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CAHIERS DE TOPOLOGIE Vol. XXIX - 2 (1988)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

A RIGHT EXACTNESS PROPERTY
FOR INTERNAL CATEGORIES
by Dominique BOURN

RESUME, BEtant donné une catégorie E exacte A gauche et
Barr-exacte, on établit une propriété d'exactitude a droite pour
Cat E et plus généralement pour n-Cat E, tout & fait analogue a
la Barr-exactitude elle-méme, mais “relative® a une classe
particuliére de morphismes I. Pour cela, on est amené & démon-
trer que, si on note I. la classe particuliére & n-Cat E, la
fibration
( )at (ntl)-Cat E — n-Cat E

est non seulement un champ pour la topologie des épimorphismes
de I. mals posséde encore des propriétés plus générales de
“"descente".

Here is the second of the two papers announced in [5] and con-
cerning right exactness properties of the category Cat E of internal
categories in a left exact and Barr-exact category E.

When E is exact in the sense of Barr (Barr-exact, for short)
(11, the category Simpl E of simplicial objects in E is again Barr-
exact. It is very disappointing that the category Cat E does not
seem to behave so well with respect to this kind of exactness pro-
perty and it is probably the reason why the category Simpl E is
often prefered to it (7, 131.

Nevertheless the development of a general cohomology theory for
an exact category E (summarized in [31), using internal n-groupoids
as a non-abelian equivalent to chain complexes of length n, made it
necessary to understand precisely what kind of right exactness pro-
perty does exist in Cat E and more generally in n-Cat E.

Actually it appeared that some important stability properties
can be obtained, in this direction, for Cat E, when E is left exact
and Barr-exact. The first one (vertical stability) is that the functor
(Jo: Cat E » E is a fibred reflexion (i.e., a peculiar kind of
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2 D. BOURN

fibration) which is a Barr-exact fibration: each fibre is Barr-exact
and each change of base functor is Barr-exact [2]. The second one
(horizontal stability) is that the fibration ( )o is a stack for the
regular epimorphism ‘topolagy in E (2]. The first result implies that
every ( Jo-invertible equivalence relation has a ( )o—invertible
quotient, the second one that every ( )o-cartesian equivalence
relation has a ( )o-cartesian quotient.

Now, regarding the complementary aspect of the two stability
properties, a question naturally arises: is there a class of
equivalence relations in Cat E, including the ( )o—invertible and the
( Jo-cartesian ones, which always have a quotient? Or, equivalently,
is there in Cat E a class I of regular epimorphisms, including the
( Jo~invertible and the ( )o—cartesian ones, towards which the
category Cat E behaves as the category E behaves towards the class
of all regular epimorphisms? In other words, is there a kind of
relative Barr-exactness property for Cat E ?

The aim of this paper is to give a positive answer to this
question. The class I in concern is the class of internal functors
fit Xs » Yy, having their canonical decomposition fic.fi’ (where fi* is
( Jo—cartesian and fi’ is ( Jo—invertible) such that fic is a ( Jo-
cartesian and fi’ a ( Jo—invertible regular epimorphism (or equival-
ently, internally full functors which are epic on objects).

In our mind, such a positive answer is of some interest only if
the proposed class has a good stability property with respect to the
iterative construction of the categories n-Cat E of internal n-
categories in E. Actually it is the case. Indeed, the functor ( )::
2-Cat E - Cat E which is known as a Barr-exact fibration is again a
stack for the Ii-regular epimorphism topology in Cat E, and this is
the beginning of an iteration process.

In fact we shall investigate this question for a general fibred
reflexion ¢: V » W which is Barr-exact as a fibration and a stack
for a I-topology in W. The main difference with the case of the
fibred reflexion ( )o is that ¢ is no more supposed to be left exact.
An equivalent condition for ¢ to be a stack for a I-topology is the
following one: every c-cartesian equivalence relation in V, above a I-
exact diagram in W can be completed in a c-cartesian exact diagram
above the given I-exact diagram. Then our main result asserts that
this property can be extended from c-cartesian equivalence relations
to c-full equivalence relations, where a c-full morphism in V is a
morphism whose c-invertible part is a regular epimorphism. Or, more
roughly, that something more general than a descent data can even be
descended.
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A RIGHT EXACTNESS PROFERTY FOR INTERNAL CATEGORIES 3

One of the interest of taking a general fibred reflexion ¢, is
that this result can be also applied to the quotient functor g¢:
Rel E » E when E is Barr-exact. Indeed it is a Barr-exact fibred
reflexion and a stack for the regular epimorphism topology.

As a by-product, it is shown that this functor g preserves
(beside products) a large number of pullbacks, namely those with an
edge a g-cartesian morphism, those with an edge a g-invertible regul-
ar epimorphism and consequently those with an edge a composite of
the two previous ones. The obstruction to the total left exactness of
q being only due, for any morphism fi: Ry » R4 in Rel E, to its g~
invertible monic part.

CONTENTS. I. The fibred reflexions
II. The Barr-exact fibred reflexions
II1. The c-full morphisms
IV. The main result: c-full morphisms and stacks
V. The I-exactness property
VI. The I.,~exactness property for internal n-categories.

I, THE FIBRED REFLEXIONS,

This first section is devoted to some recalls and results about
fibred reflexions which are the main tool in this setting, and about
the factorization system they produce. A fibred reflexion appears to
be, up to equivalence, a fibration with a terminal object in each
fiber. The two principal examples are introduced: the functor ( )o:
Cat E+» E where E is left exact, the quotient functor ¢: Rel E » E
where E is Barr-exact.

1. THE FIBRED REFLEXIONS.
Let us consider the following situation:

c N
A W
’ d

where d is fully faithful and ¢ a left adjoint to d. Then ¢ is called
a reflexion.

A morphism f: V 2 V' in V is c-invertible if co(f) is an isomor-
phism and c-cartesian if the following square is a pullback:

v f

- V!

def
dcV 3 dcV!
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4 0. BOURN

The c-cartesian morphisms are stable under composition. If the
morphisms g.f and g are c-cartesian, such is the morphism £ A
morphism dh: dw 4 dw' 1is always c-cartesian. The c-invertible
morphisms are those which satisfy the diagonality condition of a
factorization system (6, 151 with respect to the c-cartesian mor-
phisms [5]. A morphism which is both c-invertible and c-cartesian is
invertible. Furthermore, if in a commutative square a parallel pair of
edges is c-cartesian and the image of this square is a pullback, then
the given square is itself a pullback. It is the case when a parallel
pair of edges is c-cartesian and the other one is c-invertible.

The obstruction for ¢ to be a fibration is the lack of an
existence condition for cartesian morphisms. This is the meaning of
the following definition.

DEFINITIOR 1. A reflexion ¢t V - W is called a fibred reflexion if
the pullback in V of any c-invertible morphism along a c-cartesian
morphism does exist, the parallel edges in this square being in the
same classes.

REMARK. A fibred reflexion is, up to equivalence, a fibration: let c/V
be the category whose objects are the triples (X,tY) with X an object
in V, Y an object in W and ¢t a morphism X - dY which is c-invert-
ible. The morphisms are the pairs (f,h) with f: X » X' and & Y 3 Y'
such that f.t' = t.dh. There are two functors:

ch oV W with c'X,t,Y) = Y,
Be: c/V 2V with 8.X,t,Y) = X.

Then 6. is an equivalence of categories and, when ¢ is a fibred ref-
lexion, then c¢' is a fibration. For any object w in W, we (improperly)
denote by Fibdwl the fiber of c¢' over w. On the other hand, this
functor ¢' has a right adjoint right inverse d' Consequently each
fiber of the fibration c¢' has a terminal object. So a fibred
reflexion appears to be, up to equivalence, a fibration with a
terminal object in each fiber.

If ¢ is a fibred reflexion, we have two important results:
1. Any morphism in V has a unique, up to isomorphism,
decomposition feff with f° c-cartesian and f! c-invertible, given by
the following diagram in which the right hand square is a pullback
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A RIGHT EXACTNESS PROFERTY FOR INTERNAL CATEGORIES ]

/

deV J5F - dcV'

2, LEMMA 1. The c-cartesian morphisms are stable under
pullback whenever they exist, and such pullbacks are preserved by c.
(Cf. 51D

THE MAIN EXAMPLES.

1. A category E is called weakly left exact if it has a terminal
object 1, if the kernel pair of a morphism always exists, as well as
the pullback of a split epimorphism along any morphism.

An internal category X, in E is a diagram in E:

db . do
Xo = »y mXy el mXs
¢ 24 ¢ az

such that mX: is the vertex of the pullback of do along d and
satisfying the usual unitarity and associativity axioms. The internal
functors are the natural transformations between such diagrams. Ve
shall denote by Cat E the category of internal categories in E. It is
again weakly left exact and there is a canonical functor ( )o asso-
ciating Xo to Xi:

( Jo: Cat E— E

which has a fully faithful right adjoint Gr and a fully faithful left
adjoint dis [2]. Hence the functor ( )o is both left and right exact.

If E is left exact (i.e., has a terminal object and pullbacks),
then ( )o is a fibred reflexion which is moreover left exact. Thus,
for any object X in E, GrX and disX are respectively the terminal
object and the initial object in the fiber over X.

The ( Jo-cartesian functors are the internally fully faithful
functors and the ( )o-invertible ones are the "bijective on objects"
functors [(2].

2. An internal category is a groupoid when the following square
is a pullback:

113



[ D. BOURN

mXy — m2Xs

di d

Xo 4—-—‘—‘—(1"———— mXy

Grd E will denote the full subcategory of Cat E whose objects are
the internal groupoids.

An equivalence relation is an internal groupoid X: such that the
map Xi ? Gr Xo is a monomorphism. We shall denote by Rel E the full
subcategory of Grd E whose objects are the equivalence relations, by
dis: E + Rel E the restriction of the previous dis: E » Cat E, and
by ( Jo the composite

RelE — ——— Cat E ——S 20 L, F

Now we suppose that E is Barr-exact; it means that E is weakly
left exact and that every equivalence relation has a quotient (i.e., a
coequalizer making this equivalence relation effective) which is
universal (i.e., stable under pullbacks along any morphism in E which
are supposed to exist). Then the quotient functor g: Rel E -+ E deter-
mines a left adjoint to dis. It is a fibred reflexion whose g-cart-
esian morphisms are the discrete fibrations [5].

WVith these conditions, the functor ( )o: Rel E - E becomes
itself a fibred reflexion. For that, let us consider the following
diagram

Pomoos oo - --ooa mRY

|

[

) doj ld\

1R 2

v F - R'
P.if\\\\ Pl

\\\\Q|

If R% is an equivalence relation and f: V 4 R' a morphism in E, then
the kernel pair associated to p'.f (where p': R'c 4+ Q' is the quotient
morphism of R%) determines an equivalence relation R and a functor
#1: R 9 R with go = f which is internally fully faithful.

Given any morphism f: V 2 V', the equivalence relation Ril{f]

associated to the kernel pair of f will be called the kernel equi-
valence of f (or shortly the kernel of 5. It is all the more just-
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A RIGHT EXACTNESS PROFERTY FOR INTERNAL CATEGORIES 7

ified as the following square is a pullback in Rel E and the object
dis Y is the initial object in the ( Jdo—fiber of Y:

Rilfl] —————— dis Y

er—c—f———iGr‘Y

RENARK. According to [11, a diagram

‘_—.._-_
-—
— e
-—
-—

is called left exact if the right hand part is the kermel equivalence
of the left hand morphism, and exact if, moreover, this morphism is
the quotient of this equivalence relation.

2. THE ¢c-DISCRETE CATEGORIES,

The following construction, recalled from (2], is the basic
construction allowing the iterative constructive process of the
categories n-Cat E and n-Grd E of internal n-categories and internal
n-groupoids in E. It is essential for us, keeping in mind that, when
E = A is an abelian category, the categories n-Cat A and n-Grd A
which are then the same, are equivalent to the category C~(A) of
abelian chain complexes of length n [4].

Let ¢ be a fibred reflexion. From now on, we suppose that it is
a weakly left exact fibred reflexion: the kernel pair of any c-invert-
ible morphism always exists and is c-invertible, in the same way as
the pullback of any c-invertible split epimorphism along any c—
invertible morphism. Our two main examples are weakly left exact
fibred reflexions.

A c-discrete category in V is an internal category such that
its image by c¢ is discrete, or equivalently such that any structural
map of its diagram is c-invertible. Ve denote by Cat/V the full
subcategory of Cat V whose objects are the c-discrete categories.
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8 D, BOURN

There is a forgetful functor co: Cat.V -+ V associating Xo to Xi.
It has a fully faithful right adjoint G., given for any object V in V
by the kernel equivalence of V -+ dcV:

‘__—_&__ {-———&—-
dcV 4'——— ) VxV é——mm——— Vx . Vx.V
—r ' P

which does exist since \V is c-invertible. Then m(G.V) is nothing but
Vx.V, the product of V by itself in the fibre over c(V).

The restriction of the functor dis is again a fully faithful left
adjoint to co.

The functor € = c.cor Cat¥ » W has a fully faithful right
adjoint d = G..d = dis.d. It is the “"fibration" of internal categories
associated to the "fibration" c¢: V -+ W. The T-invertible functors fi:
X, + Y, are such that f and mfi are c-invertible.

PROPOSITION 1. The four following conditions are equivalent:

1. The functor f is C-cartesian,

2. The morphism f; is c¢-cartesian and fi is a discrete
fibration,

3. The morphisms fo and mfi are c-cartesian.

4. The morphism fo is c—cartesian and the functor fi is co-
cartesian.

PROOF. The functor fi is C~cartesian iff the following square (#) is a
pullback:

Xi fi - Yh

Gl deXol y GeldeYol
Gcldefol

Now, its image by the left exact functor co is a pullback:

%o fo 3 Yo
dcXo dots -+ dcYo
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and consequently fo is c-cartesian. The square (#) is a pullback in
CatV, but, ¢ being a fibred reflexion, it is a componentwise pull-
back. Furthermore G.dcfl, being also disldcf] is a discrete fibra-
tion. Thus the functor fi is a discrete fibration.

If fi is a discrete fibration and fo c-cartesian, the following
square is a pullback and the morphism mfi is again c-cartesian:

mX, mh -+ mY,
d d
Xo % -+ Yo

Now when f is c-cartesian, G.(fy) is a discrete fibration and foxcfo:
XoxXo 3 YoxcYo is c¢-cartesian. If also mfi is c-cartesian, then the
following square is a pullback:

mnf

mXy

|

XoxcXo — 77— YoxcYo

foxcfo

— mY,

since the two horizontal edges are c-cartesian and the two vertical
ones c-invertible. Thus the functor fi is «-cartesian.

Finally if fo is c-cartesian and fi cs-cartesian, then the two
following squares are pullbacks:

 — GXo Xo —————— 3 dcXo

53] Gefo 5o dcfo

Yy ——————— G Yo Yo —————— dc¥o

Now G being left exact, the following one is again a pullback as the
composite of twao pullbacks:

X! ) Gch — Gc[ dCXo]
hf Gefo Geldesol
Y. - GcYo 4 G.ldcYol

It is the square (#) and £i is C-cartesian.
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10 D, BOURN

PROPOSITION 2. The functor ¢ is a fibred reflexion.

PROOF. Let Y: be a c-discrete category and h: V 3 cXo a morphism in
W. Then c being a fibred reflexion, the pullback of Xo along dh, as
well as the pullback of Mo.do = XXo.di along dh do exist and they
determine a functor I: Xi - Y, which is a discrete fibration with ho
c-cartesian. Hence I is c-cartesian. .

Let us now consider the following commutative triangle between
the two fibred reflexions:

CatV Co y

"

The functor < commutes also with d and d. It associates a &
invertible morphism to a <&-invertible one. Proposition 1 tells us
that o preserves the cartesian morphisms.

The same property holds for G.: V -+ CatMV.

REMARK. Ve shall denote by Grd.V and Rel. the full subcategories of
CatV whose objects are the c-discrete groupoids and the c-discrete
equivalence relations.

II, THE BARR-EXACT FIBRED REFLEXIONS,
1. BARR-EXACTNESS.

DEFINITION 2. A fibred reflexion is said to be Barr-exact when it is
weakly left exact and when every c-invertible (or c-discrete) equi-
valence relation R: has a quotient which is universal.

The functor ¢ being right exact, the quotient morphism p:
Ro 99 Q is c-invertible. The universality condition means, here, that
the pullback of any c-invertible exact diagram along any morphism
does exist and is a c-invertible exact diagram.
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REMARK. In other words, the fibred reflexion c¢ is Barr-exact if its
associated fibration c¢% </V -+ W is Barr-exact: each fibre is Barr-
exact and each change of base functor is Barr-exact.

EXYAMPLES. WVhen E is Barr-exact, the two main examples are Barr-exact
fibred reflexions.

1. That the fibred reflexion ( )o: Cart E » E is Barr-exact if
E is Barr-exact is shown in [2].

2. Ve are going to show that, if E is Barr-exact, the fibred
reflexion ¢q: Rel E + E is Barr-exact. First, remark that a g-
invertible morphism fi:Ri » R'' is necessarily an internally fully
faithful functor, since the following diagram is a joint pullback,
p'.fo being equal to p.

mRy 4] — Y
dol ldl do dh
N '
Ro\ f:) ﬁ//R ]
N 27
N P
¥

Conversely, we have the following result:

LENNA 2. A morphism fi: Ry 2 RY is internally fully faithful iff gfi
is a monomorphism.

PROOF. If qfi is a monomorphism, then the kernel equivalence of p is
the kernel equivalence of ¢q(fi).p which is also p'.fo. Then the functor
fi is clearly internally fully faithful.

Conversely let fi: Ry » R be an internally fully faithful
functor. We denote by i.r the canonical decomposition of p'.fo as a
composite of a monomorphism and a regular epimorphism. fi being
internally fully faithful, r is necessarily a quotient morphism of R
and q(fi) is, up to isomorphism, the monomorphism 1i. .

LEMMA 3. A morphism fi: Ri » R is a g-invertible regular epimor-
phism in Rel E iff £fi is internally fully faithful and fo is a regular
epimorphism. Such morphisms are stable under pullbacks.

PROOF. If £ is g-invertible, by the above remark, it is internally
fully faithful and, the functor ( )¢: Rel E 2 E being right exact (it
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12 D. BOURN

has a right adjoint Gr), the morphism f is a regular epimorphism.
Conversely, if fi is internally fully faithful, then q(£f) is a
monomorphism (Lemma 2). Furthermore if £ is a regular epimorphism
then g(fi) is a regular epimorphism. Thus fi is g-invertible. Now f
being a regular epimorphism and fi being internally fully faithful, £
is a componentwise regular epic functor and consequently a regular
epimorphism in Rel E. Thus the pullback of fi along any morphism g
does exist and is componentwise. It is a componentwise regular epi-
morphism. Moreover, it is clear that the internally fully faithful
functors are stable under componentwise pullbacks. Thus the g-
invertible regular epimorphisms in Rel E are stable under pullbacks. e

PROPOSITION 3. When E is Barr-exact, the fibred reflexion gq:
Rel E -+ E is Barr-exact.

PROOF. 1. The category E being weakly left exact, any morphism fi:
Ry » R has a kernel pair which is a componentwise kernel pair. Thus
if fi is internally fully faithful, the kernel pair is fully faithful.
But this pair being split, it is a g-invertible pair. Thus any ¢-
invertible morphism has a g¢-invertible kernel pair.

2. Let us consider a g-invertible equivalence relation R in
Rel E and set B = R, and mR = P, for sake of simplicity:

P
Py ¢ Ry

Ph

Ve denote by Q the common quotient of Py and R and by Qo the
quotient of the image by the functor ( )o of the previous diagram:

_— B,
Po ¢ Ro Po -+ Qo
—_—
po e
///
pe Pr -7 pa
Q <’
Then pr.po = pr.p'e and there is a regular epimorphism pe: Qo 2 Q such
that pe.po = pr. The kernel pair of pe determines an equivalence

relation Qi which is the componentwise quotient of R. The universal-
ity of this quotient is given by Lemma 3.
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REMARK. By Lemma 2 the canonical mono-epi factorization in E appears
to be, via the functor dis, the image by ¢ of the canonical ( Jo-
cartesian-( Jo-invertible factorization in Rel E.

2. PROPERTIES OF THE BARR-EXACT FIBRED REFLEXIORS.

Let RelV be the category of c-discrete equivalence relations in
V and cor RelV + V the restriction of co: CatV -+ V.

LEMMA 4. The reflexion co: RelV + V is a fibred reflexion.
PROOF. Let R'y be a c-discrete equivalence relation and f: X 2 R'% be a

morphism in V. Its canonical decomposition is f<f’ Ve have the
diagram:

m » T - mR%
do dy

- Z z + R'

& 7 0

N
AN [F ) p*
\\
>
—x — 0

where f<r is the canonical decomposition of p'.f*. The square (%) is a
pullback (a pair of parallel edges is c-cartesian, the other one c-
invertible). Then r is a c-invertible regular epimorphism. T is he
vertex of its kernel pair, which determines an equivalence relation 2,
and a morphism g:: Z: » R which is a discrete fibration such that go
= f¢ is c-cartesian. It is (Lemma 1) co—cartesian. T' is the vertex of
the kernel pair of r.f! which determines an equivalence relation X,
and a functor y.: Xi 9 Z; which is internally fully faithful in the
fibre FibJ[Ql, that is co-cartesian.

Now € = c.cot RelV » W admits d = G.d = dis.d as a fully
faithful right adjoint. It is a fibred reflexion as a composite of
fibred reflexions. The functor dis: V - RellV is cartesian above W:
it preserves cartesian morphisms. Now, if ¢ is Barr-exact, the
functor dis has a left adjoint g.: RelV - V. It is clear that c.gc is
naturally isomorphic to &

The aim of this section is to show that g. is again a Barr-
exact fibration and to characterize the g.-cartesian morphisms.
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14 D, EDURN

PROPOSITION 4. The functor q. is a fibred reflexion.

PROOF. Given a c-discrete equivalence relation R and a morphism bh:
V 2 gR" in V, the pullback along h in V does exist by the univers-
ality condition and it determines a c-discrete equivalence relation R:
with a functor h: Ri 2 R%, which, by construction, is g.cartesian. e

PROPOSITION 5. The functor q. is cartesian between ¢ and c: the image
by q. of a c-cartesian morphism is always c-cartesian. Moreover a &-
cartesian morphism is necessarily a q.—cartesian morphism,

PROOF. As the fibration ¢ is, up to isomorphism, the composite of the
two fibrations c.q., a C-cartesian morphism is just a g cartesian
morphism above a c-cartesian one. .

PROPOSITION 6. A morphism fi: Ry » R 1s qccartesian iff it is a
discrete fibration.

PROOF. For any h: V 5 V' in V, the morphism dish is a discrete fibra-
tion. Then if the following diagram is a pullback, fi is a discrete
fibration:

R =i » R4

—

disgR b disgR"

disqh
Conversely, let fi: Ry » R be a discrete fibration, and y:.¢ its
canonical decomposition with y) C-cartesian and ¢ c-invertible. By
Proposition 5, the functor y, is g.-cartesian and therefore a discrete
fibration. Thus ¢ is a discrete fibration, which lies in the Barr-
exact fibre Fib.[cRo]. Hence ¢, is g.cartesian (see (5] Lemma 4) and
fi as Y14 is g.-cartesian. .

REMARK. A g.-invertible morphism is always a c-invertible morphism.

PROPOSITION 7. The functor q.: RelV -» V is itself a Barr-exact
fibred reflexion.
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A RIGHT EXACTNESS FROFERTY FOR INTERNAL CATEGORIES 15

PROOF. Let us consider the fibration & : Rel V + W. For any object ¥
in W, the fibre FibAW] is the category Rel(Fib.[W]) and the restric-
tion of g to Fib.W] is just the quotient functor

q: Rel(Fib WD) -+ Fib.IWV]

relative to the Barr-exact category Fib.W].

Now for any object V of Fib.VW], the fibre FibglVl] is FibdVl]
which is Barr-exact following Proposition 3. Thus the quotients of
the g invertible equivalence relations do exist and are component-
wise. These g¢.~invertible quotients, being componentwise, are pre-
served by pullbacks because of the universality conditions given by
the Barr-exactness of the fibration c. .

RENARK. Thus, by Lemma 1, the functor ¢. preserves the pullbacks in
which one edge is a discrete fibration.

3. THE FUNCTOR n. FOR c-DISCRETE GROUPOIDS.

In the same way as in the absolute situation (E is a.:B.arr-exact
category) [5], in the relative case (¢ a Barr-exact fibration), the
functor g.: RelV - ¥V can be extended to a functor = GrdV - V,
left adjoint to the functor dis: V - Grd/V where GrdV is the categ-
ory of c-discrete groupoids in V. But, the category V being not
supposed left exact, the functor «: GrdV 2+ V is not, a priori, a
fibred reflexion and it is not possible to use the same argument. The
aim of this section is to give a construction of n. and to establish
its properties.

The construction of n.. Let Xy be a c-discrete groupoid and
denote by X, the canonical projection Xi - GXo. Then (uXido = 1y,
and mOuXy): mXi 9 XoxcXo is the factorization of the pair

(do,di): mX, _ Xo
in the fiber Fib.cXel. It is a c-invertible morphism. Its canonical
decomposition is denoted by y.¢, with ¢ a c-invertible regular epi-

morphism and y a c-invertible monomorphism. Whence the following
diagram:

mX, £ > y - XoxcXo

- T
do a do [ dl// a
> Yo
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Now if T' is the vertex of the kernel pair of di: T 4 Xo, we get
and GXo being two groupoids) two morphisms

X —2 T Y XoxXoxcXo

with g' a c-invertible regular epimorphism and y' a c-invertible
monomorphism. It is then possible to complete the following diagram
in such a way that the vertical central diagram is a c-discrete
groupoid Z::

mX A s T ¥ ) YoxcXoxeXo
do || | d: dojd| |dz do || |
X g S T > y 5 XoxeXo
do | |dv do | |ah do | |ch
Xo T » Xo Tro - Xo

Now y being a monomorphism, Z: is an equivalence relation. This cons-
truction determines a functor

co~supp: Grd¥ -+ RelV
(the co-support functor) which is a left adjoint to the inclusion 1I:
RelV -» GrdV. On the other hand, the fibred reflexion ¢ being Barr-
exact and a c-invertible regular epimorphism having a pullback along

any morphism in V, the functor co~supp is again a fibred reflexion.

REMARK. The functor co! GrdV -+ V being equal to

Grdy —SCSUYPP, Raly —F0 4, ¢

we can prove, by Lemma 4, that this functor o: GrdV -+ V is again a
fibred reflexion. Whence a functor

e = Qe.Cosupp: GrdV— V
left adjoint to dis: V - Grd/V, which is a fibred reflexion as a
composite of fibred reflexions. All the elements of this construction

dealing only with c-invertible morphisms, there is a natural isomor-
phism between c.m. and C.
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Ve are now going to characterize the n.-cartesian morphisms.

PROPOSITON 8. The functor m. is cartesian between ¢ and c¢: the Image
by m. of any c-cartesian morphism is c-cartesian. Moreover every &
cartesian morphism Is n.-cartesian.

PROOF. The functor catc is © up to isomorphism. All these functors
being fibrations, a C-cartesian morphism fi is exactly a m.cartesian
morphism such that n.(fi) is c-cartesian. .

PROPOSITION 9. A4 functor fi: X, » Yy in Grd/V is n.-cartesian iff £
and co-supp(fi) are discrete fibrations.

PROOF. A n.-cartesian morphism is exactly a cssupp-cartesian mor-
phism such that cosupp(fi> is gq.-cartesian. That means that
co—supp(fi) is a discrete fibration and that the following square (*)
is a pullback:

Xa 4 - Y
CO_SUPPXI -—Cb“—SUP—W C‘o"SUple

The lower functor being a discrete fibration, the square %) is a
pullback iff fi is a discrete fibration, since the vertical arrows are
co-invertible. .

Thus, starting from a fibred reflexion ¢, we have obtained the
following commutative diagram of cartesian adjunctions between the
fibred reflexions ¢ and &

- Ge
) Co o
Grd.V | Y,
’ dis
Te
c c
")

REMARK. The functor =m. is a fibred reflexion but is no more Barr-
exact as it is the case for gq.. It is not even weakly left exact. To
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see that, we consider the canonical presentation of an internal
groupoid X: in any Barr-exact category E [5]:

eDecXy

—ETERRL
Dec?X, DecXy ——EX‘————% Xy
: DeceXs

The internal functor eX: is a discrete fibration. It is meo—cartesian
iff Xi is an equivalence relation. If not, let us denote by mi.01 the
canonical decomposition of e€X, with 7 mo-cartesian and o: mo—invert-
ible. As mo—cartesian, the functor v, is a discrete fibration, then o,
is also a discrete fibration. The kernel pair of o1 lies in Rel E
since DecX: is in Rel E. Its projections being discrete fibratioms,
this kernel pair cannot be mo—invertible (if not X: would be certainly
an equivalence relation).

III, THE cFULL MORPHISMS,

1. DEFINITIORS AND FIRST PROPERTIES.
Let ¢ be a Barr-exact fibred reflexion.

DEFINITION 3. A morphism f: V + V' in V is said to be c-faithful
when its c-invertible part f’ is a monomorphism and c-full when its
c-invertible part f‘ is a regular epimorphism.

EXANPLE. This terminology is suggested by our first main example: if
E is Barr-exact and left exact, the ( )¢—faithful and the ( Jo—full
functors are just the internally faithful and the internally full
functors.

The class of c-full morphisms will be denoted by c¢-Full.

Froperties of c-Full:
1. An isomorphism is c-full.
2. The composite of two c-full morphisms is c-full.

To see that, we consider the following diagram, where f@.g? is the
canonical decomposition of g*f¢ The square (%) is a pullback since
the horizontal edges are c-cartesian and the vertical ones are c-
invertible. Consequently g! is a regular epimorphism when g’ is a
regular epimorphism and g.f is c-full when g and f are c-full.
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v
f’t f
U 7e y V!
&t ‘ ) 8* d
Ut 77 - U 7 - V"

3. PROPOSITION 10. The c-full morphisms are stable under
pullbacks whenever they exist. Moreover such pullbacks are preserved
by ¢

PROOF. Let us consider the following pullback where f<.f' is the can-
onical decomposition of a c-full morphism £ :

U flj N flt‘

Y — U
hl 1 [F @ tk
\' 77 4 Z 77 + V!

Then if f'<.f'" is the canonical decomposition of f' the diagonality
condition gives us a morphism f: Y -+ Z making the two squares com-
mutative. Now we consider the pullback of f* along ¢ which does exist
since ¢ is Barr-exact and f! is a c-invertible regular epimorphism:

\\

\ 77 -+

Then ¢¢ is a c-invertible regular epimorphism, and f* being c-
invertible, the factorization y: U - V is c-invertible. The abave
square ((1)+(2)) being a pullback, there is a unique x: V » U such
that

by = ¢ and frfty = frrge

It is clear that x.y = 1. As y is c-invertible, we have c(x) = c(y)',
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Let us prove that y.x = 1. For that we must prove that giy.x =
#¢ But

f't.’ j.y~x = flc.fu'x = f’t.‘ 1,

Then, f'* being c-cartesian, it is sufficent to prove that cy.cx = 1.
That is true.

Hence the square (1) is a pullback. f'* a c-invertible regular
epimorphism and f' = f'“.f'" a c-full morphism.

Let Ry and R be the c-discrete kernel equivalences associated
to f! and f'. The morphisms b and f determine a morphism h: Ry 3 R%
which is a discrete fibration since the square (1> is a pullback.
That the square ((1)+(2)) is a pullback implies that the following
square is a pullback in RelV:

R% -+ disU'
h disk
R y disV!

where the two vertical edges are discrete fibrations and thus gc
cartesian morphisms. Consequently, following Proposition 6 and Lemma
1, this pullback is preserved by g. and the square (2) is a pullback.
The pullback (1) is preserved by ¢ since f! and f'! are c-invertible,
and the pullback (2) is preserved by ¢ since f° and f'* are c-
cartesian (again by Lemma 1). .

REMARK. It is very surprising that, when ¢ is a Barr-exact fibred
reflexion, the functor ¢, although being not supposed to be left
exact, preserves such pullbacks. The pullbacks with one edge a c-
invertible monomorphism are not preserved in general. The obstruction
to the total left exactness of ¢ is thus only due, for any morphism
f: Vo V' in V, to the c-invertible monomorphism part of £

In particular, this result is true for the quotient functor g¢:
Rel E » E in a Barr-exact category E, which therefore appears to
preserve (besides products) a large number of pullbacks.

Ve are now going to establish a proposition which we need later
on and which is a generalization of Proposition 8 and a kind of
particular case of Proposition 10.
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PROPOSITION 11. Let fi: Xi 3 Yy be an internal functor in GrdV such
that fi Is c-cartesian and fo c¢-full. Then m.(fi) is c-cartesian. Such
morphisms are stable under pullbacks (whenever they exist) and such
pullbacks are preserved by m..

PROOF. Let y:.41 be the canonical decomposition of f£fi with ¢ a <
invertible and y: a c-cartesian functor. Following Proposition 1, i
is o-cartesian and consequently such is g:. On the other hand w.(y.)
is, following Proposition 8, c-cartesian.

Now ¢ is a o-—cartesian morphism in the fiber Fib.[cXol, then
nc(¢1) is a c-invertible monomorphism. The morphism go being a c
invertible regular epimorphism (£, c-full), =n.(5) is also a c
invertible regular epimorphism. Thus mn:(¢:) is an isomorphism and
n(Hid) = = nly1).we(g1) is c-cartesian.

The functor ¢ is m.-invertible. On the other hand the morphism
fo being c-full and ¢ being also cscartesian, this functor ¢ is a
regular epimorphism in Grd.V. Thus, although the fibration n. is not
Barr-exact, the functor fi appears to be a m.~full morphism.

It is then possible to mimic Proposition 10. For that let us
consider the following pullback where g is c-invertible and y' is
€ - cartesian:

Xl‘ ﬂ" AD \"l - Yl]

) @ \F, ) llﬂ

X % 3 Za . v =1
Then, by the diagonality condition, there is a functor &: 2% 4+ Z
making the two squares commutative. If £ = yi.f1 is o-cartesian,
such is f4 = yY.g". Since y: and y"' are again c—cartesian (Prop-

osition 1), all the horizontal arrows are o-cartesian. The image by
o of the given square (1)+(2) is also a pullback with the edge fo =
Yo.#o c-full, hence f'% = y'9.f's is c-full and the functor f is -
cartesian and f c-full.

On the other hand, following Proposition 10, the image by o of
the squares (1) and (2) are pullbacks. Therefore the horizontal
arrows being o-cartesian, the squares (1) and (2) are themselves
pullbacks. The square n.(2) is a pullback (Proposition 8 and Lemma
1>. The morphisms n.(¢1) and n.(g") being isomorphisms, the square
(1) is a pullback. .
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IV, THE MAIN RESULT cFULL MORPHISMS AND
STACKS,

1. STACKS.
A class I of morphisms in a weakly left exact category W will
be called a proper class if it satisfies the following conditions:
1. every isomorphism is in I,
2. I is stable under composition,
3. the pullback of a morphism in I along any morphism in
W does exist and is again in L.

EXANPLES. The examples we have in mind are the following:
Vhen c is a left exact fibred reflexion:

. the class of c-invertible morphisms,

. the class of c-cartesian morphisms.

is a Barr-exact fibred reflexion:

the class of c-invertible regular epimorphisms.
is a left exact and Barr-exact fibred reflexion:
the class c¢-Full of c¢-full morphisms.

is left exact:

the class of discrete fibrations.

Vhen

Vhen

Vhen

amebe o WO Qo

The proper class T will be called topologically proper when,
furthermore, every morphism in I is a regular epimorphism (a
coequalizer of its kernel pair). This last definition is given to
yield a Grothendieck topology in W (also denoted by TI').

DEFINITION 4. A I-groupoid (resp. a L-equivalence relation) in W is a
groupoid X, (resp. an equivalence relation) in W such that the pair
(do,dl)! IDX1:XD is in L.

A I-exact diagram is an exact diagram in which every morphism
is in L.

Given a topologically proper class I' in W, we recall that an
equivalent condition for a fibration ¢ V - W to be a stack [11,12]
for the topology I' is the conjunctipn of the two following properties:

1. every c-cartesian diagram above a l-exact diagram is exact,

2. every c-cartesian equivalence relation above a I'—equivalence
relation, part of a Tl-exact diagram, can be completed in a o
cartesian diagram abave this l-exact diagram (see [2]).

The aim of this section is mainly to show that if ¢ is, at the
same time, a Barr-exact fibred reflexion and a stack for a topology
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I', the property 2 for stacks can be extended from c-cartesian equi-
valence relations to o¢full equivalence relations. More roughly:
something more general than a descent data can even be descended.

EXAMPLES. Our two main examples are stacks for the regular epimorph-
ism topology (where T' is the class of all the regular epimorphisms):

1. That, if E is left exact and Barr-exact, the fibred reflexion
( Jo: Cat E » E is a stack for the regular epimorphism topology is
shown in [2].

2. PROPOSITION 12. If E is Barr—exact, the quotient functor q:
Rel E + E is a stack for the regular epimorphism topology.

FPROOF. 1t is clear that a g-cartesian diagram above an exact diagram
is a componentwise exact diagram in Rel E and consequentely is an
exact diagram in Rel E.

Let R: be an equivalence relation in Rel E such that every
structural map is g-cartesian and its image by ¢ is an equivalence
relation (it is certainly a groupoid, but not in general an equi-
valence relation). To simplify, we denote Ro by 81 and mR: by T..
Vhence the following diagram in E:

mx,

L—————————)
T, — mSh 701 - mh
MEI |
do dy do dy dao h
Olo

P Ps, P

g

qu — qS1 +3 K
qB|

where K and Qo denote the quotient of the equivalence relations, image
of R: by the functors g and ( )o. Since Bi is g-cartesian, the
morphism pi: (Ri)o 4+ @R determined by ps, and pr, is a discrete
fibration and consequently g-cartesian. Then its kernel pair is
preserved by ¢ and determines an equivalence relation Qi, by means of
the factorizations (do,di): mh =3 Qo, and a componentwise quotient
morphism pi: S 99 Q which is a discrete fibration and thus g¢-

cartesian. .
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2. THE c-FULL MORPHISMS AND THE STACKS.
From now on, ¢ V - W will be supposed to be a Barr-exact
fibred reflexion and a stack for a topology T.

DEFINITION 5. A morphism f: V 9 V' is called a cT-morphism if f is
c-full and c(f) is in T; the class of ¢T-morphisms is denoted cT.

PROPOSITION 13. A cT-morphism f is a regular epimorphism.

PROOF. The morphism f being in cT, its c-cartesian part f¢ is a
regular epimorphism since ¢ is a stack and its c-invertible part f?
is a regular epimorphism, since f is c¢-full, which is stable under
pullbacks since ¢ is Barr-exact; hence f = fof! is a regular
epimorphism. .

PROPOSITION 14. The class c¢T 1s proper. Moreover any pullback with
an edge in cT 1s preserved by c.

PROOF. Condition 1 is obviously satisfied. Now if f and g are in cT,
§f is c-full and c(@.f) = cg.cf is in . Let £f: V 4 V' be a cT-
morphism and k: U' 5 V' any morphism in V. The pullback of c(£
along c(k) does exist in W since (£ is in T', and consequently the
pullback of the c-cartesian morphism f¢ above c(f along k. Since f!
is a c-invertible regular epimorphism, its pullback along any
morphism does exist, hence the pullback of f along k exists:

v £ T

h k

y V!

F

Following Proposition 10, f' is c¢-full and the image by ¢ of this
square is a pullback in W. Then cf' is in ' according to condition 3,
and ' is in cT. .

COROLLARY. If T is a topologically proper class Iin W and c: V 2 W a
Barr-exact fibred reflexion which is a stack for the topology T, then
c-T is a topologically proper class in V.

RENARK. Proposition 13 means that any left exact c-full diagram

above a l-exact diagram is exact. It can be seen as an extension of
the property 1 for a stack from c-cartesian diagrams to left exact
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c-full diagrams. The fact that these diagrams must be left exact is
only an apparent restriction since any c-cartesian diagram above a
left exact diagram is always left exact.

3. THE c-DISCRETE GROUPOID ASSOCIATED TO A c-T'-GROUPOID.

It is much more difficult, and essential for us, to extend
property 2 for a stack from c-cartesian equivalence relations to c-
full equivalence relations.

Let X\ be a cT-groupoid in V. Then do and d are c-full, and,
following Proposition 10, its image cX: by the functor ¢ is again a
groupoid.

PROPOSITION 15. Every cT-groupoid X has an associated c-discrete
groupoid X.~. If X\ is an equivalence relation, such is X.\".

PROOF. Consider the following pullback in Grd V:

X, o Xy 4 Xq

dis(dXo)=d(disc¥o) > ——m——— dcX,

It does exist as a componentwise pullback since the internal functor
Xy » dcX» is componentwise c-invertible. The Xi:” is a c-discrete
category since ¢X:” is isomorphic to dis(cX.) and it is easy to check
that this construction ( )~ is a right adjoint to the inclusion i:
GrdV - Grd~rV, where GrdeV 1is the full subcategory of Grd V
whose objects are the cT-groupoids. By construction m(Xi):
mX,” » mX, is c-cartesian above c(s): cXo > cmX: and thus it is a
monomorphism. If X: is an equivalence relation, then the pair (do,di):
mX: =} Xo is jointly monic, thus the pair (do,di): mXi~ 3 Xo is jointly
monic and X\~ is an equivalence relation. .

Let us now consider the following commutative triangle:

Grd.--V (- -+ Grd.\V

( o Co
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The functor ( o is no more a reflexion nor a fibration. However
there are two classes of morphisms which are of some interest for us
in Grd.rV: the discrete fibrations and the internally fully faithful
functors.

PROPOSITION 16. The functor ( )7 preserves the discrete fibrations.

PROOF. Let f£fi: X » Y1 be a discrete fibration, then the following
square is a pullback:

mX, mf; — mY,

d d

Xo % y Yo

di being in cT this pullback is preserved by c and the functor cfi
is a discrete fibration. Hence the following- square is a pullback:

cmh

cmX, — cmY
C&o CSo
Xo re5 o) -+ Yo

and therefore, m(c:X:) and m(Y:) Dbeing c-cartesian above the
morphisms cs, the following square is again a pullback, what implies
that £1i™: Xi” 2 Y™ is a discrete fibration:

Xy mf

- mY,

mlanXy) mlanYy)

b, .Sl o7, )

PROPOSITIOR 17. Let fi: Xi » Yi be an internally fully faithful functor
in Grd.-rV such that fo is in cT; then its image by the functor ()~
is «-cartesian.

PROOF. That f, is internally fully faithful means that the following
diagram is a joint pullback:
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X mfi 5 m¥,

XO fb 4 YO

Ve first remark that, the morphism fo being in c¢T, this joint
pullback can be constructed by means of three pullbacks in V with

edges in cT:

do d
Xo

ﬁ’NY‘%

o

Xo

Therefore mfi is in cT. These three pullbacks being preserved by c,
the functor cfi: &Xi 2 c¥i is internally fully faithful in Grd W.

Let foc.fo! be the canonical decomposition of f. It determines a
decomposition y:.61 of £i where gi: Xy 5 Z: is internally fully faithful
and fo = IfH! is a c-invertible regular epimorphism and where y::
Zy » Yy is internally fully faithful and yo = fo© is c-cartesian.

o) Let us prove that y2~ is o—cartesian. By our first remark
my» is again c-cartesian. We consider the two following diagrams in
GrderV:

Z," ———— dis(ddZy) 2" ———— dis(dcZod
!
¥ @ dis (deyo) ) l
YL\'“ —_— diSL(dcY:) ZL'I —_—— dch
@) Wi @ doy
Yo — a4 f, — e,

The square (1)+(2) is equal to the square (3)+(4). Now the squares
(2) and (3) are pullbacks by construction. The square 4) is a
componentwise pullback since yo and my: are c-cartesian. Then the
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square (1) is a pullback, what means that y:~ is &-cartesian. It is
therefore co-cartesian (Proposition 1).

B> Let us prove that ¢ is co-cartesian. By our first remark mg
is again a c-invertible regular epimorphism. We consider the two
following diagrams in V:

MXI~—J—1’L~——-) mZ, "~ mX, "~ _____IHE,____) mZ~
(do,dh) l (1 (do,dy) (3 l
Xoxzxo—%-a;————’ Zox 2o mXa -————mﬁ—‘—-) iz,
I 1 @) l I do[ ldl 4) dol ldv
Xo — Zo Yo ——— %
° Po

The double square (1)+(2) is equal to the double square (3)+(4). The
double square (4) is a joint pullback since ¢, is internally fully
faithful. The double square (2) is a joint pullback since go is o
invertible. The square (3) is a pullback since its vertical edges are
c-cartesian and its horizontal ons are c-invertible. Consequently the
square (1) is a pullback and ¢~ is o-—cartesian. .

4. THE ©UNIVERSAL REPRESENTATIVE OF THE INTERNAL NATURAL
TRANSFORMATIONS.

Let E be a weakly left exact category and X: an internal
category in E. The standard simplex [1] is actually a category and it
is clear that Xif'’ (the cotensor of the internal category X: by [1D
is the domain of the universal internal natural transformation with
codomain X, (see [141). This internal category will be called the uni-
versal representative of the natural transformations and denoted by
Com Xi. In the category Set of sets, the objects of Com X, are the
morphisms of X, and its morphisms are the commutative squares
("quatuors" in [9]).

WVhence the following diagram, with the universal natural
transformation ¥: 8o 2 &1

8o SN

Com X, ¥ X
&
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The trivial identity natural transformation between the identity
morphisms on X: and itself yields a ¢¢: Xi - Com Xi such that

0.0 = 1x, = &1.00.

Furthermore the universal property of Com X, makes 6o a left adjoint
to oo and & a right adjoint. On the other hand the construction
Com X, extends to a 2-functor Com: Cat E - Cat E. If the category X
is c-discrete, then Com X: is c-discrete. If X; is a groupoid, then
Com Xi is a groupoid.

In this last case, there is a very strong connexion between the
2-categorical structure of Grd E and the fibration ( Jo: Grd E 4 E.

PROPOSITIOR 18. An internal category X\ 1s an internal groupoid iff
§: Com Xi 2 X» <(or equivalently 6o) 1is ( )o-cartesian above di:
mXy + Xo (resp. do).

PROOF. If X, is a groupoid, then & being a right adjoint between two
groupoids is an equivalence and thus internally fully faithful, that
is ( )o-cartesian. The converse is pure diagram chasing. .

In the same way, when ¢t V 3 W is a weakly left exact fibred
reflexion, we have the following result:

COROLLARY. A c-discrete category X1 is a c-discrete groupoid iff 6.:
Com Xi » Xi is co-cartesian.

REMARK. If X\ is an internal groupoid in a weakly left exact category
E then [60,6:]: Com X: - XixX: is a discrete fibration.

This result is clearly true in Set and consequently in any
weakly left exact category E via the Yoneda embedding.

5. THE ¢-CARTESIARN GROUPOID ASSOCIATED TO A < T-GROUPOID.

Let Xy be a cT-groupoid in V and let us consider the following
internal groupoid in Grd.--V: '

8o 8o
X, To y Com X —81  Com.X,
- &1 82
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where Com:X: is the universal representative of the triangles of
natural transformations (namely X:®2?). The functor ( )~ is left exact
and yields an internal groupoid in Grd.V:

R S ———
LY ——————————— (Com Xi)" — (Com2X)"
S— —_——
e

Now 6. and 6 are internally full and faithful, moreover (80)0 = do
and (6v)o = d are in cT. Hence, following Proposition 17, the
internal functors 6o~ and §,” are co-cartesian. Then

(86™)o = (60do = do and 610 = (61)o = d

are again in cT; and so, following Proposition 11, the following
diagram is a groupoid with every structural map c-cartesian:

Lo e
T Xi") ——— 7. ((Com X)) - n . ((ComX1)"™)
P CIN) -

Ve call this groupoid the c-cartesian groupolid assoclated to X,
and denote it by Xi. Now ¢ [n.(86™)] is, up to isomorphism, c(do) and
consequently lies in T.

Grdr-cartV will denote the full subcategory of Grd.-~V whose
objects are the internal groupoids in V such that each structural
map is c-cartesian above a map in TI'. It is not difficult to check
that the functor ( )= is a right adjoint to the inclusion

1: Grdr-cartV — Grd.-rV.

6. THE NAIN RESULT.

We are now ready to extend the condition 2 for a stack from c-
cartesian equivalence relations to cT-equivalence relations.

Let Ry be a cT-equivalence relation. First observe that if c(R:)
is certainly a TI-groupoid, it is not necessarily a TI-equivalence
relation.

PROPOSITION 19. Every c-T-equivalence relation above a I'-equivalence

relation, part of a I'-exact diagram, can be completed in a left exact
c-T-diagram above the given I'-exact diagram.
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REMARK. That means that, under the conditions of Proposition 19, this
c-T-equivalence relation has a quotient, since a c-T-morphism is
always a regular epimorphism (Proposition 13).

PROOF. Let R be the given c-T-equivalence relation. By hypothesis its
image cR: is again an equivalence relation and it admits a quotient
r: cRo 9 K in W, lying in T. Ve observe that, in our construction of
Ri*, R and Com R: being equivalence relations, such are R~ and
(Com Ry”. Since Ry® is a c-cartesian groupoid above c¢(R:) which is an
equivalence relation, it is itself a c-cartesian equivalence relation.
The fibred reflexion ¢ is a stack for the topology I' and consequently
Ri® admits a c-cartesian quotient p: Ro™ 49 Q above r: cRo - K. Whence
the following diagram:

m{Com R”

pConR1 d RO
pry -
do 5
mRy" VR ——m ——— 1 Q
a i P

The morphism pcomri-: mR1 - mR:" being a regular epimorphism, we see
that p.pri~- is a coequalizer of the pair (do,di): mRy 33 Ro. It lies in
cT since pri~- is a c-invertible regular epimorphism and p is c-cart-
esian above r which is in T.

Now we must prove that

— ¢ —
. mR V —— Ry
N -—_

Ro

is the kernel equivalence of p.pri-, Or equivalently that the functor
€Ri: R » Ri® in Grd.-rV defined by the diagram on the next page is
internally fully faithful. When the category V admits products, as it
is the case for our two main examples, the proof is straightforward:
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do R
Ro T mRy ——— mzRy
= [ed] T ——- S
€Ry:
pR1' pCol\R1'
— b —
Ro® mRy: — mRy"
) d -_—— o

Indeed, [80,56:): Com Ry — RixR:y is a discrete fibration, and conse-
quently such is

[80,6:17: (Com Ri)7 — Ri™x<R 7™
Vhen R; is an equivalence relation, it means that (60,6117 is g~
cartesian. Now the functor q. always preserves products when they

exist, and thus the following square is a pullback:

RoxRo & Ldo,di] R,

Ro"xRo™ mRy*
[do,di]

which implies that eR: is fully faithful.
There is another but much longer proof when V is not supposed

to admit products. For that, let us consider the following diagram:

Grd V Vv

m(8o™)
Ki: Ry~

m(Com R~
m(31)

)

m(o R m(a;ComR,)

mbo
v S Ry nConR,

-J.E 1
do d do d do d

(80)0=do !
- — . .mR(n
{3 1 50" al

Ry R

with horizontal equivalences in V¥, and vertical functors. By cons-
truction R is the quotient of the componentwise c-invertible
equivalence relation in Grd V:
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€Ry — do.J

The functors d, and d are internally fully faithful for symmetrical
reasons of the ones which make 8, and &, internally fully faithful.
Indeed the double diagram in V giving Com R: is symmetrical with
respect to the diagonal. The functor Jis fully faithful as a compon-
entwise a c-cartesian functor above a fully faithful functor in

W, namely the image by ¢ of the symmetrical functor of oo (indeed,
all our left exact diagrams in V, lying in c¢-T, are preserved by o).
Thus do.7 and d;.j are internally fully faithful.

The morphism (eRi)o being px-, and thus a c-invertible regular
epimorphism, it is then possible (taking suitable joint pullbacks in
V) to factorize €Ry in a fgi.y:, with g internally fully faithful and
y1 ( Jdo—invertible (where ( J)o: Rel V - V). Let us then consider the
following diagram, where (p,p) is the kernel pair of g

[3:9) - do.J (2
Ri® + R y Ki ¢
‘ di.j
(€] Y1 X
Rz —— S PP
1 23 R

Since g1 is fully faithful, such are p and p. The functors 1s -~ and
¥y being ( do-invertible and the diagram (*) being made of compon-
entwise kernel pairs, the functor x is again ( )o—invertible. Thus
the two following squares are pullbacks, since they have a pair of
parallel edges ( Jo-invertible and a pair of parallel edges internally
fully faithful:

R - = K1
N d.J

¥ X1
— P

S P
P

Thus, the pair (y1,x1) yields a vertical discrete fibration in
Rel(Rel V). Its image by the functor m is a discrete fibration in
Rel V!
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(_———
mRy™ == = = — = — mR, Ky~ — — - - -
mp mya
-
mRy™ +~—— — - - - mS, L mPy - - —-— - —

which is also gc-invertible since mR," is the quotient of the upper
line by hypothesis, and the quotient of the lower line since ¢ is
fully faithful and go = pri-. A discrete fibration between c-discrete
equivalence relations being always g.-cartesian (Proposition 5), this
discrete fibration, which is also g.~invertible, is an isomorphism.
Thus the morphisms my: and my: are invertible and consequently
and x1 are themselves invertible. Then ¢€Ri is internally fully
faithful. .

REMARK. 1. The quotients given by Proposition 19 are universal since,
by Proposition 14, the c¢-T-morphisms are stable under pullbacks.

2. A cT-equivalence relation above a TI'-equivalence relation,
part of a I-exact diagram, can be seen as a generalized descent data,
given by a span (do!,di') of c-invertible regular epimorphisms:

mR,

w“
a ! y
T

>

v ar e -+ Ro
W cdo N
cmRy , CRo
cdh .

Then this Proposition 19 can be interpreted in the following terms:
when a stack is Barr-exact, something more general than a descent
data can even be descended.

V., THE I-EXACTNESS,

From now on, when we shall speak of Cat E, it will be supposed
that E is a left exact and Barr-exact category. Then the functor
(Je: Cat E + E is a Barr-exact fibred reflexion and is a stack for
the regular epimorphism topology. Furthermore it is left exact.
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Now, given a ( )o-full equivalence relation ARy in Cat E, its
image by ( )o is again an equivalence relation in E, which conse-
quently admits a quotient. We are thus in the conditions of Proposi-
tion 19 and then Ry admits a ( )o—full quotient. Consequently every
( Jo—full equivalence relation in Cat E admits a ( )o—full quotient.
It is a kind of relative Barr-exactness which we are going to esta-
blish precisely.

1. DEFINITIOF OF THE I-EXACTNESS PROPERTY.
Let W be a weakly left exact category, equipped with a proper
class I.

DEFINITION 6. The category W will be called I-exact if furthermore:

1. every I-equivalence relation has a quotient (a coequalizer
making this equivalence relation effective) which is in I and which
is universal (the pullback of such a I-exact diagram is again exact);

2, if g.f is in I and f is a I-regular epimorphism then g is in
I.

EXAMPLES. 1. If ¢ is a Barr-exact fibred reflexion, then V is I-exact
for I the class of c-invertible regular epimorphisms.
2. WVhen E is left exact and Barr-exact, then Cat E is I-exact
when:
I = L. the class of ( )o-invertible morphisms,
I = I, the class of ( )o—cartesian morphisms (since ( )o is
a stack for the regular epimorphism topology, see [(2D).
3. When E is left exact and Barr-exact, then Cat E is I-exact,
for I the class of discrete fibrations (cf. [5], Proposition 5).

REMARK. The class of I-regular epimorphisms yields a Grothkendieck
topology, called the I-topology. Indeed:

- an isomorphism is in I and is a regular epimorphism;

- the I-regular epimorphisms are stable under pullback because
of the universality condition of the I-exactness;

- the composite of two I-regular epimorphisms is in I. Moreover
the composite g.f of two regular epimorphisms is again a regular
epimorphism, provided the morphism f is stable under pullback as a
regular epimorphism. Thus the composite of two I-regular epimor-
phisms is a I-regular epimorphism.
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2. FIRST PROPERTIES OF THE I-EXACTNESS.
Rel:W will denote the subcategory of Rel W whose objects are
the equivalence relations such that the pair (do,di): mRy 3 Ro is in I.
That I contains the class of isomorphisms yields a fully faithful
functor
dis: W — Rel:VW.

The I-exactness condition implies that this functor has a left
adjoint g:: Rel:W - W.
PROPOSITIOR 20. A morphism fi: R »+ R% in ReliW is qi—cartesian iff

it is a discrete fibration.

PROOF. Let fi be a gr-cartesian morphism; then the following diagram
is a pullback:

Ri —eoef 4 Ry,

disg:R: - disq:R"

disg:cfi
disq:fi being a discrete fibration, such is £.

The converse is more difficult. In the absolute situation (W
Barr-exact), it is a consequence of the Example ([1], p. 73) which is
obtained by the metatheorem. Here we must find a direct proof.

Let fit R - R be a discrete fibration and consider the
following diagram:

— Rl‘

R Eg
f\ /f‘/'
Rr™
p
/ o

disqgcR:

deq 7 y disq:zR"
where the square (¥) is a pullback (it does exist thanks to the
universality condition). Then f" is a discrete fibration, and conse-

quently such is f%. The proof will be completed by the following
Lemma.
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LEMMA 5. A gr-invertible discrete fibration f% is an isomorphism.

PROOF. p and p" denote the quotient morphisms of R and R":.

1. Let us show that f% is a monomorphism. The kernel
equivalence of f% is denoted by Ri[f%]. That p".f% = p implies that
the following diagram in Rel W is a componentwise pullback:

Ril £%] 4 — dis R"

R Fi) — R«

If f4" is a discrete fibration, then g, is a discrete fibration and,
disR-o being discrete, Ri[f%] is discrete and f% is a monomorphism.

2. Llet us show that f% is a regular epimorphism. For that,
consider the two following diagrams:

1Ry mfh » gRY ——Go |, R,
d d p
Ro 7T + R% " Yy Q
Ry do Ro fh 4 R%
di ot
Ro 5 > Q

They are globally equal. The first one is a pullback since f% is a
discrete fibration; hence the second one is also a pullback and f%.do
is a I-regular epimorphism since p is a I-regular epimorphism. do
being split, f% is a regular epimorphism. Thus f% is an isomorphism
and f%, being a discrete fibration, is an isomorphism. .

PROPOSITION 21. The functor g is a fibred reflexion.
PROOF. It is a consequence of the universality condition. .

Later on, we shall need the following result about some part-
icular gr-invertible morphisms.
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LEMMA 6. Let fi: Ry » R% be an internally fully faithful morphism
between two I-equivalence relations such that fo is a I-regular epi-
morphism. Then fi is a gi~invertible morphism. Such g:-invertible
morphisms are stable under pullbacks and these pullbacks are
preserved by g:.

PROOF. The morphism f, being a I-regular epimorphism, g:(fi) is
certainly a I-regular epimorphism. We consider the following diagram:

Ry SO . E— mR"s
7/

" do J ld. do | |

pu 7 i Ro .fo ) |°
e p P!

"4

S - N Ry

m —— — Q G (E) ' Q

If fi is internally fully faithful, the pair (do,di): mRi —} Ro is the
kernel pair of p'.fo and therefore of g:{(fi).p. Thus, if (po,pd: T3 Q
is the kernel pair of q:(fi), then p and p" determine a joint pullback.
Hence p" is a I-regular epimorphism and po is equal to p. Then g (£i)
is also a monomorphism, and so an isomorphism. It follows from
condition 2 that such g:—invertible morphisms are stable under
pullback, and these pullbacks are preserved by g:, two parallel edges
being g:—invertible. .

3. A STABILITY PROPERTY FOR I-EXACTNESS.

Ve are now in a position to prove that Cat E is Ii-exact, with
I,=0-Full.

Let ¢t V » W be a fibred reflexion; we say that c is a left
exact fibred reflexion if V is left exact and ¢ is a left exact
functor. If L is a class of morphisms in W and if ¢ is Barr-exact,
c-I will denote the class of morphisms f in V such that f is c-full
and c(f) in I.

PROPOSITION 22. Let W be a L-exact category and ¢ a left exact and
Barr—-exact fibred reflexion which is a stack for the I-topology. Then
V is c-I-exact.
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PROOF. Mimicking Proposition 14, it is clear that <L is a proper
class in V. Every c-I-equivalence relation R: is such that cR.) is
an equivalence relation since ¢ is left exact. It is then a I-equi-
valence relation, and thus it admits a quotient in I. By Proposition
19, ¢ being a stack for the I-topology, R: has a quotient in oI,
which is universal (Remark following Proposition 19). This is the
condition 1 for the c-I-exactness.

To prove the condition 2, let g.f in cI, with f a c-T-regular
epimorphism. Then c(g).c(f) is in I, with c(f) a I-regular epimor-
phism, and thus c(g) is in I. We must prove that g is c-full. For
that, we consider the following diagram:

U' — = ——- — = v 1AL
f: gc

where F%.g7 is the canonical decomposition of g*f7 That g.f is in I
implies that g%f' is a c-invertible regular epimorphism. The mor-
phism f! being also a c-invertible regular epimorphism (f in cI), g7
is a c-invertible regular epimorphism. Now o(f9 is, up to iso-
morphism, equal to c(f©), and thus is a I-regular epimorphism. Then ¢
being a stack for the I-topology and by condition 1 for stacks, f¢
and f° are c-cartesian regular epimorphisms. In particular f° is a
regular epimorphism stable under pullback. As g:@fc = f..g! is a
regular epimorphism, such is g4, and g is in c-I. .

4. THE c-I-REGULAR EPIXORPHISKS.

A c-invertible regular eplmworphism is always a c-I-regular epi-
morphism. Now, c being a stack, any c-cartesian f morphism above a
I-regular epimorphism is a c-I-regular epimorphism (f will be called
a c-I-cartesian regular epimorphism).

More generally a c-I-regular epimorphism f is just a c-full
morphism such that ¢(f) is a I-regular epimorphism.
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Indeed, if f is a c-Ii-regular epimorphism, then, ¢ being right
exact, c¢f is a I-regular epimorphism. On the other hand, f being in
c-I, it is c-full.

Conversely, let f<f' be the canonical decomposition of f. If f
is c¢-full, f' is a c-invertible regular epimorphism. Now f¢ is c-
cartesian above c(f). If c(f) is a I-regular epimorphism, then f* is a
c-l-cartesian regular epimorphism. Thus f = ff! is a c-I-regular
epimorphism as a composite of two c-I-regular epimorphisms.

5. A STABILITY PROPERTY FOR STACKS.

When < V » W is a left exact fibred reflexion, such is o
Cat¥ - V. If furthermore ¢ is Barr-exact, ¢ is again Barr-exact [2].
Our present aim is to prove that, when ¢ is also a stack for a I-
topology in W, then o is a stack for the c-I-topology in V.

For that, we begin by the following lemmas.

LEMMA 7. Let £ V 3 V' be a c-I-morphism; then G.(HH: GV » GV' is an
internal functor in Cat.V which is componentwise a c-I-morphism. If
f is also a c-I-regular epimorphism, G.(f) is a regular epimorphism
in CatcV.

PROOF. Let f<f! be the canonical decomposition of f. Then G.(f9 is &
cartesian. Thus mlG (f)] = fx.f in the same way as f¢ is c-cart-
sian above c(f) which is in I and G:.(f9 is a functor which is

componentwise a c-I-cartesian morphism. On the other hand G.(f") is
c-invertible. The morphism mG.(fH] = fi.f! reduces to the product
fixf' in the left exact and Barr-exact fiber Fib.J[c(V)], Now if f¥ is a
regular epimorphism, such is fix.f! and G.(f" is a functor which is
componentwise a c-invertible regular epimorphism. Thus G.(H is comp-
onentwise a c-I-morphism. If furthermore c(f) is a I-regular epi-
morphism, then f¢ and fx.f° are c-l-cartesian regular epimorphisms
and G.(f) is a functor which is componentwise a regular epimorphism,
and therefore is a regular epimorphism in Cat.V. .

LEMMA 8. If fi: Xi » Y\ is a o-cartesian functor such that fo is in
c-I, then fi is componentwise in c-I. If £ 1is also a c-I-regular
epimorphism, then fi is a regular epimorphism in Cat.V.

PROOF. If fi is o-—cartesian, then the following square is a pullback,
and, since V is left exact, it is a componentwise pullback.
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Xu y Y,

G =XO -+ G cYa

Gc(fo)

If fu is in cI, G.(f) is componentwise in c-I, and thus £fi is comp-
onentwise in c-I. The proof is exactly the same for the second part
of this lemma. .

PROPOSITION 28. Let c: V » W be a left exact and Barr-exact fibred
reflexion. If W is I-exact and ¢ a stack for the L-topology, then o
CatV » V is a stack for the c-i-topolaogy.

PROOF. Let the following diagram be a o-cartesian diagram above a c-
I-exact diagram:

It is left exact as a cartesian diagram above a left exact diagram.
Since fo is a c-I-regular epimorphism (the co-underlying diagram
being c-L-exact), then, following Lemma 8, fi is a regular epimorphism
and our diagram is exact. This is the condition 1 for stacks.

Let A" be a cocartesian equivalence relation in CatV, above a
c-I-equivalence relation in V, part of a c-I-exact diagram. If we
denote Ro by Xi and mR: by U, we obtain the following diagram in V:

mSe R
mUy , mXy ————————— 1
mé, - o
do d do d do d
U (8§0)o
X —_— Q
° GIPP » po °

where the lower line is a c-I-exact diagram. . and 6, being o-
cartesian, and (§0)o and (§1)o being in c-I, the morphisms mé, and mé,
are in c-I and the upper line is a c-I-equivalence relation. We denote
by mp:: mX: 40 mQ: its quotient morphism which lies in oI (following
Proposition 22).

Now we consider the following diagram:
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. mSo N .
U, omX, .. L B mh
. 5 )
[do,di] [do,di] [do,di]
(80doxc(8ada N '

UoxUo ) XoxeXo —5———+ QoxcRo

poxcpo

E1)oxc(81)o

The lower line is c-I-exact following Lemma 7. That 6o and & are o-—
cartesian means exactly that the two left hand commutative squares
are pullbacks. Thus the morphisms [do,di] yield a vertical discrete
fibration between two c-I-equivalence relations. Following Proposi-
tions 22 and 20, the right hand square is a pullback. Ve must prove
that

do —

1 ., Qo
<8

is underlying to a c¢-discrete category. If it is the case, the

quotient morphism pi: Xy 9 Q will be o-cartesian, following our last
remark.

Now we consider the following c-I-exact diagram:

and we denote by Ro, mRi, mR: the c-I-equivalence relations, images
of A" by the functors o, m m (mR: ie just given by our last
diagram).

We have the following square in Rel.:V:

mRi do ~+ mRa
dz di
mRy ——[m«) RoxcRo ——Ii—_/-): Ro
do

It is a pullback since X; and U, are internal categories and we are
going to prove that it is preserved by gc-r.
Let us consider the following diagram:
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UoxcUo y . » Uo
XoxcXo ___)SO_EEO_’____) XoxcZo B — Xo
~ o |
PoxcPo I poxcpot () Po
~ [
~ N !
~3 d
Qox Qo 3 - Qo

where the square (%) is a pullback and
pocipo™ Xo —— Zo — Qo

the canonical decomposition. It upper part determines the decom-
position of the functor po: Roxs = Ro in a gcr—cartesian and a e~
invertible functors. The morphism Xoxcpo' is a c-invertible regular
epimorphism <(since po is in c¢I) and consequently a c-I-regular
epimorphism. Then, following Lemma 6 and Lemma 1, the functor gc-
preserves the pullbacks along po: RoxcRo 9 Ro.

Furthermore the functor {do,dil: mR: - RoxcRo, being a discrete
fibration, is gc-:-cartesian and thus g.-: preserves pullbacks along
[do,di]. Hence our previous pullback is preserved by g.: and deter-
mines a c-discrete category:

- o — do
Qo AT c mh
) a ) dz
which is the componentwise quotient of A4. .

VI, THE I.~EXACTNESS PROPERTY FOR THE CATEGORY
n-Cat E OF INTERNAL nr»r-CATEGORIES IN E,

We are now ready to apply our results to the tower of Barr-
exact fibrations of m-categories [2]:

1 +—E +«——Cat E ... (r-1)-Cat E &———— n-Cat E

Here is the first step:
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1. A RIGHT EXACTNESS PROPERTY FOR INTERNAL CATEGORIES.
Let E be a left exact and Barr-exact category. We recall that

(Jo: Cat E —m E

iz a left exact and Barr-exact fibred reflexion which is also a stack
for the regular epimorphism topology. Then starting from the proper
class Lo = E, the category E is I.-exact.

The proper class ( )o-Io in Cat E is just the class of 0-full
functors (or shortly full functors) in Cat E. We denote this class by
I,. By Proposition 22, the category Cat E is again I.-exact.

The class of Ii-regular epimorphisms is then the class of full
functors fi: Xy » Yy such that fo is a regular epimorphism. They will
be called the fully regular epimorphisms of Cat E. These fully
regular epimorphisms are componentwise regular epimorphisms in
Cat E.

RENMARK. A componentwise regular epimorphism functor is clearly a
regular epimorphism in Cat E. However the class of such morphisms is
obviously too large with respect to a right exactness property: every
equivalence relation Ay in Cat E has its do,di: mRy 3 Ro component-
wise regular epimorphisms, but has not always a quotient (take E =
Set).

It is easy to show that, in general, a componentwise regular
epimorphism functor in Cat E is not a fully regular epimorphism:
take a discrete fibration fi: X, » Y: with £ a regular epimorphism;
it is then a componentwise regular epimorphism. But as a discrete
fibration, it is always internally faithful, that means ( Jo—faithful.

2. THE TOWER OF INTERNAL n-CATEGORIES.

Ve recalled that, if o WV » W is a left exact fibred reflexion,
then «: CatV - V is again a left exact fibred reflexion. Further-
more if ¢ is Barr-exact, o is Barr-exact.

It is clearly the beginning of an iteration process. Starting
from ( Jdo: Cat E » E, we denote as follows the first step of this
process

( it 2-Cat E— Cat E

and we call this new category the category of internal 2-categories
in E, since, if E = Set, this construction actually produces the
category of 2-categories.
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Let us denote by (atl)-Cat E the n-th step of the process:
(dnt (mt1)-Cat E — nCat E

and call it the category of internal (ntl)-categories in E, as it is
the case if E = Set [2].

When E = A is an abelian category, then n-Cat A and n-Grd A
are identical, and they are equivalent to the category C~”(A) of
positive chain complexes of length » in A [41.

3. A RIGHT EXACTRESS PROPERTY FOR INTERNAL 2-CATEGORIES.
Vhen E is left exact and Barr-exact, our fibred reflexion

( )y: 2-Cat E — Cat E

is again left exact and Barr-exact. Following Proposition 23, this
functor ( ) is a stack for the I,-topology and, by Proposition 22,
the category 2-Cat E is ( ):-I-exact.

Ve denote by I: the class ¢ )-Ii. It is the class of 2-functors
fz: Xz » Yz which are ( )1-full and such that f£i is full. A I:-regular
epimorphism is moreover such that fo is also a regular epimorphism.
Ve shall call such a 2-functor a fully regular epimorphic 2-functor.
In the case E = Set, a fully regular epimorphic 2-functor is a 2-
functor fz: X2 3 Y: epimorphic on objects, such that its underlying
functor fit Xy » Y\ is full and that, for each pair (g,y>: x =+ x' of 1-
morphisms in Xz, with a 2-cell ¥: £ 2 f2¢y) in Y., there is a 2-
cell ¥: ¢ = y in X., satisfying £ = Y.

4. A RIGHT EXACTNESS PROPERTY FOR INTERNAL n-CATEGORIES.
The proper class I, in n-Cat E is defined by induction, by
In = (Dpr=Ln

A n-functor fu Xa 9 Y. is in I, iff, for each 1, 1 ¢ 1 ¢ n, fu: X: 2 Y,
is (i-1)-full.

By Proposition 22, the category n-Cat E is I.~exact. The I.,-reg-
ular epimorphisms in n-Cat E are those n-functors in I, such that,
moreover, fo is a regular epimorphism. We call them the fully regular
epimorphic n-functors.
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By Proposition 23, the functor
()nt (pt1)-Cat E — nCat E

is a stack for the I, topology, and that makes possible to iterate
our process.

Thus we have established a precise and strong exactness
property for n-Cat E, mimicking strictly the Barr-exactness. This
property is again satisfied in the category n-Grd E, the full subcat-
egory of n-Cat E whose objects are the internal n-groupoids. It is
thus possible, always mimicking the absolute case, to define the
first cohomology group of n-Grd E with values in an intermal abelian
group A in E. It is easy to check (and will be published later on)
that: )

The n-th cohomology group of E with values in A, as defined in
[3], is the first cohomology group of n-Grd E.

Indeed, what was called an aspherical n-groupoid in [3] is just
a ngroupoid X. such that the terminal map X, + 1 is a fully regular
epimorphic n-functor, that is a n-groupoid with a fully global
support.
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