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COMPLETE THEORIES IN 2-CATEGORIES

by Renato BETTI and Marco GRANDIS

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATEGORI QUES

Vol. XXIX - 1 (1988)

RÉSUMÉ. On étudie les théories a valeurs dans une 2-

cat6gorie concrète A sous forme de 2-foncteurs "des mod6les" T:

A e CAT, et leurs nod6les biuniversels, sous forme de bir6pr6-
sentations de T. On donne des théorèmes d’existence pour ces

derniers, à partir d’un theoreme de 1’objet biinitial étendant le
theoreme de Freyd A la dimension 2, ainsi que divers r6sultats

sur les pseudolimites et les bilimites dans les 2-catégories.
En particulier, une théorie peut 6tre définie par des

conditions "syntaxiques" ayant sens dans les objets de A, par
exemple des conditions de commutativité, de limite, de colimite,
d’additivite, de majoration, etc. On retrouve alors, par une

méthode générale proc6dant "d’en haut" au lieu de constructions

syntaxiques "d’en bas", des resultats tels que 1’existence du

modèle g6ndrique d’une esquisse de Bastiani-Ehresmann ou du

topos libre engendr6 par un graphe.

0. INTRODUCTION.

0.1. Let A be a concrete 2-category, with structural 2-functor I h

A -&#x3E; CAT; typical examples Cwhere I I is the inclusion) will be CAT

itself, the 2-category of finitely complete categories, of exact

categories, of abelian categories, of toposes (and logical morphisms),
and so on.

Notice that these categories are always pseudocomplete, hence

bicomplete, but generally not complete: they lack equalizers (except
for CAT). Thus we generally look for solutions of biuniversal

problems in A (e.g., the bifree abelian category generated by a graph,
determined up to equivalence), and only exceptionally for solutions of
2-universal problems (e.g., the 2-free category generated by a graph,
determined up to isomorphism).
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0.2. According to our definition, a theory T on the (small) graph A,
with values in A, associates to every object A. in A a (generally non
small) set T (A) of graph morphisms t: 8 -&#x3E; ILI (the models of T in A),
So that an obvious condition of stability under composition -aith the

morphisms of A is satisfied (Def. 4.2). Thus T can be thought of as a
2-functor T: A 4 CAT assigning to each object A. the category T (A) of

models t: A -&#x3E; IA.1 (together with their natural transformations); it is

a sub-2-functor of the total A-theory Ta assigning to each A. the
whole set of graph morphisms A -&#x3E; IAI.

A biuniversal model (4.5) t,,: A -&#x3E; IAo I of T will be any model

through which all the models (and their transformations) factor up to

isocells: in other words, it is a birepresentation of T, or equival-
ently a biuniversal arrow from the category 1 to T. If existing, it is

determined up to an equivalence of A, and Ao is called the biclass-

ifying object of T. A 2-universal model is the corresponding strict
notion.

After a general part on biuniversal problems in 2-categories, we
give here solution set conditions for the existence of these models

for complete theories, and apply them to the above recalled situ-

ations. Thus we get, by a general method "from above", such results

as the existence of the classifying category of a Bastiani-Ehresmann

sketch CBEJ, of the bifree topos generated by a graph or by a carte-
sian closed category [Bu; MS] and so on. Moreover the heavy
syntactical constructions which are needed in proceeding "from below"
are here replaced by lighter constructions proving the solution set

condition; in the same way as, in the 1-dimensional case, it is

simpler to prove, e.g., the existence of the free group generated by a
set by means of the Freyd’s Initial Object Theorem than actually
construct it.

0.3. More precisely, the outline of this paper is the following.
Part I studies universal properties of 2-categories. In Chapter

1, birepresentations of 2-functors T: A -&#x3E; CAT and biuniversal arrows

into a 2-functor U: A e 8 are considered: they are equivalent
problems which, under suitable hypotheses on the bicotensor products
with 2. in A , reduce to the existence of a biinitial object (Thms. 1.8-

9). Chapter 2 gives construction theorems (2 .6 , 2.8) for conical

pseudolimits (from products, isoinserters and identifiers of

endocells, which do exist in all our examples) and for conical

bilimits. Chapter 3 supplies a "Biinitial Object Theorem" (3.1),

extending Freyd’s Theorem to the 2-dimensional case, and derives
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solution set conditions for the existence of birepresentations or

biuniversal arrows. Strict universal properties are also considered.

Part II introduces theories and their 2-universal, or biuniv-

ersal, model (Ch. 4). 2-complete, pseudocomplete and bicomplete
theories are considered in Chapter 5, and solution set conditions for
the existence of the 2-universal or biuniversal model are derived

from the results of Part I. Chapter 6 concerns reflective theories

(satisfying a property of reflections of models) in well adapted 2-
categories, proving that such theories are always bicomplete and

provided with a biuniversal model.

Applications are given in Part III:

Chapter 7 proves that the 2-category FLX of finitely
complete categories, with finitely continuous functors and natural

transformations is well adapted. Thus each reflective theory in it

has a biuniversal model; in particular this holds for the theory
T(A,K,r) defined by a projective sketch (A,K,r) where A is a small

graph, K is a set of commutativity conditions on A and r is a set of

finite limit conditions on A. Analogously for the 2-category FP of

categories with finite products. More generally, analogous conclusions
hold for the 2-category FF’LM of F-complete, F’-cocomplete categories,
where F and F’ are small sets of small graphs.

Chapters 8 and 9 prove analogous results on the 2-categ-
ories : A-Cat of A-linear categories (A a small ring), EX of exact

categories (in the sense of Puppe--Mitchell [Pu; Mi]), AB of abelian

categories, RG of regular categories (in the sense of Grillet [Grl)

and TPL of toposes and logical morphisms. In all these cases

reflective theories can be defined by suitable syntactic conditions

on a small graph A; moreover, by means of the "change of base" for

theories (4.9-10), "intermediate steps can be chained": e.g., the

bifree topos on the small graph A is the bifree topos on the bifree
closed category on A, and so on.

Last, Chapter 10 concerns theories with values in

involutive ordered categories, already considered in [G2J; since the

"good" transformations in this case are just lax-natural, these

theories live in a 2-category A which is only "1-concrete", and some
adaptations in terminology are required.

0.4. We would stress the following point: in defining theories we

adopt here a semantical approach: a theory is given by assigning its
models. This approach differs from definitions based on "partial
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syntaxis", e.g., a Bastiani-Ehresmann sketch, or on a "global syn-
taxis" as in Lawvere’s functorial semantics [La].

Actually the definition of an A-theory by syntactic conditions

On the graph A U (e.g., by a by a mixed sketch für A = FF" LX) is a -;ery
useful tool when working in some specified A ; however the type of

syntactic conditions which may be imposed (commutativity, limit and

colimit conditions in the above case; linearity conditions for A =

A-CAT, exponentiation conditions for cartesian closed categories,
inequality conditions for ordered categories, etc.) depends on A, and
it seems hard to give a general treatment from this point of view.

On the other hand the global syntactic definition (an A-theory
is an object Ao of A, corresponding to its biclassifying object in

our formulation) is simple and general from a theoretical point of

view, but needs theorems of existence of the biuniversal model in

order to be applied in particular cases. Such results as we aim to

give here.
The approach we follow here has already been used by one of the

authors, in a work concerning reflective (homological) theories in El

[G1-31; the existence of the biuniversal model for a reflective EX-

theory was proved through an associated theory in a 2- complete 2-

category, RE, and the (strict) initial object Theorem. The present
results would allow to reach the goal directly in EX.

0.5. General conventions. We generally use Mac Lane’s terminology (Mal
for categories and Kelly-Street’s [Kl, KS, Sl, S2] for 2-categories.

A universe U is chosen once for all, whose elements are called
small sets. A It-category is assumed to have objects and morphisms
belonging to U. CAT will always denote the 2-category of (large or

small) U-categories. The cardinal of a small set is assumed to be

small.

A cell of a 2-category A will be typically written

Ot: a1 e a2 : A e A’ or also a: A 4 A’ ; 

notice that the double arrow always concerns the horizontal domain

and codomain of the cell; a: a, = a2 denotes an isocell from a1 r to a2-

A 2-functor U: A -i B is called 2- full (resp. bifull) if all the

functors A (A,A’) e B (UA, UA’) are surjective resp. representative and
full); a sub-2-category is 2-full or bifull whenever its embedding is
so.
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In a 2-category A the object Ao is said to be 2-Initial if:

(1) for each object A there is a unique morphism a: Ao e A and a

unique cell a -&#x3E; a (the identity of a).

Ao is said to be biinitial if :

(2) for each object A there is some morphism a: Ao -&#x3E; A; for every

pair of morphisms a1 a2: Ao e A there is a unique cell a: a, -&#x3E; a2 (an

isocell).

The 2-initial (resp. biinitial) object is the 2-colimit (resp.
the bi-colimit) of the empty diagram (see Ch. 2) and it is determined

up to isomorphism (resp. up to equivalence). Notice that AB, the 2-

category of abelian U-categories, has a biinitial object (the category
1) but no 2-initial (or initial) one.

If A and B are 2-categories, we shall write (A,B) the 2-cat-

egory of 2-functors A -&#x3E; B, their natural transformations and modifi-

cations, while [AtB] J will denote the 2-category of 2-functors, pseu-
dotransformations and modifications.

0.6. Last we fix notations for pseudotransformations and their mod-
ifications.

A pseudotransfornation (of 2-functors) O: F -&#x3E; G: A 4 B is a

collection:

for A and a: A e A’ varying in A , with coherence conditions:
(PT.1) For all A, O 1A = 1,A ,
(PT.2) For all composable a, a’ in A :

(PT.3) For all a: a 4 a’: A -&#x3E; A’ in A :
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A modification of pseudotransformations 0: o 4 1: F -&#x3E; G: A -&#x3E; B

is a family:

for A in A, with coherence condition:

(MD) For all a: A -&#x3E; A’ in A, the following square of B-cells

commutes:

Part I , BIUNIVERSAL PROPERTIES FOR 2-CATEGORIES

1, Birepresentations, biuniversal arrows and

biinitial object,

Weak universal properties in 2-categories can be introduced as

birepresentations of a 2-functor T: A e CAT or equivalently as biun-
iversal arrows with respect to a 2-functor U: A -&#x3E; B. In contrast

with the 1-dimensional case, these problems seem not to have a

simple and general formulation in terms of biinitial objects. This

fact, however, becomes possible under suitable assumptions on the

existence and preservation of bicotensors l2iAl in A.

U and T are always as above and Bo is an object of B.

1.1. Recall that the comma 2-category (Bo l U) has objects of the form
(A, b: Bo -&#x3E; UA) and cells a: (A,b) =&#x3E; (A’,bl) given by A-cells
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We also consider the 2-category [Bo l U] (1); the objects are the

same as in (Bo4,U), a mcrrphism (a,O’): (A, b) -&#x3E; (A’,b’) is given by an A-

morphism a: A e A’ with a B-isocell 0’: b’ -&#x3E; Ua.b: Bo -&#x3E; UA’; a cell a:

(a1, o-1) -&#x3E; (a2, o-2): CA, b) -&#x3E; (A’, b’ ) is given by an A-cell a: a, e a2:

A 4 A’ such that v2 = (Ua. b)o-: 

In particular, for the 2-functor T: A e CAT, we shall use the 2-

categories (1 l T) and [1 l T] determined by the trivial one-object

category I and contained in the Grothendieck 2-category Elo (T) of

elements of T (in the notation of Street IS2]).

1.2. A birepresentation IS2] 7 of the 2-functor T : A -i CAT is an object
Ao of A provided with a family of equivalences of categories (2),
natural for A in A:

A strict solution of this problem, with x an isomorphisms of 2-
functors (i.e., all the components XA are isomorphisms of categories),
will be called a 2-representation of T; these will be shortly consi-
dered at the end of this chapter (1.10).

1.3. More explicitly, by Yoneda, a birepresentation of T is given by
an object (Ao, to) of the 2-category [1 l T] ( to = À Ao (1A,) e Ob TAo)

verifying:
CBR.1 For every A-object A and every t e Ob TA there is some

A -morphism a: Ao -&#x3E; A such that t N Ta (to) ;

(1) It is a comma in the 2-category of 2-categories, 2-functors and pseudotrans-
formations.

(2) This family produces an equivalence À: A (Ao,-) a T in the 2-category
[A, CAT) of 2-functors from A to CAT, their pseudotransformations and modifi-
cations,



16

(BR.2) For all morphisms 81, a2: Ao -&#x3E; A and every morphism,. :
Ta1 (to) 4 Ta2 (to) in the category TA there is a unique A-cell
a: 81 -&#x3E; a2 such that,. = Ta (to).

Thus a birepresentation (Ao, to) is a biinitial object of [1 l T]
and is determined up to an equivalence of A, unique up to

isomorphism. 
However, biinitiality in (l,T] just means satisfaction of (BR.1)

and of the restriction of (BR.2) to isocells; indeed, it is not

possible to express in full generality the condition (BR.2) by means
of the 2-category [l.TJ, which gives no information on the morphisms
of the categories TA. As already remarked, this fact will become

possible under convenient hypotheses on the bicotensors of A (1.9).

1.4. A biuniversal) arrow from the object Bo of B to the 2-functor U:

A -&#x3E; B is an object Ao of A provided with a family of equivalences of

categories, natural for A in A :

In other words, by Yoneda, it is a pair (Ao, bo: Bo -&#x3E; UAo)

verifying: 
(BA.1) For each pair (A, b: Bo e UA) there is some a: Ao e A such

that b = Ua. bo.

(BA.2) For all morphisms a1, a2: Ao -&#x3E; A and each cell

there is a unique cell a: a, 4 a2 such that 13 = Ua. to.

The solution, if existing, is determined up to an equivalence of
A , unique up to isomorphism.

Again, the biuniversal arrow (Ao,bo) is biinitial in [Bo l U], which
means that it verifies (BA.1) and the restriction of (BA.2) to

isocells:

(BA.I) For all morphisms a, , az : Ao -&#x3E; A and each isocells

there is a unique isocell p: al e a2 such that 0’ = Up, bb,



17

Also here the converse is not true: the 2-category [Bo l U] gives
no information on the B-cells j3: th -&#x3E; bz: Bo .4 UA, without suitable

assumptions on the bicotensors of A (1.8).

Last we notice that, in case tb: Bo 4 UAo is a biuniversal arrow,

for each morphism b: Bo e UA the morphism a verifying (BA.1) is a

right Kan extension from bo to b, in the 2-category Ae, formed by
adding to A the object Bo, and a cell B: Bo =&#x3E; A for each cell

B: B. 4 UA of B. The construction of ABo, will be used for theories,
and more explicitly described in 4.1.

The strict notion of 2-universal arrow, determined up to a

unique isomorphism, will be considered in 1.11.

1.5. Thus a birepresentation of T: A -&#x3E; CAT is just a biuniversal

arrow from 1. to T. Conversely a biuniversal arrow from the object Bo

to the 2-functor U: A e B is precisely a birepresentation of the 2-
functor :

In particular, applying both results, a biuniversal arrow from

Bo to U is the same as a biuniversal arrow from 1. to the above 2-

functor (1).

1.6. Biuniversal arrows compose in the usual way. To get a biuniv-

ersal arrow from Bo to the composite 2-functor

assume we have biuniversal arrows

respectively from Bo to U and from the former solution object Ao to

V; then

is biuniversal from Bo to UV.

Analogously, if (Ao, to ) is a birepresentation of T: A -&#x3E; CAT and

(Xo, ao: Ao e VXo) is a biuniversal arrow from Ao to V, then (Xo,
Tao (to)) is a birepresentation of TV: X e CAT. Similar results hold
for the strict notions.
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1.7. The bicotensor product of the A-object A with the arrow-cat-

egory 2 is a birepresentation of the 2-functor

i.e., an object [2OA] of A together with a family of equivalences of

categories, natural for X in A : 

More explicitly, by the conditions (BR1, 2) expressing birepre-
sentations (1.3), this bicotensor is an object l2iAl with a cell

satisfying
CBC.1) for any cell a; a, -i a2: X -i A there is some morphism a:

X e l2iAl such that a = 60a, i.e., there are isocells pi: ai = di a:
X e A (I = 1,2) such that the pasting of the following diagram is a:

(BC.2) for all morphisms ari X -&#x3E; l2eAl (r = 1,2) and all cells

ai: diai -&#x3E; dia2: X -4 A (I = 1,2) verifying:

there exists a unique a: 81 e a2: X -&#x3E; [2OA] such that a i = d j .a

(i = 1,2).

The corresponding strict notion of cotensor product 2OA is well

known: it amounts to a 2-representation of the 2-functor (1); expli-
citly, to a cell 6; 21A e A satisfying the universal property (UC.1) 

below and (BC.2): 

CUC.1 for any cell a: a, -&#x3E; a2: X e A there is a unique morphism
a: X e 2OA such that a - 6,a.
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1.8. THEOREN: Biuniversal arrows and biinitial objects. If A has bico-

tensors (1) with 2, preserved by the 2-functor U , th e object (Ao, bo) 
is biinitial in [Bo4.U] iff it is a biuniversal arrow from Bo to U.

PROOF. The pair (Ao, bo) satisfies (BA.1, I). The proof of (BA.2) is

based on the existence of bicotensors 6: [2OA] =&#x3E; A (1.7) and their

preservation by U: the cell U6: UE[2OA] =&#x3E; UA is a bicotensor product
of UA with 2. in B. Let be given the A-cell:

by (BC.1) it factors as:

for some b: Bo 4 U[2OA]: 

Since (Ao,bo) verifies (BA.1) there is some a: Ao -&#x3E; [2OA] with B-
isocell:

Now, by (BA.I), there are unique isocells pi of A verifying:

Last, define the cell a of A as the vertical composition:

(1) Assuming the stronger hypothesis of cotensor products (which indeed exist in
all the examp les we shall consider), the proof can be somewhat simplified: just
replace the following isocells with identities; o-i,o-,o-’i,pi,r,o-i r,o-’.
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this solves our problem since:

(exchange property in B)

As to uniqueness, assume we have two A-cells a1, a2 solving the
same problem:

By the biuniversal property of 61 [2OA] =&#x3E; A there are morphisms a’r

and isocells p,r r (i,r= 1,2) such that

Thus

and, by (BC.2) for U6, there is a (unique) B-isocell 0" such that:

By the biinitial property (BA.I) of (Ao, bo) , there is a unique A-iso-
morphism p such that:

Now, by (14), (13) and (12):

since the cells di.p: a’1 -&#x3E; a’2 and Pi2Pi1-1: a’, -&#x3E; a’ 2 are (vertically)
parallel, again by (BA.I):

Finally, by using the exchange axiom in A, (16) and (10), we

conclude that a1 = a2:
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1.9. THEOREM: birepresentations and biinitial objects. If A has bico-

tensors with 2., preserved by the 2-functor Ti A e CAT, the object
(Ao,t,o) its biinitial in [1 l 1] iff it is a birepresentation of T .

1.10. In the last two sections of this chapter we shortly present the
strict version of universal properties in 2-categories. A 2-repre-
sentation of the 2-functor T: A -4 CAT is an object Ao of A provided
with an isomorphism of 2-functors:

in other words, by Yoneda, a pair (Ao, to) in (1 l T) (to = À (idAo)
e Ob TAo ) such that:

(UR) for every A-object A and every morphism T: t1 -&#x3E; t2 in the

category TA there is a unique A-cell «i Ao 4 A such that T = Tex(to).

Equivalently, separating the aspects of dimension one and two,
(Ao, to) has to verify (UR.1) below and (BR.2) of 1.3:

(UR.1) for each pair CA, t) in (1 l T) there is a unique a: Ao -&#x3E; A

such that t = T a (to) .

Any 2-representation (Ao, to) is a 2-initial object (0.5) of (1 l T).

If A has cotensors with 2, preserved by T, these two facts are

equivalent.
When existing, the 2-representation is determined up to (a

unique) isomorphism of A. Clearly any 2-representation is a birepre-
sentation ; as we shall see, the latter may exist when the former does
not.

1.11. Analogously a 2-universal arrow from the object Bo of B to the

2-functor U is a pair (Ao, %i Bo -&#x3E; UAo) verifying:
(UA) for each A-object A and each B-cell j3: b e b:z: Bo e UA

there is a unique A-cell a: a1 -&#x3E; a2: Ao a A such that B = Ua.bo;

or equivalently, (UA.1) below and (BA.2) of 1.4:

(UA.1) for each pair (A, b: Bo -&#x3E; UA) there is a unique a: Ao e A

such that b = U a. 1-b,

Any 2-universal arrow (Ao, bo) from Bo to U is a 2-initial object
of (Bo4,U). If A has cotensors with 2, preserved by U, these two facts
are equivalent: the proof is a much simplified version of 1.8, all

isocells becoming identities.
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A 2-representation of T: A 4 CAT is precisely a 2-universal ar-
row from the category 1. to T. Conversely, a 2-universal arrow from

the object Bo to the 2-functor U: A A B is just a 2-representation of
the 2-functnr:

2. Bicompleteness.

Limits in 2-categories appear in various forms, depending on

the laxification one allows on cones or, on the other hand, on the

universal property.
The strict notion (2-universal strict cone), which we call here

2-limit, has been studied in Street [S1] . We shall consider here the

relaxed notion of bilimit (biuniversal pseudocone) and also the

"mixed" notion of pseudolimit (2-universal pseudocone), studied e.g.
in [82] for which we give construction theorems (2.6 and 2.8). The

other mixed notion, biuniversal strict cone, will be used only in two

particular cases (2.7-8) where it happens to yield an equivalent,
simpler formulation of a bilimit.

The "homogeneous" notions, 2-limits and bilimits, appear to

yield the best results, e.g. as concerns construction theorems (see

2.1, 2.6, 2.8) or the existence of universal solutions (see Chap. 3).

Pseudolimits, however, are useful as an intermediate step to bilimits.
Notice that the bilimits and pseudolimits we use here are

conical, apart from particular cases as bicotensors products [2OA]
(see 1.7). General indexed bilimits and pseudolimits are considered in
IS2].

F: A -&#x3E; A is always a 2-functor from a small 2-category 0 into

A . A cell of A will be typically written 6: d -&#x3E; d’: i -&#x3E; j.

2.1. For what regards conical and indexed 2-limits, we just recall

here some results from [S1]. 2-products and 2-equalizers are defined
by the 2-dimensional version (for cells) of the usual universal pro-
perty. A basic example of conical 2-limit, having no one-dimensional
analogue, is the identifier, that is the 2-limit of a single-cell
diagram a: A =&#x3E; A’ . The basic non conical 2-limit is the cotensor

product 2OA (1.7).

The 2-category A is conically 2-complete (has all small conical
2-limits) whenever it has: small 2-products, 2-equalizers and iden-

tifiers (actually the proof of 2.6 shows that identifiers of endocells
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a; a e a are sufficient). A is 2-complete (has all small indexed 2-

limits) iff it has small 2-products, 2-equalizers and cotensor pro-
ducts with 2. Analogous results hold for the preservation of 2-limits

by 2-functors.
Another indexed 2-limit we shall use in the construction of

pseudolimits is the isoinserter of parallel morphisms ai,a2: A -4 A’,

This is a triple (X,x,X) with x: X A A and X: a1 x = a2X: X e A’, which
is 2-universal with respect to this property.

2.2. We recall now the definition of conical bilimit and pseudolimit.
Consider the diagonal 2-functor

into the 2-category [A,A] l of 2-functors A -&#x3E; A , their pseudotransfor-
mations and modifications: KA is the constant functor at A.

A (conical) bilimits of the 2-functor F: -&#x3E; A is a birepresent-
ation of the 2-functor

i.e., a family of equivalences of categories, natural for A in AOP:

Bilimits, when existing, are determined up to equivalence in A .

It may happen that the object bilim F can be chosen so that the

equivalences (3) are in fact isomorphisms (hence a 2-representation
of (2)): in this case we use the term pseudolimit and the notation

pslim F; pseudolimits are determined up to a unique isomorphisms.

2.3. More explicitly, a pseudocone of the 2-functor F: A -&#x3E; A is an

object of the 2-category (K l F):

(x- is a pseudotransformation),

i.e., (0.6) a system (X, (x,),(Xd)) indexed on the objects i and the

arrows d: i -&#x3E; j of A ;
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verifying the coherence conditions (PT.1-3) in 0.6, concerning
respectively the identical arrows, the pairs of composable arrows and
the cells of A.

The bilimit of the 2-functor F: 6 -&#x3E; A is any biuniversal arrow

from K to the object F of IA,A 1; in particular, it is a biinitial

object of (K l F). 

Therefore it is characterized as a pseudocone bilim F = (X, x-)
of F such that:

(BL.1) for each pseudocone (A, a""’), a"’: KA -&#x3E; F, there exists some

morphism a: A 4 X such that a- = 9-.Ka,
(BL.2) for all a1, a2: A A X and each modification 0:-: 81’" A a2-:

KA A F where a,.’" = x’".Kar, there exists a unique cell a: a1 -&#x3E; a2 such

that a- = 4yN .Ko:.

The pseudocone (X,/) is a pseudolimit of F if it verifies (PL.1) 

below and (BL.2):

CPL.1 for each pseudocone (A, aN), a-: KA 4 F, there exists a

unique morphism a: A -i X such that a- = x .Ka.

2.4. The 2-category A is said to be conically bicomplete whenever it

has all (small) conical bilimits. We say it is arrow-bicomplete (or

simply bicomplete) if moreover it admits bicotensor products with a,
We recall (IS2], 1.24) that A has all small indexed bilimits if it is

conically bicomplete and has bicotensors QeA for each small category
; this stronger notion of bicompleteness will not be used here.

A 2-functor U: A A B will be said to be conically bicontinuous
(arrow- bicon tin uous, or simply bicontinuous) if it preserves conical

bilimits (plus bicotensor products with 2) in so far as they exist in
A.

Basic conical bilimits, generating the others, will be considered
in the sections 2.7-8.

2.5. Analogously we consider (conical or arrow) pseudocompleteness
and pseudocontinuity. Pseudoproducts coincide with 2-products and

pseudocotensors with cotensors; instead pseudoequalizers and pseudo-
identifiers are generally distinct from 2-equalizers and identifiers

(e.g., in CAT).
We give below (2.6) a construction theorem of conical pseudo-

limits from 2-products, isoinserters and identifiers of endocells

(which will be shown to exist in various cases lacking equalizers).
It should be noticed that isoinserters and identifiers are not con-
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ical pseudolimits (while they are indexed 2-limits). Thus our suffi-

cient condition seems not to be necessary. However, if in our con-

struction isoinserters are replaced by pseudoequalizers and identi-

fiers by pseudoidentifiers, one gets an object which, even for A =

CAT, is equivalent, generally not isomorphic, to the pseudolimit.
Loosely speaking, this happens because pseudoequalizers and pseudo-
identifiers i n trod uce too man y isocells. Thus the above pseudolimits
seem not sufficient to build (together with 2-products = pseudo-
products) all conical pseudolimits.

Notice also that the construction of 2-limits given in Street

[81] from 2-products, 2-equalizers and identifiers cannot be trans-

ferred to pseudolimits (or bilimits): e.g., in CAT it would yield a

category not even equivalent to the pseudolimit, as soon as the 2-

category A has different cells having the same vertical domain (or

the same vertical codomain).

2.6. THEOREK: construction of conical pseudolimits. If the 2-category
A has (small) 2-products, isoinserters and identifiers of endocells

then it is conically pseudocomplete. In such a case a 2-functor U:

A -1 B which preserves the above ljrnits Is pseudocontinuous.

PROOF. We just prove the assertion concerning the existence of

pseudolimits, as the preservation property follows straightforwardly
from the construction argument. Let be given the 2-functor F: A e A.

a) Preliminary constructions. Consider the 2-products:

where (as always in the following) I varies over the objects of A , d:

i -&#x3E; j varies over the arrows of A d: d -&#x3E; d’: 1 -&#x3E; j varies over the
cells of A and the pair (d,d--) over the set of composable arrows d:

i -&#x3E; j, d-: j -&#x3E; k of A; in the last case we write Q = d-: i -&#x3E; k the

composite arrow.
As a first approach to the pseudolimit of F, consider the

isoinserter CX,x,X) :

of the morphisms a,b having the following d-components:
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Now, the object X has a system of maps pix: X -&#x3E; Fi and isocells

qaX, pax- Fd,pex -&#x3E; Fj which, generally, is not a pseudooone cf · v
In order to force the three conditions (PT.1-3) for the coherence of

the pseudocones of F (2.3, 0.6), with respect to the identical

morphisms, the composition of morphisms, and the cells of ti, we

introduce three endocells p: X=&#x3E; P, o-: X =&#x3E; N, 1’: X =&#x3E; M:

b) The pseudolimit. Let (Y,y) be the identifier of these three

endocells p, 0’, r:

i.e., the identifier of the endocell (p,o-,T): X =&#x3E; PxNxM.

We want to prove that the pseudolimit of F is Y with pseudocone
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where the coherence of the isocells yd comes from (15) and from the

definition of the cells p, 0’, T; e.g., we check the property (PT.3) of

coherence, with respect to the cell 6 of A:

c) In order to prove the 1-dimensional universal property, let

be given a pseudocone (Z, (Zi), (wo-)) of F:

we have to verify that it factors uniquely through (Y,(,Yi),(yo-)). As to
the existence, the map

"inserts an isocell o between a and b ", defined by:

therefore (z,(w) factors uniquely through the isoinserter (X,x,x) of a

and b:

Now the map Z’: Z e X "identifies" the endocells p, r, T; e.g.,
TZ’ = 1 because for any 6 in A:

the last equality being the coherence of the pseudocone (Z, (Zi), (wo-))
of F with respect to the cell 6. Thus z’ factors uniquely through the
identifier (Y,y);
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and this map f’ solves our problem, i.e., composed with (Y, (yi), (yo-))
gives back the pseudocone (Z. (Zi), (wo-)):

d) As to the uniqueness of the factorization, if also z. solves

the problem:

for all i, hence xyz- = xya"; moreover Xyz - xyz", since for all d :

thus, by the isoinserter property, yz- = yz". By the identifier

property, z- = z".

e) Finally we have to check the factorization property for

cells. Let:

be a modification from the pseudocone (Z,(Y,f),(Yo-f)) into (Z,(7,g),
(Yo-g)). By the product property of P there is a unique n: xyf e xyg:
Z A P such that pin = n; for all 1. This n is coherent with the iso-

inserter X,x,X&#x3E;, i.e., the following square of A-cells commutes:

as it follows by composing with the projections qo- :

and applying the coherence of (ni). Thus there is a unique cell
such that:
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Now, by the identifier property, there is a unique cell o verifying

This o solves our problem.

and it is easy to see that it is the unique solution.

2.7. Much in the same way as in the strict case (2.1), we shall see

below (2.8) that the basic conical bilimits, generating the others,
are biproducts (the bilimit of a discrete diagram) , biequalizers (the

bilimit of two parallel arrows) and bi-endoidentifiers (the bilimit

of an endocell, in the sense specified below).
Given a pair of parallel morphisms a, , a2: A A A’, it is easy to

see that the problem of their biequalizer (X ; x,x’ ;X, ,X2) :

is equivalent to the simpler problem of "inserting biuniversally an

isocell", i.e., finding a biuniversal (struck jsoinserter

Indeed, if (1) is a biequalizer then (X;x;X2X,-1) solves the

simpler problem, while if (2) does so then (X;x,a,x;1,X) is a

biequalizer.
As concerns the bi-endoidentifier of the endocell:

this is defined to be the bilimit of the diagram (3) on the 2-graph

(i.e., of the 2-functor F: A A A generated by this diagram). This

amounts to finding a biuniversal pseudocone (X;x,x’;X):
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where the last condition (coherence of the pseudocone) is clearly
equivalent to ax = 1ax, Also here there is an equivalent, simpler
formulation: to find a biunlversal strict identifier

Last, it should be noticed that the bi-identifier of the cell

(3), i.e., the bilimit of the endocell a as a diagram on the 2-graph

is not equivalent to the above bilimit, and not suitable for the fol-

lowing construction theorem.

2.8. THEOREM: construction of conical bilimits. The 2-category A is

conically b:ico111p1ete iff it has: (sm811) biproducts, biequalizers, bi-

endoidentifiers (2.7). In such a case a 2-functor U: A -&#x3E; B is conic-

ally bicontinuous iff it preserves the above bilimits.

PROOF. By the preceding arguments (2.7) the proof can be obtained

from the one concerning pseudolimits (2.6), by replacing some equal-
ities of arrows in the formulae (4) , (6) , (8) ,... with isocells and

working out the new coherence conditions.

2.9. COROLLARY: construction of arrow-bilimits. The 2-category A is

(arrow) bicomplete iff it has: (small) biproducts, biequalizers, bi-

endoidentifiers (2.7), bicotensors with a. In such a case a 2-functor

U: A A B is (’arrow) bicontinuous iff it preserves the above bilimits.

3, Solution Sets for biuniversal problems.

In this section we extend the Initial Object Theorem to the
2-dimensional case and derive existence theorems for biuniversal

arrows and birepresentations.

3.1. Biinitial Object THEOREM. A conically bicomplete 2-category A
has a biinitial object iff:

Solution Set Condit.ton: there exists a small bifull (0.5) sub-2-

category H co-initial in A (i.e., for each A in A there is some mor-

phism a: H e A with H in H).
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PROOF. Necessity: if I is biinitial the 2-subcategory H of A whose

unique cell is 1: 1 a 1: I -&#x3E; I satisfies our condition, since any

endomorphism i : 1 -&#x3E; I has a unique isocell p: .t A 1. Notice that the

2-full subcategory generated by I may be large.
Conversely, assume that the Solution Set Condition holds and let

(I,p) be the (conical) bilimit of the inclusion F: H -4 A. We shall

prove that I is biinitial in A.

a) The pseudocone p: KI 4 F will be written

where the isocells ph satisfy the coherence conditions (PT.1-3) (2.3,
06).

It can be proved, by a tedious pasting argument, that the

pseudocone (I,p) may be extended to the (possibly non-small) 2-full

2-subcategory H’ generated by H , remaining the bilimit of the inclu-

sion of H’ in A . Therefore we assume from now on that H is 2-full

in A .

b) For every A there is some map 1 4 A, namely the comp-
osition a.pH where a: H A A is a morphism of A starting from some H
in H, existing by hypothesis. We want to prove that the maps I A A

are determined "up to a unique isomorphism".
c) If 1 = a -- .pH--.: 1 -&#x3E; I is obtained as above, then 1 = 1.

Indeed, consider the pseudocone p’ = p. K i given by:

There is an isomodification n: p e p’ of components:

whose coherence we check in d). Thus, by CBA,I), there exists a unique
isomorphism p : 1 e 1 such that n - p.Kp .

d) Coherence of n. Let h: H 4 H’; according to (MD) in 0.6,
we must check that
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since

where h’- = pH’.a--: H-* -4 H’, the conclusion follows from the following
application of the coherence of p (where 0 = ph,a-: pH’ . aw = A.pH.a",
i.e., 0: h’-y= hhw in H): 

e) Any two morphisms ar: I -&#x3E; A (r = 1,2) are isomorphic.
Take the biequalizer e: L -&#x3E; I of a, and l12 in A (hence aie = a2 e) and

insert some map a = (I -&#x3E; H -&#x3E; L):

since I = ae = 1 by d,

f) Any two parallel cells from I:

coincide. Indeed, consider the bilim it L of the (conical) diagram (8) 

of A

Thus a.e = p2pl-’ = ce’.e. Choose now some morphism a: I -i L:

by e there exists an isomorphism p: 1 = I (I = ea: I -&#x3E; I) : since a.1 =

a’.2 the conclusion a = a’ follows from the following lemma.
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3.2. LEMMA. In the 2-category A let be given the cells

If p is iso and a.a = B, a then a.b = J3.b.

PROOF. By the exchange axiom

analogously CX.p--l = B.p-1 Thus:

3.3. THEOREM. If 1: A -4 A has a conical bilimit (I,p) then the object
I is biinitial in A .

PROOF. Consider the proof of the previous theorem (3.1) and remark

that, if the embedding H -&#x3E; A is assumed to have a bilirnit, both the

hypotheses of smallness of H and of conical bicompleteness of A can
be obviously dropped.

3.4. Biuniversal Arrow THEOREX. If A js arrow-bicomplete and the 2-

functor U is arrow-bicontinuous, the bluniversal arrow from Bo to U

exists iff:

Solution Set Condition: there exists a small bifull co-initial

sub-2-category of (BoJ,TL

PROOF. One proves in the standard way that [BolUl is conically bicom-
plete, deduces the existence of the biinitial object from 3.1, and the
existence of the biuniversal arrow from 1.8.

3.5. Birepresentation THEOREX. If A is arrow-bicomplete, T is bire-

presentable iff it is arrnw-bicontinuous and:
Solution Set Condition: there exists a small bifull co-initial

sub-2-category of [1 l T].

PROOF. From 3.4, as a birepresentation of T is just a biuniversal
arrow from 1. to T.
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3.6. The strict version of these results is obvious. Let A be 2-

complete,
a) A has a 2-initial object iff it has a small 2-full co-

initial sub-2-category.

b) If the 2-functor U: A e B is 2-continuous, there is a

2-universal arrow from Bo to U iff there exists a small 2-full co-

initial sub-2-category of (BoiU).

c) The 2-functor T: A -&#x3E; CAT is 2-representable iff it is

2-continuous and there exists a small 2-full co-initial sub-2-categ-
ory of (1 l T).

3.7. Notice that there is no pseudo-version of the above statements,
in the sense that pseudolimits yield no stronger results than bi-

limits.

Indeed, consider the 2-category AB of abelian categories, exact
functors and natural transformations. AB is clearly arrow-pseudo-
complete, hence arrow-bicomplete, and not 2-complete (it lacks equal-
izers). AB has a biinitial object, the category 1., but no pseudoinitial
(= 2-initial) or even initial one, although the 2-full sub-2-category
of AB generated buy 1. provides a solution set (is small and co-

initial). 

Part II, THEORIES

4 , Concrete theories and universal models.

From now on, A is a small graph and A is a concrete 2-category
with structural functor I I: A e CAT; a cell in A is typically written
a: a, -&#x3E; a2: A -4 A’ or also a: A =&#x3E; A’

4.1. The graph A determines a canonical extension Ao of the concrete

2-category A . Add one object, A itself; the following morphisJns

where A- is in A and t is any graph morphism A -&#x3E; ILI (1); the follow-

ing cells

(’ ) More prec isely, t can be thought of as the pair (A, l t l: A -&#x3E; l A l) where l t l is

a graph morphism; analogously T = (A,) l T l).
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where T is any natural transformation of graph morphisms (1). The

horizontal and vertical compositions obviously extend (even if trans-

formations of graph morphisms do not have a general horizontal comp-
osition).

The inclusion

is a 2-full 2-functor. The 2-functor I I of A extends to

sending A into itself and acting on the new morphisms t and the new

cells T as indicated in footnote (1) page 26.

Thus, the graph A determines the 2-functor

to be called the total A -theory on 6. This is a f irst example of an

A-theory on A, in the sense of the following definition.

4.2. DEFINITION. A (concrete) theory T on the graph A, with values in

the concrete 2-category A (briefly: an A-theory on A) will be any 2-

subfunctor T: A -4 CAT of the total theory To such that, for any A. in

A , TA. is a full subcategory of Ta(i) = A A(A, A).
In other words T associates to every object L of A a (generally

non small) set TA. of morphisms t: A -i A in AA (the models of T in

A), so that
(T.O) if t E TA. and a: A. -&#x3E; A’ is in A , then t’ = a. t E TA’ .

A cell 1’: t1 A is: A a A. of AA, with ti e TA, will be called a

transformation of models. The theory T will be said to be replete if

every morphism t’: A -&#x3E; A. isomorphic to a model t E T (A) is a model.

Two theories Tt1, T2: A-&#x3E; CAT, possibly based on different graphs,
will be said to be isomorphic whenever they are so in the category
(A, CAT) , and equivalent if they are so in the 2-category [A ,CAT]’

4.3. Each theory T determines a 2-category A T verifying A C AT C AS,
containing the object A and locally full in A A: take AT (A,A) = T (1);
conversely, any such 2-category determines the theory T = AT (A,-):
A -4 CAT. The 2-functors 4.1-4.3 restrict to
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The theory T determines also the 2-category of models

the objects are all the models t (in any A-object); a cell a: a 4 a’:

t, -&#x3E; t2 between models ti E T (Ai) is given by any A-cell a: g
such that a, t1 = t2 . This category is provided with the forgetful
structural 2-functor Kod(T) A A taking t: A -&#x3E; A. into A..

Analogously (see 1.1), we have the 2-ca tegory of models and

pseudotransformations

the objects are as above, a morphism (a, o-): t1 -&#x3E; t2 between models

t, E T (Ai) is given by an A -morphism a: A1 A A2 together with an

isocell 0’: t2 = at1: A -&#x3E; A2; a cell a: (a,o-) -&#x3E; (a’, o-): t, -&#x3E; t2 is an A-

cell a : a -&#x3E; a’: A -&#x3E; A2 such that

Notice that the 2-categories Mod (T) and XodCTJ do not contain

the transformations of models.

4.4. The concrete A-theories on A are ordered by pointwise inclusion
T ; , T’ whenever T (A) C T’(A) for all A. in A ; equivalent conditions

are: T is a subfunctor of T’; AT C AT’; Kod(T) C Mod (T’) ; Mod [T]

C Mod [T’].

The smallest theory on A is the empty one; the largest is the

total A-theory To, whose models in A. are all the morphisms A -&#x3E; A.

4.5. DEFINITION. The 2-universal (resp. biuniversal)) model to: A -&#x3E; Ao
of the theory T will be given by any 2-universal (resp. biuniversal)

arrow (Ao t to) from the object 1. to the 2-functor T: A A CAT.

Equivalently, it is a 2-representation T (A) = A (Ao, A.) (resp. a

birepresentation T (A-) = A (Ao, A.)) of the 2-functor T. Or also, by a

remark in 1.5, it is a 2-universal (resp. biuniversal) arrow (Ao, to:

A A UTgo) from the object A of AT to the inclusion 2-functor UT:

A A AT.

When existing, this model is determined up to isomorphism
(resp. to equivalence): if also t, : A a A1 is so, there is exactly one
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A-isomorphism Lo e A1 commuting with to and t1 and unique up to iso-

morphism).
The object Ao will be called the 2-classifying (resp. biclassif-

ying) object of T and written A (T) (resp. A [T]). For the total A-

theory T = TA, the object Ao will also be called the 2-free (resp.
bifree) A-object on A, and written A(A) (resp. A(6).

Two theories T1, T2: A -&#x3E; CAT, possibly based on different graphs
and both having a 2/bi-universal model are isomorphic/equivalent iff

their 2/bi-classifying objects are so.

4.6. Thus a model to: A e Ao of T is 2-universal iff

(UM) for each transformation Ti t, e t2 : A -i A. there is exactly
one cell a: a, -4 a2: Ao -i g of A such that T = a, to.

Or, equivalently, iff
(UM.1) for each model t: A -&#x3E; A. there is exactly one morphism a:

io 4 i of A such that t = a . to .

(UK.2) for all a, , a2 : Ao -&#x3E; A and all ’1’: 81 to -&#x3E; a2 to: A -&#x3E; A. there is

exactly one cell a: a1 A â2 of A such that T = a.to.

The first condition means that to is an initial object of

Xod(T); the pair implies that to is 2-initial. Moreover to 2-generates
Ao, in the sense that:

(1) for all cells a,a’ : Ao 4 i, if a to = alto then a = a’ .

The more general notion of bigeneration (requiring that the above

cancellation property holds whenever a and a’ are vertically
parallel) will be used in the next section (1).

4.7. More generally, the model to is biuniversal iff it verifies (BM.1)

below and tUM .2 ) .

CBM.1 For each model t: A -&#x3E; A. there is some morphism a: g -&#x3E; A.
such that t = a, to ,

In such a case to bigenerates Ao (4.6) and it is a bjini tjal

object for the 2-category Mod [T], which means that it verifies (BM.1)

and the following consequence of (UM.2):

t’ ) In other words one could say that to is a 2-epimorphism (bi-opimorphism) in
the 2-category AA.
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(BM.I) For all morphisms a,,a;!: Lo e A. and each natural

isomorphism 0’: a1, to = a2, to: A -&#x3E; A, there is a unique A-isocell p:
a1 -&#x3E; az such that 0’ = p . to .

4.8. If T and T’ are theories and to is a 2-universal model of T, then
T  T’ iff to is a model of T’. The same holds for to biuniversal

provided that T is replete (4.2).

4.9. We treat now the transfer of theories, or change of base. Assume,
for the rest of this chapter, that I I: A e CAT and I I: X -4 CAT are

concrete 2-categories, and V: X -&#x3E; A is a concrete 2-functor (i.e. ,
commutes with the functors I I of X and A).

This situation produces an isomorphism of 2-functors (recall

that lVXl =lXl by the hypothesis on V):

Now, the A -theory T defines an X -theory T* = V* (T) on the same

graph A, to be called the counterimage of T along V: for every X in X
the morphism:

is a model of T:", iff the associated morphism ÀX (t) is a model of T

inVX.
Indeed the axiom (T.0) holds for T*: if in the above case x:

X, -&#x3E; is in X , the composition

is a model of T in Vl’; as IV xl = lxl, it follows that xt is a model of

T* in X’.
Notice that the functor T*: X -&#x3E; CAT we have defined is isomor-

phic to TV (which is not an X-theory), via the restriction of XX:

4.10. THEOREM. In the hypotheses of 4.9, let to : A -&#x3E; Ao be a 2/biuniv-
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ersal model of T and assume we have a 2/bi-universlll arrow from Lo

to V:

Then a 2/bi-universal model of T* is given by:

PROOF. By 1.6, the T-model t’o = a. to

is a 2/bi-universal arrow from to TV: X -&#x3E; CAT. As k (t’o) = to*, the
conclusion follows.

S , Complete theories and universal models.

2-complete, pseudocomplete and bicomplete theories are intro-

duced and described via the construction theorems for 2-limits and

pseudolimits. For these theories solution set conditions for the

existence of the 2-universal or biuniversal model are derived from

the analogous ones for 2-universal and biuniversal arrows (3.6 and

3.4). For brevity, the term arrow-bicomplete (referring to the exist-
ence of conical bilimits and bicotensors with 2, see 2.4) will always
be shortened to bicomplete; analogously for the related notions con-

sidered in 2.4.

T is always an A-theory on the small graph A,

5.1. DEFINITION. The A-theory T on A will be said to be 2-complete
(resp. pseudocomplete, bicomplete) whenever the 2-category A is 2-

complete (resp. pseudocomplete, bicomplete) and the 2-functor T:

A -4 CAT is 2-continuous (resp. psudocontinuous, bicontinuous); it is

easy to see that the second condition is equivalent to the 2-conti-

nuity (resp. pseudocontinuity, bicontinuity) of UT : A AT.

5.2. Clearly, if A is 2-complete (resp. pseudocomplete) and h

A -) CAT is 2-continuous (resp. pseudocontinuous) then the theory Ta
is 2-complete (resp. pseudocomplete).
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5.3. LEMA. The theory T: A -&#x3E; CAT is 2-complete provided that:
(T.1) A has small 2-products, preserved by I ! ; for each small

family tt: A e Ai (I e I) of models, the morphism t = (ti): A -4 TT Ai is

a model.

(T.2) for each pair a, b: A -&#x3E; A’ of parallel morphisms, A has a

2-equalizer e: go e A preserved by I I; moreover, if the model t E T (A)

equalizes a, b (at = bt):

then the unique graph-morphism to : A e ko such that etc = t is a

model of T.

(T.3) for every object A, A has a cotensor product 6; 2OA =&#x3E; A

preserved by I 1; moreover if 1’: t1 e t2: A -4 A- is a natural transfor-

mation of models of T in A.

and t: A -&#x3E; A1 is the graph-morphism such that 6. t = T, then t is a

model of T.

The conditions CT,1,2 ) yield the 1-completeness of Nod(T) 

together with the 1-continuity of the forgetful functor Xod(T) e A .

5.4. LEXXA. T is pseudocomplete provided that it verifies the condi-

tions (T.1,3) of the previous Lemma 5.3, together with:
(T.2’) for each pair of parallel morphisms a, b: A.-&#x3E; L, A has an

isoinserter te: Ao -&#x3E; g, E: ae = be) preserved by I I; moreover, if the

model t E T (L) "inserts an isomorphism of graphs r between a and b "

(1’: a t = bt), then the unique morphism to: A -&#x3E;4 Ao such that t = eto ,
r = E to is a model of T.

(T.2") for each endocell a: a -) a: A. -&#x3E; A’, A has an identifier e:

go -&#x3E; A. preserved by I I; moreover, if the model t E T (A) "identifies a"
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(at = 1) , then the unique morphism to: A -&#x3E; Ao such that t = eto is a

model of T.

5.5. TAEOREIrt: existence of 2-universal model. Let T be a 2-complete
A- theory on 6. T has a 2-universal model iff:

Solution Set Condition: there exists a small 2-full coinitial

sub-2-category of Xod(T).

5.6. THEOREX: existence of biuniversal models. Let T be a bicomplete
A- theory on A. T has a biuniversal model iff:

Solution Set Condition: there exists a small bifull coinitial

sub-2-category of Mod [T].

6, Reflective theories and well-adapted 2-cat-

egor ies.

Reflective theories in well adapted 2-categories are introduced

and shown to have always a biuniversal model. All the examples of

Part III will be of this kind.

6.1. DEFIBITIOH. The A-theory T on A will be said to be reflective if
it verifies (T.1) and the following property of reflection of models:

(T.R) for every morphism t: A -&#x3E; A. in Aa and every a: A, -&#x3E; A’ in

A , if

i) the associated functor lal is faithful and reflects the

isomorphisms (1).
ii) a. t is a model of T in A’,

then the morphism t is a model in A.

6.2. LEXXA. If A is 2-complete and I I is 2-continuous, every reflec-
tive theory in A is 2-complete.

PROOF. By the Lemma 5.3 we just need to check the conditions (T.2,3).
The first one is trivially satisfied: in the situation described in 5.

(1) Since faithful functors always reflect monics and epis, the second part of
this condition follows from the first one whenever all the categories lAl are
balanced; for instance in the 2-category of abelian categories or of toposes,
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3, the functor lel is the equalizer of the functors lal I and i bi in CAT,
hence it is a full embedding: by (T.R) this proves that to is a model.

As regards (T.3), again with the notations of 5.3, consider the A-

morphism

whose underlying functor, by the 2-continuity of I I, is:

clearly IJI is faithful and reflects the isomorphisms «a,,a2) is iso

in 2tlLl iff both a, and a2 are iso in lAl). Now the transformation of

models T: t1 -&#x3E; t2: A e A. defines one morphism (of AA) t: A -&#x3E; 2OA such

that 6 t - 1’; it also defines, by (T.1), a model t’ = (t1, t2): 6. -&#x3E; AxA

verifying J t - t’. By (T.R), t is a model.

6.3. LEXXA. If A has 2-products, isoinserters, identifiers of endo-

cells and cotensors with 2, preserved by I 1, every reflective theory
in A is pseudocomplete.

PROOF. By the Lemma 5.4 it is sufficient to check (T.2’,2",3). The

proof of (T.2’) is similar to the proof of (T.2) in the above Lemma

6.2: it depends on the fact that, in CAT, the isoinserter X,x,X) of

two parallel functors yields a functor x which is faithful and

reflects the isomorphisms. Analogously for (T.2"): the identifier of

an (endo)cell is even a full embedding. The proof of (T.3) is the

same as in 6.2.

6.4. Now say that the concrete 2-category A is well adapted (for

theories) if it satisfies the following conditions (always true in the

applications which follow):
(WA.1) Limi ts. A has products, isoinserters, identifiers of

endocells and cotensors with 2, all preserved by I I.

(WA.2) Small fibers. 1 I: A -&#x3E; CAT is 2-faithful and each small

category has a small counterimage in A .

(WA.3) Isomorphism lifting. If A is in A and f: IAI -&#x3E; C. is an

isomorphism of U-categories, there exists an A-isomorphism B: A e A’

lifting f (Ial = 1).



43

(W.4) Bounded factorization. For each small graph A there

exists a small cardinal w (A) such that every morphism ti A -&#x3E; A. in A A

factors (in AA) as:

where:

i) t, is a bigenerating morphism (4.6) and card lA1l  w) (A) ,
ii) the functor lal is faithful and reflects the isomorphisms.

We say also that A is strictly adapted when, moreover, A is 2-

complete, I I is 2-continuous and in (WA. 4) the morphism t, may be

chosen to be 2-generating.
A function w satisfying (WA.4) will be called a bounding

function for A .

6.5. THEOREX: existence of 2-universal models, II. If A is strictly
adapted, every reflective A -theory T on A is 2-complete and has a 2-
universal model. The 2-classifying category A (T) is bounded by the

cardinal w) (A).

PROOF. T is 2-complete by 6.2; we want to prove that it has a solu-

tion set for the existence of the 2-universal model (5.5). Consider

the small set C of all categories C where ObQ and Moro are cardinals
; w - w (A); it follows that the set of graph morphisms A -&#x3E; c.. (C e C) 
is small; by the small-fiber property (WA.2) (6.4), also the set of T-
models t = (A, ltl: A -&#x3E; ILI) with IAI E C is small. By (WA.2-4) and the

reflective property of T, the 2-full subcategory of Mod (T) generated
by these models is a solution set for T.

Now, if to: A -i Ao is a 2-universal model of T, consider its

bounded factorization to = a, t1 (WA.4); if T: A 4 1 is a transform-

ation of models, then T factors through t, (r = a to = aa, t1), uniquely
because of the 2-generating property of t1. Thus also t, is 2-univ-

ersal and card lA1l  (j.

6.6. THEOREM: existence of biuniversal models, II. If A is well adapt-
ed, every reflective A-theory T on A is pseudo-complete and has a

biuniversal model. The biclassifying category A (T) is bounded by the
cardinal w (A) .
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Part III. APPLICATIONS

We consider now reflective theories in various well adapted
concrete 2-categories. In all the examples of Chapters 7-9 the 2-

functor 1 1: A -&#x3E; CAT is the inclusion or the obvious forgetful func-
tor, and verifies trivially the small-fiber and isomorphism-lifting
properties (WA. 2,3) of 6.4.

A is always a small graph; its (small) cardinal, card A, is the

greatest between the cardinals of its object-set and its arrow-set.

7. Theories and sketches.

We treat here theories with values in CAT, in the 2-category of

finitely complete categories and, more generally, in the 2-category of

categories having specified F-linits and FLcolimits. The well known

result of Bastiani-Ehresmann (BE] on the existence of the generic
model of a "sketched theory" is thus given a proof "from above".

7.1. Take A = CAT, the 2-complete 2-category of If-categories, where
I I is the identity 2-functor. CAT is strictly adapted with bounding
function

(1) w (A) = max (card A, N o) .

Actually each graph morphism t: A -&#x3E; A into a category factors

through its codomain-restriction t, : A -&#x3E; A1, where A1 is the invariant

(1) subcategory of A. generated by the subgraph t(6); clearly we have
card A1  w(A). Moreover A, is 2-generated by t, . Indeed, a functor a:

A1 A A is determined by at, ; a transformation a: a1 -&#x3E; a2: A1 -&#x3E; A. is

determined by a, ,a2 and its values on the objects of A1, coinciding
with those of f1 (A) ; therefore a is determined by a t, .

Therefore, by 6.5, each reflective CAT-theory T on A is 2-

complete and has a 2-universal model bounded by w(A).
In particular this holds for the total CAT-theory TA, whose

models are all the graph morphisms t: A e A with values in some U-

category. It follows the (well konwn) existence of the 2-free categ-
ory CAT (A) generated by A, as well as the estimate:

(1) Say that a subcategory is invariant whenever the embedding functor reflects
the isomorphisms.
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7.2. Syntactically, each (small) set K of commutativity conditions on

determines a CAT-theory T (A,K)  To: the models are those morphisms
t: A A A which satisfy all conditions in K, in the obvious sense. Such

a theory is clearly reflective; thus the 2-universal models supplies
the 2-free category generated by 6 under the conditions of K,
CAT (A, K ) , still bounded by (,J (6).

Conversely each reflective theory T in CAT is isomorphic (4.2,
4.5) to some theory T(A,K): indeed, if Ao is the (small) 2-classifying
category of T, choose some subgraph A of Ao which generates Ao under

a suitable set K of commutativity conditions. For instance, the

following (non economical!) choice is always possible: A is the whole

graph underlying Ao and K is the set of all commutativity conditions
on A which hold true in Ao (or, more simply, the set of conditions

vu - w, u = 1 holding true in Ao).

7.3. Consider now the 2-category A = FLX of finitely complete
categories (U-categories A having all finite limits), together with

the finitely continuous functors and their natural transformations.

FLK is easily seen to satisfy CWA.1), hence to be pseudocomplete with
pseudocontinuous 1 I; it is not 2-complete as it lacks equalizers. We
prove now that it is well adapted. Analogously one treats the 2-

category FP of U-categories with finite products (and functors pre-

serving them), the 2-category of U-categories with equalizers and so
on.

7.4. THEOREN. The concrete 2-category FLX is well adapted, with

bounding function w (A) = max (Card A, No). Each reflecti ve theory in

FLX is pseudocomplete and has a biuniversal model, bounded as above.

PROOF. Fix a graph morphism t: A-&#x3E; A; we want to prove that it fac-

tors through the embedding At -&#x3E; A. of a suitable invariant finitely
complete subcategory A, bounded by w = Cù (6) .

t’ The ui, vi and u’, are consecutive arrows of 6 while k is an object, More-

over :
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Let F be the (countable) set of all graphs whose sets Obt and
Moro are finite cardinals. For any diagram F: O -&#x3E; A (O: E F), choose
one limit cone f: A^ -&#x3E; F of F in A. where A" denotes the it-diagrams
constant at A.

Now f orm the subcategory A1 = UAn of A, where An is a subgraph
of A defined by the following inductive procedure:

a) oo - t (A),
b) An+1 contains An, together with the identity 1A of each A in

An,
c) for all consecutive u,u’ in An, the composition u’.u is in An+1
d) for all u in An, if u is iso in A, the inverse u-1 is in An+1,
e) for each diagram F: (D e An (o e F), the chosen limit cone f:

A" A F is "contained" in An+1 (i.e., its vertex A and its morphisms .fi;

A -&#x3E; F i all belong to An+1),
f) for each cone g: B" e F: O -&#x3E; A. "contained" in An Cm E D, the

1 ilai t morphism u: B -&#x3E; A in A belongs to An+1

Thus A1 is an invariant, finitely complete sunbcategory of A.
Its cardinal is bounded by w, since by induction each graph An

is so. Indeed, notice first that the set F of F-diagrams in An is

bounded by u: for each 0 E F the set of diagrams F: O -&#x3E; An is bounded

by wcard O u; hence also the sum of these sets, for (D varying in the

countable set F, is bounded by CJJ. Now, with respect to the rule e,

each chosen limit f: A 
^ 

-&#x3E; F (i E Ob4)) is a finite family (fi), so that
the union for F E F of all these families is bounded by w. Similarly,
as concerns f, for each F E F the set of cones g = (g1): B" e F

"contained" in An is bounded by w.w card Obo = o; hence also their sum

for F E F is bounded by w.

Last, the codomain-restriction t1: A -&#x3E; A1 of t bigenerates A1
Indeed, assume that a’ t1 = a" t1 for parallel cells a’,a":a -&#x3E; a’:

A1 -&#x3E; Az . Then a and a" coincide on the objects of Ao. Suppose by
induction that they coincide on the objects of An.

An object A may be added in An+1 only according to the rule e:

hence A appears as the vertex of the chosen limit f.: A" e F, with F:

4) -) An; thus a’ (Fi) = a"(FI) for all i E Obo (the vertexes Fi belong
to An); by naturality, both the morphisms u = cx’A and v = a"A make

the following diagram commutative (for each I) :
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where uj a’(Fi) = a" (Fi); as a’ preserves finite limits, cr’A = a"A.

7.5. More generally, let F and F’ be small sets of small graphs and
consider A = FFILX the 2-category of F-complete, F’-cocomplete categ-
ories (U-categories A having all F-limits (1) and F’-colimits), toge-
ther with the F-continuous, F’-cocontinuous functors (preserving the
above limits and colimits) and their natural transformations.

7.6. THEOREM. The concrete 2-category FF’LX is well-adapted; each re-
flective theory in FF’LX is pseudocomplete and has a biuniversal

model. An upper bound cj = (j(A) may be obtained by takjng:
(1) B: any regular infinite small cardinal such that A &#x3E; card 0, for

all 1) E F uP’ (2),
(2) x = max (card F, card FI), 6 = max (card A, A,Y), w = 26 .

PROOF. In order to verify the bounded factorization property (WA. 4),
we fix a graph morphism t: A 4 A. and prove that it is contained in a

suitable invariant F-complete, F’-cocomplete subcategory Aj, bounded

by o.
a) As in the previous case (7,4), choose one limit cone f:

A" -&#x3E; F of F in L, for any diagram F: O -&#x3E; A. (w E F). Analogously
choose one colimit cocone f’: F e A’" of F in A, for any diagram F:

O -&#x3E; A. (O E F*).

Then form the subcategory A1 = AB of At defining a subgraph 6n

by transfinite induction on all the ordinals n ;  B. 60 is t(A); if

n  .6, An+1 is given by the rules b-f of 7.4, together with two more
rules e’, f’ concerning the colimits of F’-diagrams; if n’  J3 is a

limit ordinal, then An’ = U n n’ An

b) Now i, is an invariant F-complete, F’-cocomplete sub-

category of A: we just check the stability with respect to F-limits.

Take an F-diagram F: 0 -&#x3E; A, and consider

(3) H = (n E 13 I An contains some object or some arrow of Fi,
(4) m - sup H = UH;

(’ ) Limits of diagrams F: O -&#x3E; A whose domain $ belongs to F.

(2) Since the cardinal successor of any infinite cardinal is regular ([Jel, p.40),
one can always take for B the cardinal successor of

a - max (N 0, sup {card O I o E FUF’} .

However X itself can suffice sometimes, e,g,, when all the graphs is are finite
and a - No. In the proof below we follow the terminology of Jech [Jel on card-
inals and ordinals; in particular, any cardinal is assumed to be an ordinal,



48

since B is regular and card H  card O  B, it follows that m  P

([Jel, Lemma 3.6) ; therefore F is contained in A" and its chosen limit

cone f: A" -&#x3E; F is contained in An+1 C g, . In the same way one proves
that each cone g: B^ -&#x3E; F: o e d, is contained in A: for some ordinal

m’  B (m’ &#x3E; m) , so that the limit morphism u: B a A belongs to

An’+1 C Ai 
c) In order to prove our estimate on cardinality, let us

prove by transfinite induction on the ordinal n that card An ( w (for

all n  B).
This is true for n = 0. Assume the property for n  J3 and

verify it for n+1; clearly we just need to control the additions of

morphisms to An caused by the rules e,f,e’ and f’.

First notice that, for each 0 E F, the set of diagrams F: O 4 An

is bounded by

hence the set F of all these diagrams, for O varying in the set F, is

bounded by w. Y  w.

Now, with respect to the rule e, for each chosen limit .f: A^ -&#x3E; F

the family f = (fi) &#x3E; (I E Obo) &#x3E; we have to add to An is bounded by j3,
so that the union of these families for F E F is bounded by J3.w = w.

Similarly, as concerns the rule f, for each F e F the set of cones

g - (g1): B’ -&#x3E; F "contained" in An is bounded by w,wB = u; hence their

sum for F e F is bounded by a.u = w, Analogously for colimits. Thus
card An+1 , w.

Last, if n’ ( T is a limit ordinal and card An  w for all

n  n ’, then

d) Finally, the codomain-restriction t1: A -&#x3E; A, of t bigen-
era tes A1, as shown in 7.4.

7.7. Also here a reflective theory can be described by syntactic con-
ditions. Say F-limit condition on A any transformation

from the constant diagram at some A-object k to some diagram F:

o -) A (o E 10. Analogously an F’-colimit condition on A is a trans-

formation from a diagram F: o’ e A (O’ e F’) to the constant diagram
at an object k of A.
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Now a sketch with respect to the pair (FFI) will be a system
A = (A,K,r,r,) where K is a small set of commutativity conditions on A

(7.2), r is a small set of F-limit conditions and r’ a small set of

F’-colimit conditions.

This system defines a sketched theory T = T (A,K,r ,r’) in FF’LM,
whose models in A. are the graph morphisms t: A e A. satisfying the

commutativity conditions of K, the limit conditions of r and the

colimit conditions of r’; e.g., for each F-condition g: k^ -&#x3E; F in r, tg:
tk^ e tF is a limit cone (of tF: 4) e A) in A. (in particular it is a

natural transformation).

Since in FFLM a faithful functor which reflects the isomor-

phisms reflects all these conditions, T is reflective and has a

biuniversal model satisfying the given bound.
For such theories Bastiani-Ehresmann [BE] give a constructive

proof, by transfinite induction, of the existence of the biuniversal

model ([BE], Prop. 4 and 15 (1)). Simple "one-step" constructive

proofs can be given in the particular cases of projective sketches
(F’ = 0, f’ = 0) , as in Kelly [K2]. It is known that algebraic (or

essentially algebraic) objects can be described as the models of a

suitable sketch in a category with finite products (or finite limits):

in this case the biclassifying category is the theory in the sense of

Lawvere’s functorial semantics (La,KRI.

7.8. Conversely every reflective FF’LX-theory may be presented by
some sketch (A,K,r,r’): e.g., let A be the graph underlying the

biclassifying category Ao and let K, r and r’ be respectively the set
of all commutativity, F-limit and F’-colimit conditions on A which

hold true in Ao (more precisely, suitable small realizations of these

condition sets).

8. Linear, exact, abelian and regular theories.

8.1. Let be given a small ring A. Consider the 2-complete 2-category
A-CAT of A-linear categories (i.e., U-categories enriched on the

monoidal closed category A-MQD of small left A-modules), A-linear

functors (preserving linear combinations of parallel maps) and nat-

ural transformations. In particular for A = Z one gets the 2-category
of Ab-categories, also called semiadditive.

(1) Actually the commutativity conditions were given through a graph with partial
composition,
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By an argument similar to 7.1 one proves that A-CAT is strictly
adapted, with bounding function w) (A) = max (card A,card A, Wo). Thus

each reflective theory in A-CAT has a 2-universal model, bounded by
w (A) .

Syntactically, let be given in A a set K of A-linearity condi-
tions

where k, E A, the arrows in parenthesis are consecutive in A and the

A-objects h = Dom Ui1, k = Cod U,ni do not depend on i.

These data define a reflective theory T = T(A,K) whose models

are the diagrams t: A e A. (A- in A-CAT) preserving the commutativity
conditions of K:

in the A-module A (th, tk).

Assume now, in particular, that the set K of linearity condi-

tions can be expressed via a set K’ of commutativity conditions

(7.1). Consider the CAT-theory T’ = T (A,K’) and the forgetful 2-

functor V = I I : A-CAT -&#x3E; CAT: clearly T = V* (T’). Since V has a left

2-adjoint (the free A-linear category generated by a U-category), the
universal model of T can be obtained by composing the universal

model to: A -&#x3E; CAT(A,K’) of T’ with the embedding of the former class-

ifying category into its free A-linear category.

8.2. Let EX be the pseudocomplete 2-category of exact categories in

the sense of Puppe-Mitchell [Pu; Mi] (1), exact functors and natural

transformations.

By a proceeding similar to the one of 7.4, one proves that EX is
well adapted with bounding function u«A) = max (card A, No). Thus each
reflective theory in EX has a biuniversal model bounded by w(A).

To describe EX-theories by syntactic means, assign in A a set K

of commutativity conditions, a set Z of annihilation conditions (a

subset of A) and a set E of exactness conditions (a set of sequences
of A). Consider the pseudocomplete theory T = T(A,K,Z,E) whose models

are the diagrams t: A e A. (A in EX) preserving the commutativity
conditions of K, the annihilation conditions of Z (every object or

morphism of Z is taken by t into a zero object or a zero morphism of
A) and the exactness conditions of E (each sequence of E is trans-

(1) An exact category is a well-powered If-category with zero object, kernels and
cokernels, in which every map factors through a conormal epi and a normal mono, An
exact functor preserves exact sequences (equivalently: kernels and cokernels).



51

formed by t into an exact sequence of A). Clearly such a theory is

reflective; conversely, by the usual argument, each reflective theory
is equivalent to a theory of this type.

As shown in IG3], many interesting homological theories (e.g.,
the filtered complex and the double complex) may be studied as EX-

theories ; their biuniversal model "is" the Zeeman diagram of the

associated spectral sequence.

8.3. Analogously the pseudocomplete 2-category AB of abelian categ-
ories, exact functors and natural transformations (1) is well adapted,
with bounding function u(A) = max (card A, t-4o).. 

Syntactically, assign in A a set K of Z-linearity conditions

(8.1), a set r of finite limit conditions (7.7), a set F’ of finite

colimit conditions (7.7), and a set E of exactness conditions (8.2).

Notice that the annihilation conditions (8.2) can be given in K.

In the contrary, we prefer to keep the exactness conditions because

to assign them by limit and colimit conditions would often require to

complicate the graph A.

Consider the pseudocomplete theory T = T(A,K,r,r,,E) whose models
are the diagrams t: A -&#x3E; A. (A. in AB) preserving the linearity
conditions of K, the limit and colimit conditions of r and r’, the

exactness conditions of E. The theory is reflective and its biclass-

ifying category AB [A,K,r,r’,E] is bounded by max (card A, No).

8.4. The embedding 2-functor V: AB a EX produces, for every EX-theory
T, the associated AB-theory T* = V*r: just consider only the T-models
t: A -a A. with A. abelian.

Since, for each small exact category E, the existence of the

biuniversal arrow (A, f: E -&#x3E; VA) can be proved by our results (just
consider the AB-theory on Z whose models are the exact functors

E -) A), 4.10 proves that the biuniversal model of T* can be obtained

by composing the biuniversal model %: A a EX[T] of T (if existing)
with the biuniversal arrow EXIT] a A. from EX[T] to V.

Of course not all AB-theories can be obtained as T* from some

EX-theory T.

8.5. Consider now the pseudocomplete 2-category RG of regular- U-cat-

C’) An abelian category may be defined to be an exact category with finite limits
and colimits; it will be provided with its unique additive structure, An exact
functor between abelian categories necessarily preserves finite limits, finite
colimits and the additive structure,
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egories, regular functors and natural transformations (I).

Also here, by a proceeding similar to 7.4, one shows that RG is
well adapted, with the same bounding function max (card A, No) . A

reflective theory T = T(A,K,r,R) may be syntactically defined on A

through a set K of commutativity conditions, a set r of finite limit

conditions and a set R of coregularity conditions (a subset R of

Mor A): the models are the diagrams t: A -&#x3E; g (A in RG) preserving the
above conditions of R (in particular, each arrow in R is to be

transformed by t in a coregular epi of A).

9, Elementary toposes and logical morphisms.

In this example we consider the 2-category A = TPL of element-
ary toposes (always assumed to be U-categories), logical morphisms
(i.e., functors which preserve, up to isomorphism, finite limits and

colimits, exponentiation, the classifier of subobjects) and natural

transformations.

9.1. THEOREX. TPL is well adapted, wi th bounding function w(A) 

max (card A, No).

PROOF. It is easy to see that TPL satisfies the limit, small-fiber and

isomorphism-lifting properties (WA .1-3 in 6.4. As to (WA. 4), fix a

graph morphism t: A -&#x3E; A. into some elementary topos A: we shall prove
that it factors through a bigenerating morphism t1: A e A, into an

invariant subtopos Li bounded by w(A).
The subcategory Li = UAn, of A. may be constructed by an induc-

tive proceeding similar to the one in 7.4. Take Ao to be t(A)

"together with" the subobject classifier Q, the terminal object 1 and

the "true" morphism 1 -&#x3E; Q. In the inductive step from An to An+1,
besides the objects and morphisms to be added in order to get an

invariant finitely complete subcategory (rules b-f of 7.4), add the

following ones:
g) for all objects A,B,C in An, the object BA of A. together with

all the A"morphisms C 4 BA corresponding to arrows AXC e B of 6n,

(1) A category k is regular (Grillet C6r]) if: it is finitely complete, each map
factors by a coregular epi and monic, the pullback-axiom holds for coregular epis,
It should be noticed that, in this case, any coregular epi ti,e, coequalizer of
some pair) is the coequalizer of its kernel-pair, A regular unctor (between
regular categories) has to preserve the above structure,
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h) for each morphism A’ -&#x3E; A in Ain, monic in A, its characteris-

tic map X: A -&#x3E; Q in A.

Thus A,, is a subtopos of A. (1) bounded by w. The codomain res-
triction t1: A -&#x3E; A, of t is a model and it is not difficult to check

that it bigenerates Li,

9.2. Thus any reflective theory in TPL is pseudocomplete and has a

biclassifying topos, bounded as specified. In particular the total

TPL-theory Ta supplies the bifree topos over the given graphs, TPL(A).

9.3. Consider now a small category C. A TPL-theory on C. (more

precisely, on the underlying graph) is obtained by taking as models
in the elementary topos A. all functors t: QA g. This theory Tc. is

again a reflective theory (a faithful functor "reflects functors").

The biuniversal model to: -&#x3E; Ao provides in this case the

bifree topos over the category G, i.e., an equivalence of categories

natural for g in TPL; we also have the estimate

By the "change of base" Theorem (4.10), if A is a small graph
and C the 2-free category on A, the bifree topos on A coincides with
the bifree topos on the category Q.

Analogously one proves the existence of the bifree topos on a

small finitely complete category C. (the models t: C -&#x3E; A. being the

finitely continuous functors) or on a cartesian closed category; all

"intermediate steps" can be chained to get the global one.

9.4. As a conclusion of our considerations so far, the bifree object
over a small graph can be obtained for many "categorical structures",
as categories (7.1), finitely complete categories (7.4), categories
with finite products, categories with equalizers (7.6, with suitable F
and F’ = 0), abelian categories (8,3), elementary toposes (9.1), carte-

1) Notice that the embedding li A A. preserves finite limits, hence kernel-pairs
and monomorphisms.
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sian closed categories (a slight modification of the proceeding in

9.1). In particular one finds results of Burroni [Bu] and Mac Donald-

Stone tMSJ, obtained by syntactic means, under the assumption that

"morphisms" strictly preserve limits and so on.
In each of these cases we deal with a total theory, but relative

bifree structures are also available, as in 8.4 and 9.3, and inter-

mediate steps can be chained.

10. Theories with values in involutive ordered

categories,,

These theories were introduced in IG2] for the 2-complete 2-

category RE, whose objects generalize the categories of relations over
exact categories. The strict 2-completeness of RE allowed to deduce

the existence of the 2-universal model from the Freyd’s Initial

Object Theorem, and to derive the existence of the biuniversal model

for reflective EX-theories. We treat here a more general case, RO.
Notice that the theories we consider now are still 2-functors

T: A -&#x3E; CAT, but the 2-category A is just 1-concrete (a 2-category of

categories, functors and possibly non-natural transformations): this

requires some slight modifications on the terminology of Part II;
however, the definition of completeness and of universal model just
concerns the 2-functor T and needs no adaptation.

10.1. An RD-category is a U-category A with an involution -: A -&#x3E; A (a

contravariant involutory endofunctor, identical on objects) and with a
consistent order on parallel morphisms; moreover we assume that the
involution is regular (a = aa"’a for any morphism a) and that for

each object A the set Prj(A) of projections of A (endomorphisms
e: A -&#x3E;4 A such that e = ee - e^) is small. A morphism u in A. is said

to be proper whenever u - u ; 1 and uu-  1.

An RO-functor F: A -&#x3E; B preserves involution and order. An RO-

transformation (or proper-lax transformation of RO-functors) ø:
F e G: I e B. is a collection (ØA) with A E ObA, such that (1):

(1) for each A--object A, O A: FA e GA is a proper morphism of D,
(2) for each a: A e A’ in A, O A’, Fa  Ga. OA.

(1) Indeed the "symmetrization" Rel(O) of a natural transformation 0 between exact
functors is of such kind, generally non natural [G1J,
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These data form naturally a 2-category CLG 1 J , Ch . 2): the

definition of the horizontal composition of cells depends on the fact
that the restriction of the order  to proper morphisms is easily
seen to be trivial; if u, v are proper and u ;  v then u = v. RO is 2-

complete (see the analogous proof in [Gll, Ch. 9, for its 2-subcat-

egory RE).

Moreover we have a 2-continuous 2-functor

associating to each RO-category its subcategory of proper morphisms,
and acting similarly on arrows and cells. However, we are not going
to use this 2-functor to introduce RO-theories, because we do not

want to confine their models A 4 A. to take values in Prp i. Thus we

do not consider RO as a concrete 2-category and we must get out of

the frame of Chapter 4; we only use the 1-functor

between the associated categories, assigning to each RO-category its

underlying category; the latter cannot be extended to cells.

10.2. For a small graph A consider the 2-extension ROo of RO obtained
by a proceeding analogous to the construction of Aa in 4.1: a mor-

phism t: A e A. is a pair CA, I tl : A e l A l) where ltl is a graph
morphism; a cell T: ti -&#x3E; t2: A -&#x3E; A is a proper-lax transformation of

graph morphisms (as in 10.1), possibly non-natural.
Thus the total RO-theory on A will be the 2-functor

assigning to each RO--category g the category of all diagrams A -&#x3E; A.
with their proper-lax transformations. An RO-theory on A will be any
sub-2-functor T: RO -&#x3E; CAT of Ta such that, for any g in RO, TA is a

full subcategory of To A.

10.3. The theory T is 2--complete (i.e., T is 2-continuous) iff it

verifies three conditions (ROT.1-3) analogous to (T.1-3) in 5.3. T is

said to be reflective if it verifies (ROT.1) and

(ROT.R) if t: A A A. is a graph morphism, F: A. e AI is a faithful

RO-functor which reflects the order  between parallel morphisms and
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It is easy to prove, as in 6.5, that each reflective RO-theory is

2-complete and bas a 2-classifying RO-category bounded by
max(card A, No), Actually, each model t: A -&#x3E; A. factors through its

restriction t1: A -&#x3E; At where A, is the involutive subcategory of A.

generated by the subgraph t(A), provided with the induced order;
notice that A1 has the same objects as t(A). Since L, is bounded by o
and clearly 2-generates A.i, the conclusion follows.

10.4. Syntactically, consider on A a set K of RO-conditions

where u and v are parallel morphisms of the free involutive category
I (A) generated by A (2).

These data define a reflective RO-theory T = T(A,K) on A: its

models t: A -&#x3E; A are the graph morphisms satisfying the conditions of
tr.

where t: I (A) e A is the unique involution-preserving functor ext-

ending t.

Thus T has a 2-universal model, bounded as above. Conversely
each reflective RO-theory can be presented in such a way.

10.5. Analogously one defines and treats theories with values in the

2-category RE [Gl-31; in particular the existence theorem for 2-

universal models of RE-theories (EG2], Thm. 2.3) can be deduced from

the present results. The relations between RE-theories and EX-

theories where considered in [G2], Ch. 7.

(’) Since each RO-category is balanced, any faithful RO-functor reflects the isos,
(2) Equivalently an RO-condition can be written as Un...U2U1,  Vn...V2V1, where the
ui,vi are arrows of A or formil involutes of such, and appropriate consecutiveness
conditions (corresponding to composability in 1(0» are imposed,
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