is fully faithful as a compon-
entwise a c-cartesian functor above a fully faithful functor in

W , namely the image by c of the symmetrical functor of 0’0 (indeed,
all our left exact diagrams in V, lying in c-r, are preserved by c).

Thus do. j and d1.j are internally fully faithful.
The morphism (ER1)o being pR., and thus a c-invertible regular

epimorphism, it is then possible (taking suitable joint pullbacks in

V) to factorize eR, in a ø, .1’, with o1 internally fully faithful and

y1 ( )o--invertible (where ( )o: Rel V -4 V). Let us then consider the

following diagram, where (po,p1) is the kernel pair of o1 :

Since o1 is fully faithful, such are po, and p. The functors 1R . and

11 being ( )o-invertible and the diagram (*) being made of compon-
entwise kernel pairs, the functor X1 is again ( )o-invertible. Thus

the two following squares are pullbacks, since they have a pair of

parallel edges ( )o-invertible and a pair of parallel edges internally
fully faithful:

Thus, the pair (y1, X1) yields a vertical discrete fibration in

Rel(Rel V). Its image by the functor m is a discrete fibration in

RelV:
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which is also qc-invertible since mR1- is the quotient of the upper
line by hypothesis, and the quotient of the lower line since o1 is

fully faithful and o0 = PR1-. A discrete fibration between c-discrete

equivalence relations being always qc-cartesian (Proposition 5), this

discrete fibration, which is also q,:-invertible, is an isomorphism.
Thus the morphisms J1lBf1 and mX1 are invertible and consequently y1
and x, are themselves invertible. Then eR, is internally fully
faithful..

REMARK. 1. The quotients given by Proposition 19 are universal since,

by Proposition 14, the c--r-morphisms are stable under pullbacks.
2. A c-r--equivalence relation above a r-equivalence relation,

part of a F-exact diagram, can be seen as a generalized descent data,
given by a span (doi, d1i) of c-invertible regular epimorphisms:

Then this Proposition 19 can be interpreted in the following terms:

when a stack is Barr-exact, something more general than a descent

data can even be descended.

V, THE E-EXACTNESS.

From now on, when we shall speak of Cat E, it will be supposed
that E is a left exact and Barr-exact category. Then the functor

( )0 : Cat E -&#x3E; E is a Barr-exact fibred reflexion and is a stack f or

the regular epimorphism topology. Furthermore it is left exact.
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Now, given a ( )o-full equivalence relation R, in Cat E , its

image by ( )o is again an equivalence relation in E, which conse-

quently admits a quotient. We are thus in the conditions of Proposi-
tion 19 and then Ri admits a ( )o-full quotient. Consequently every
( )o-full equivalence relation in Cat E admits a ( )o-full quotient.
It is a kind of relative Barr-exactness which we are going to esta-
blish precisely.

1. DEFINITION OF THE £-EXACTNESS PROPERTY.

Let W be a weakly left exact category, equipped with a proper
class E .

DEFINITION 6. The category W will be called f.-exact if furthermore:

1. every E-equivalence relation has a quotient (a coequalizer
making this equivalence relation effective) which is in E and which

is universal (the pullback of such a Z-exact diagram is again exact);
2. if g..f is in E and f is a E-regular epimorphism then g is in

E.

EXAMPLES. 1. If c is a Barr-exact fibred reflexion, then V is E-exact

for E the class of c-invertible regular epimorphisms.
2. When E is left exact and Barr-exact, then Cat E is E-exact

when:

E = E t the class of ( )o--invertible morphisms,
E = E. the class of ( )o-cartesian morphisms (since ( )o is

a stack for the regular epimorphism topology, see [2]).

3. When E is left exact and Barr-exact, then Cat E is E-exact,
for E the class of discrete fibrations (cf. [5], Proposition 5).

REMARK. The class of E-regular epimorphisms yields a Grothendieck

topology, called the E-topology. Indeed:
- an isomorphism is in E and is a regular epimorphism;
- the E-regular epimorphisms are stable under pullback because

of the universality condition of the E-exactness;
- the composite of two E-regular epimorphisms is in E . Moreover

the composite g.f of two regular epimorphisms is again a regular
epimorphism, provided the morphism f is stable under pullback as a
regular epimorphism. Thus the composite of two E-regular epimor-
phisms is a E-regular epimorphism.
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2. FIRST PROPERTIES OF THE E-EXACTIESS.

RelrW will denote the subcategory of Rel W whose objects are

the equivalence relations such that the pair (do,d1) : mR, -&#x3E; Ro is in E .

That E contains the class of isomorphisms yields a fully faithful

functor

The E-exactness condition implies that this functor has a left

adjoint qz: RelrU d W ,

PROPOSITION 20. A morphism fi: R1 -&#x3E; R’, in Rel,:W .fs qt -cartesian iff

it is a discrete fi bra ti on .

PROOF. Let f1 be a qr-cartesian morphism; then the following diagram
is a pullback:

disqz;f1 being a discrete fibration, such is f1.

The converse is more difficult. In the absolute situation CW

Barr-exact), it is a consequence of the Example ([1], p. 73) which is

obtained by the metatheorem. Here we must find a direct proof.
Let f1 : R1-&#x3E; R’, be a discrete fibration and consider the

following diagram:

where the square (*) is a pullback (it does exist thanks to the

universality condition). Then f"1 is a discrete fibration, and conse-

quently such is ffi. The proof will be completed by the following
Lemma.
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LEMMA 5. A qt-invertible discrete fibration ffi is an isomorphism.

PROOF. p and p" denote the quotient morphisms of R, and R", .

1. Let us show that f 10 is a monomorphism. The kernel

equivalence of f o is denoted by R1[f’o]. That p",f% = p implies that
the following diagram in Rel W is a componentwise pullback:

If f’1 is a discrete fibration, then o1 is a discrete fibration and,
disR.o being discrete, R1[f’o] is discrete and flo is a monomorphism.

2. Let us show that f 10 is a regular epimorphism. For that,
consider the two following diagrams:

They are globally equal. The first one is a pullback since fi is a

discrete fibration; hence the second one is also a pullback and fo.do
is a E-regular epimorphism since p is a E--regular epimorphism. do

being split, f o is a regular epimorphism. Thus fl is an isomorphism
and f’i, being a discrete fibration, is an isomorphism. 

PROPOSITION 21. Th e functor qr i s a f i bred reflexion.

PROOF. It is a consequence of the universality condition, 0

Later on, we shall need the following result about some part-
icular qr-invertible morphisms.
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LENNA 6. Let f1 : R1-&#x3E; R’, be an internally fully faithful morphism
between two E-equivalence relations such that for is a E-regular epi-
morphism. Then fi is a qt-invertible morphism. Such qz-invertible
morphisms are stable under pullbacks and these pullbacks are

preserved by qr..

PROOF. The morphism fo being a E-regular epimorphism, qr (f1) is

certainly a E-regular epimorphism. We consider the following diagram:

If f, is internally fully faithful, the pair (do,d1): mR, -&#x3E; Ro is the

kernel pair of p’. fo and therefore of qr (f1). p. Thus, if (po, p1) : TT-&#x3E;Q
is the kernel pair of qr (f1), then p and p" determine a joint pullback.
Hence p" is a E-regular epimorphism and p is equal to p. Then qr (f1)
is also a monomorphism, and so an isomorphism. It follows from

condition 2 that such qz-invertible morphisms are stable under

pullback, and these pullbacks are preserved by qz, two parallel edges
being qr-invertible. 

3. A STABILITY PROPERTY FOR ¿-EXACTNESS.

We are now in a position to prove that Cat E is Ei-exact, with
E1=0-Full.

Let c: V -&#x3E; W be a fibred reflexion; we say that c is a left

exact fibred reflexion if V is left exact and c is a left exact

functor, If E is a class of morphisms in W and if c is Barr-exact,
c-E will denote the class of morphisms f in V such that f is c-full

and c (f) in E.

PROPOSITION 22. Let W be a E-exact category and c a left exact and

Barr- exa c t fibred refl exi on wh i ch is a stack for th e E-topology. Then

V is c-E -exact.
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PROOF. Mimicking Proposition 14, it is clear that 1-E is a proper
class in V. Every c-E-equivalence relation Ri is such that c(R1) is

an equivalence relation since c is left exact. It is then a E-equi-
valence relation, and thus it admits a quotient in E. By Proposition
19, c being a stack for the E-topology, Ri has a quotient in c-E,
which is universal (Remark following Proposition 19). This is the

condition 1 for the c-E-exactness.

To prove the condition 2, let g.f in c-E, with f a c-r-regular
epimorphism. Then c(g).c(f) is in E, with c(f) a E-regular epimor-
phism, and thus c(g) is in E. We must prove that g is c-full. For

that, we consider the following diagram:

where f,.i7 is the canonical decomposition of gi.fr. That g.f is in c-E

implies that g¡.fi is a c-invertible regular epimorphism. The mor-

phism fl being also a c-invertible regular epimorphism (f in c-E), k7
is a c-invertible regular epimorphism. Now c(fc) is, up to iso-

morphism, equal to c(f), and thus is a E-regular epimorphism. Then c

being a stack for the E-topology and by condition 1 for stacks, fc

and fé are c-cartesian regular epimorphisms. In particular f is a

regular epimorphism stable under pullback. As gr.fc = fc.gi is a

regular epimorphism, such is gi, and g is in 5--Z..

4. THE c-E-RBGULAR EPIMORPHISMS.

A c-iinvertible regular epimorphism is always a c-E-regular epi-
morphism. Now, c being a stack, any c-cartesian f morphism above a
¿-regular epimorphism is a c-Z-regular epimorphism (f will be called

a c-E-cartesian regular epimorphism).
More generally a c-¿-regular epimorphism f is just a c-full

morphism such that c« is a E-regular epimorphism.
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Indeed, if f is a c-E-regular epimorphism, then, c being right
exact, cf is a E-regular epimorphism. On the other hand, f being in

c-E, it is C-full.

Conversely, let ft. fi be the canonical decomposition of f. If f

is c-full, fJ is a c-invertible regular epimorphism. Now f is c-

cartesian above c(f). If c(f) is a E-regular epimorphism, then f, is a

c-E-cartesian regular epimorphism. Thus f = f’.fi is a c-E-regular
epimorphism as a composite of two c-£-regular epimorphisms.

5. A STABILITY PROPERTY FOR STACKS.

When c: V d W is a left exact f ibred ref lexion, such is cb:

CatcV -&#x3E; V . If furthermore c is Barr-exact, c is again Barr-exact (2).

Our present aim is to prove that, when c is also a stack for a E-

topology in W , then cb is a stack for the c-E-topology in V .

For that, we begin by the following lemmas.

LEXXA 7, Let f: V d V’ be a c-E-morphism; then Gc(f) : GcV -&#x3E; GcV’ is an

internal functor in CatcV which is componentwise a c-E-morphism, If

f is also a c-E-regular epimorphism, Gc(f) is a regular epimorphism
in CatcV.

PROOF. Let ft. fi be the canonical decomposition of f. Then Gc(fc) is c-
cartesian. Thus m[Gc(fc)] 7 = fcxcfc, in the same way as f, is c-cart-

sian above c(f) which is in E and Gc(fc) is a functor which is

componentwise a c-E-cartesian morphism. On the other hand Gc(fi) is

c-invertible. The morphism dG,(f4)1 J = fixcfi reduces to the product
fixfi in the left exact and Barr-exact fiber Fibc[c(V)]. Now if fl is a

regular epimorphism, such is fixcfi and Gc(fi) is a functor which is

componentwise a c-invertible regular epimorphism. Thus Gc(f) is comp-
onentwise a c-r-morphism. If furthermore c(f) is a E-regular epi-
morphism, then f’ and fcxcfc are c-E-cartesian regular epimorphisms
and Gc(f) is a functor which is componentwise a regular epimorphism,
and therefore is a regular epimorphism in CatcV. 0

LEXXA 8. If fi : X1-&#x3E; Y, is a c.-cartesian functor such that fo is in

c-E, then f, is componentwise in c-E. If fo is also a c-E-regular
epimorphism, then fi is a regular epimorphism in CatcV.

PROOF. If f, is a-cartesian, then the following square is a pullback,
and, since V is left exact, it is a componentwise pullback.
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If fo is in c-E, Gc(fo) is componentwise in c--E, and thus f, is comp-
onentwise in c-E. The proof is exactly the same for the second part
of this lemma.

PROPOSITION 23. Let c : V -4 W be a left exact and Barr-exact fibred

reflexion. If W is E- exa c t and c a s ta clr for the ¿ -topology, then co :

CatcV -&#x3E; V is a stack for the topology,.

PROOF. Let the following diagram be a co-cartesian diagram above a c-

E-exact diagram:

It is left exact as a cartesian diagram above a left exact diagram.
Since fo is a c-E-regular epimorphism (the co-underlying diagram
being c-E-exact), then, following Lemma 8, fi is a regular epimorphism
and our diagram is exact. This is the condition 1 for stacks.

Let R1 be a co-cartesian equivalence relation in CatcV above a

c--F-equivalence relation in V , part of a c-E-exact diagram. If we

denote Ro by Xi and mR, by Ui, we obtain the following diagram in V:

where the lower line is a c-E-exact diagram. So and 61 being co-

cartesian, and (60)o and (61)o being in c-E, the morphisms 1DÔo and m61

are in c-E and the upper line is a c-E-equivalence relation. We denote
by npi : JnXi -&#x3E;-&#x3E; not its quotient morphism which lies in C-L (following
Proposition 22).

Now we consider the following diagram:
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The lower line is c-E-exact following Lemma 7. That 60 and 6, are cb-

cartesian means exactly that the two left hand commutative squares
are pullbacks. Thus the morphisms [do.d1J J yield a vertical discrete

fibration between two c-E--equivalence relations. Following Proposi-
tions 22 and 20, the right hand square is a pullback. We must prove
that

is underlying to a c-discrete category. If it is the case, the

quotient morphism p, : X1-&#x3E; Qi will be co-cartesian, following our last
remark.

Now we consider the following c-E-exact diagram:

and we denote by Ro, n81, 1112Rl the c-E--equivalence relations, images
of f?, by the functors oo, m, m2 (m2R1) is just given by our last

diagram).
We have the following square in Relc-rV :

It is a pullback since Xi and U, are internal categories and we are

going to prove that it is preserved by qc-r.
Let us consider the following diagram:
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where the square (*) is a pullback and

the canonical decomposition. It upper part determines the decom-

position of the functor pb : Roxno d Ro in a qc-z-cartezian and a qc-r-
invertible functors. The morphism Xoxcpo1 is a c-invertible regular
epimorphism (since po is in c-E) and consequently a c-E-regular
epimorphism. Then, following Lemma 6 and Lemma 1, the functor qc-r.

preserves the pullbacks along p: RoxcRo-&#x3E; Ro.
Furthermore the functor Ldo,di3: mR1 d RoxcRo, being a discrete

fibration, is qc-t-cartesian and thus qc-z preserves pullbacks along
ldo,dil. Hence our previous pullback is preserved by qc-r and deter-

mines a c-discrete category:

which is the componentwise quotient of Ri .. 

VI. THE En- EXACTNESS PROPERTY FOR THE CATEGORY

n-Cat E (JF INTERNAL r-CATEGO I ES IN E.

We are now ready to apply our results to the tower of Barr-

exact fibrations of n--categories [2]:

Here is the first step:
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1. A RIGHT EXACTNESS PROPERTY FOR INTERNAL CATEGORIES.

Let E be a left exact and Barr-exact category. We recall that

is a left exact and Barr-exact fibred reflexion which is also a stack

for the regular epimorphism topology. Then starting from the proper
class Eo - E, the category E is Zo-exact.

The proper class ( )o-Zo in Cat E is just the class of 0-full

functors (or shortly full functors) in Cat E. We denote this class by
E1. By Proposition 22, the category Cat E is again Ei-exact.

The class of E, -regular epimorphisms is then the class of full

functors f1 : X, -&#x3E; Y, such that fo is a regular epimorphism. They will
be called the fully regular epirnorphisms of Cat E. These fully
regular epimorphisms are componentwise regular epimorphisms in

Cat E.

REKARK. A componentwise regular epimorphism functor is clearly a

regular epimorphism in Cat E. However the class of such morphisms is

obviously too large with respect to a right exactness property: every
equivalence relation R, in Cat E has its do,d, : nRi £ Ro component-
wise regular epimorphisms, but has not always a quotient (take E =

Set).

It is easy to show that, in general, a componentwise regular
epimorphism functor in Cat E is not a fully regular epimorphism:
take a discrete fibration f, : Xi -) Y, with fo a regular epimorphism;
it is then a componentwise regular epimorphism. But as a discrete

fibration, it is always internally faithful, that means ( )o-faithful.

2. THE TOWER OF INTERNAL n-CATEGORIES.

We recalled that, if c: V d W is a left exact f ibred reflexion,
then oo : CatcV -&#x3E; V is again a left exact fibred reflexion. Further-

more if c is Barr-exact, cb is Barr-exact.

It is clearly the beginning of an iteration process. Starting
from ( )o : Cat E -&#x3E; E, we denote as follows the first step of this

process

and we call this new category the category of internal 2-categories
in E, since, if E = Set, this construction actually produces the

category of 2-categories.
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Let us denote by (n+1)-Cat E the n-th step of the process:

and call it the category of internal (n+1)-categories in E , as it is

the case if E=Set [2].

When E = A is an abelian category, then n-Cat A and rrGrd A

are identical, and they are equivalent to the category Cn(A) of

positive chain complexes of length n in A 141.

3. A RIGHT EXACTNESS PROPERTY FOR IBTERHAL 2-CATEGORIES.

When E is left exact and Barr-exact, our fibred reflexion

is again left exact and Barr-exact. Following Proposition 23, this

functor ( ), is a stack for the Zi-topology and, by Proposition 22,
the category 2--Cat E is ( )1 -E1-exact.

We denote by 12 the class ( ),-E, . It is the class of 2-functors

f2: X2 -&#x3E; Y2 which are ( ),-full and such that f1 is full. A E2-regular
epimorphism is moreover such that fo is also a regular epimorphism.
We shall call such a 2-functor a fully regular epimorphic 2-functor.
In the case E = Set, a fully regular epimorphic 2-functor is a 2-

functor f2: X2-&#x3E; Y2 epimorphic on objects, such that its underlying
functor fi : X1-&#x3E; Y, is full and that, for each pair (o,y) : x d x’ of 1-

morphisms in X2, with a 2-cell 8 : f2 (o)=&#x3E; f2(’!) in Y2, there is a 2-

cell 8 :o=&#x3E;y in X2, satisfying f2 (8)= Y.

4. A RIGHT EXACTNESS PROPERTY FOR INTERNAL n-CATEGORIES.

The proper class E" in n-Cat E is defined by induction, by

A n-functor fn : Xn d Yn is in E. iff, for each i, 1 ;  i  n, fi : X, -&#x3E; Yi 
is (i-i)-full.

By Proposition 22, the category n-Cat E is En-exact. The En-reg-
ular epimorphisms in n-Cat E are those n-functors in En such that,
moreover, fi is a regular epimorphism. We call them the fully regular
epimorphic n-functors.
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By Proposition 23, the functor

is a stack for the ¿n-topology, and that makes possible to iterate

our process.

Thus we have established a precise and strong exactness

property for n-Cat E, mimicking strictly the Barr-exactness. This

property is again satisfied in the category n-Grd E, the full subcat-
egory of n-Cat E whose objects are the internal n-groupoids. It is

thus possible, always mimicking the absolute case, to define the

first coho.mology group of n-Grd E with ialties in an inter-nal abelian

group A in E. It is easy to check (and will be published later on)

that: 

The n- th cohomology group of E with values in A, as defined in

13J, is the first cohomology group of n -G rd E.
Indeed, what was called an aspherical n-groupoid in [3] is just

a n-groupoid Xn such that the terminal map Xn -&#x3E; 1 is a fully regular
epimorphic r-functor, that is a n-groupoid with a fully global
support.
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