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A UNIFIED APPROACH TO THE LIFTING OF ADJOINTS

by A.J. POWER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

Vol. XXIX - 1 (1988)

RÉSUMÉ. De nombreux r6sultats sur les carr6s d’adjoints et

les triangles d’adjoints sont diss6min6ss dans la littérature

sur la Th6orie des Catégories. Leurs démonstrations sont souvent
différentes. Ici, nous unifions les principaux r6sultats ab-

straits, donnant l’id6e générale d’un processus qui conduit

simplement d’un r6sultat au suivant, en commenqant par un th6o-
r6me fondamental de Dubuc.

O. INTRODUCTION.

Adjoint Square and Adjoint -Triangle Theorems abound in the lit-

erature of Category Theory, for instance in the work of Barr [1],
Dubuc 141, Johnstone [5] and Tholen with various co-authors [3,
11, 13J . However, these results are spread widely about the liter-

ature ; in many cases, they have separate proofs; and on several occa-
sions, authors have been unaware of the related results. Herein is

given a unified treatment of the subject, commencing with a fundam-

ental result of Dubuc [4] and deducing those results that follow

without substantial added assumptions upon the categories involved.

We restrict attention to those results without substantial

assumptions upon the categories involved because, roughly speaking,
these are the results that are of a 2-categorical nature. More pre-

cisely, the results of this paper all hold in the general 2-categoric-
al setting of Sgeet’s paper [10]. So, in particular, they apply
automatically to categories enriched over bases other than Set. How-

ever, for simplicity of exposition, they are all expressed here in

Cat.

*’ Research supported by Association of Universities and Colleges, Canada,
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Adjoint Triangles can be regarded as special Adjoint Squares:
those in which the bottom functor is an identity. So, any Adjoint

Square Theorem immediately yields an Adjoint Triangle Theorem. In

fact it is of ten the case that an Adjoint Triangle ThnnrAm is logio-
ally equivalent to an Adjoint Square Theorem of which it is a res-

triction. Dubuc’s result is an instance of this, as illustrated in

Section 2 herein. However, that is not always so, and Adjoint Squares
do occur in nature: for instance, in diagrams relevant to algebraic
functors, in the proof that a logical functor has a left adjoint iff

it has a right adjoint, and in theorems on the existence of colimits

in a category of algebras [6, 2, 7]. Moreover, Adjoint Squares provide
the only context in which it is appropriate to study the lifting of

monadicity, as in 181. So, although we generally give only an Adjoint
Triangle version of the principal results, we do include those Adjoint
Square results that are not immediate corollaries of corresponding
Adjoint Triangle results.

Cat, as a 2-category, has a total of four possible duals: given
by reversing 1-cells, by reversing 2-cells, by both, or by neither.

Reversal of 2-cells sends left adjoints to right adjoints, monadic

functors to comonadic functors, and fully faithful functors to fully
faithful functors. It follows that, in this sense, all the theorems

herein dualize to give meaningful and interesting results. However,
reversal of 1-cells sends left adjoints to right adjoints, monadic

functors to Kleisli functors, and fully faithful functors to functors

with a rather peculiar property. So, this dual does not generally
yield meaningful and interesting results. Dubuc’s Theorem is an

exception. Consequently, this paper is divided into two sections: the

first is on the lifting of a right adjoint; the second is on the

lifting of a left adjoint. In general, the results of the second

section are in spirit but not in detail the 1-cell reversal duals of

those in the first section.

In both sections, we commence with Dubuc’s result. We then

replace the assumptions of Dubuc by various 2-categorical assump-
tions : for instance, a certain functor is monadic, or a certain

natural transformation is an isomorphism. Under these new assump-
tions, we conclude that the conditions of Dubuc’s Theorem are

satisfied; hence we have a lifting as desired.

Most of these results, or mild variations of them, have appeared
somewhere in the literature. So, throughout the paper, we cross

reference with similar, and sometimes identical, results previously
published, generally with different proofs. The final theorem of
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Section 2, Theorem 2.4, is included only because it is the analogue of
Theorem 1.4, and despite the fact that it is well-known and easy.

Principally, the work in this paper has been developed from part
of the author’s thesis 181, which in turn was based upon several

theorems announced by William Butler in 1972 but without proof. I

should like to acknowledge that work by Butler and express my appre-
ciation for it. I should also like to express my thanks to Walter

Tholen for his kind and generous encouragement.

1, ON THE LIFTING OF A RIGHT ADJOINT.

Consider an adjoint triangle

with and

NOTE. A is said to be of descent type if for each X E B,

is a coequalizer, or equivalently, if the Eilenberg-Moore comparison
functor is fully faithful. The latter description shows that this is

essentially a 2-categorical concept, using [10], A deeper analysis of

this notion appears in [12].

THEOREM 1.1 (Dubuc [4]). Given an adjoint triangle as above, define 8 ;

AB fl A^B^ by
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Th en , if the coequalizer

exists, if G preserves it, if GE is epi, and if A is of descent type,
G

This is the dual form of Dubuc’s Theorem [4). His formulation is

slightly different, but a perusal of his proof shows that the above

theorem follows directly. For instance, he has GB = B", but his proof
works equally well for GB = B^.

Using (1.4), it is evident how to define the counit of the

adjunction: the unit is defined by using (1.2) applied to

It is a routine calculation to check that this does induce an

adjunction. (See [4] for more detail.)

THEOREM 1.2. Given an adjoint tr-lantle as in (1.1), if A is of descent

type, and if B has and G preserves coequalizers of A-split coequal-
izer pairs, G has a right adjoint-.

This result has recently appeared in [2], § 3,7, Theorem 2 (a),
with a different proof. Although an assumption is placed on B, it is

solely for simplicity of exposition. It is easy but just a trifle

technical to give the general 2-categorical formulation in the spirit
of [10]. An immediate application is a result by Rattray (91 that if B

is compact and T is any monad on B, then BT is compact. This follows

by inspection of

given any K that preserves all colimits.

PROOF of Theorem. Everything is clear, by Theorem 1.1, once we show

that the coequalizer (1.4) is A-split. Consider
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The only non-trivial parts are to show that

To exhibit these equations, observe how 0 relates the units and

counits of the two adjunctions:

The first two of these follow easily from the definition of 8 and by
using naturality. The third is just a little more difficult, deduced

by replacing the two horizontal composites by the composites given
in the definition of 0, after which the result follows without dif-

ficulty using naturality. Now, the first of the two equations to be

satisfied follows directly from the first of the above diagrams. The
second equation is given by:

Thus, we do have a split coequalizer, and the result follows from

Theorem 1.1.

THEOREX 1.3. Consider-



72

Let y, E: F - U, Y^, E^: F’ --I U", GF = HU, U monadic, and U^ of descent

type. Then, if H has a right adjoint, so has G.

This result is a mild generalization of a result of Johnstone

[5], It follows trivially that monadic functors create limits and that

logical morphisms with right adjoints have left adjoints. Observe the
absence of coherence conditions..

PROOF. In order to apply Theorem 1.2, we need only show that G pre-
serves coequalizers of U-split coequalizer pairs. In fact, any U-split
coequalizer is HU-split, so U^G-split. Since U" is of descent type, U"

reflects U"-split coequalizers [121.. Hence, G preserves coequalizers
of U-split coequalizer pairs.

THEOREX 1.4. Given an adjoint triangle as in (1.1), if E is iso, then

G has a right adjoint.

PROOF. Consider Theorem 1.1. It is easy to show that ByA^ is a right
inverse to both EBA" and BA^E^.BBA^. Indeed, this is essentially shown
in the proof of Theorem 1.2. Since EBA^ is iso, it follows that

BA^E^.B8A^ is also iso, and this coequalizer may be taken to be the

identity. All coniditions of Theorem 1.1 are now obviously fulfilled.

Hence, by the theorem, G has a right adjoint.

From Theorem 1.4, the hard half of Barr’s Theorem [1] follows

directly: given

exhibiting A’ as a reflective subcategory of A and B’ as a reflective
subcategory of B, and supposing that both functors from to B’ are

the same up to isomorphism: : if V has a right adjoint, so has V’.

Indeed, this half of Barr’s Theorem is equivalent to Theorem 1,4 ;

take V to be the identity in Barr’s Theorem.
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2. Oht THE LIFTING OF A LEFT ADJOINT.

Consider

with

and let y be the mate of A under the adjunctions, i.e., 

Now suppose p,rr: H -l W, and define X by:

The main theorem of this section is as follows:

THBOREX 2.3. Under- the above conditions, if U is monadic, if U" is of

descent type, and if’ X is iso, V has a left adjoint G . Horeover,
UG = HU" .

Alas, it does not seem possible to replace X by an arbitrary
isomorphism, so applications require this coherence condition to be

verified. Nevertheless, checking this coherence condition is usually
straightforward. I cannot find a result very similar to this in the

literature; but observe that it does bear some similarity to one of

the results in [2).

Some examples of Theorem 2.3 are:
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or given any cocomplete category A and a cocontinuous monad T on A,
the diagram

showing the AT is also cocomplete.

In order to prove the theorem, we start with Dubuc’s Theorem:

THEOREX 2.1. Given

with

Define 8 ; A^B^ -&#x3E; AB by

The, if

is a pointwise coequalizer, and if AA is of descent type, then D -l C.

Next, we translate this into an adjoint square form:
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LEMMA 2.2. Given the situation stated at the start of the section, if

is a pointwise coequalizer, and if UA is of descent type, then G -l V.

PROOF. Put A" = U", A = VU. Then, since B = FH and B = E.FO’U, all that
need be done is show that, under these circumstances, X = o-UFH.H8. In

fact, virtually by the definitions of 0 and y, 0 = ø-1 FH^U^yH.U^P^p;
and from the definition of X, it immediately follows that X = O’UFH.H8.
The result follows by an application of Theorem 2.1.

PROOF of Theorem 2.3. In order to apply the lemma, it suffices to

show that the coequalizer of the lemma is U-split. Consider

Everything is straightforward except HU^E^.X- 1 U’" .’¥HU" = 1 and

To exhibit these, first observe that, since and are mates under
the adjunctions (i.e., by definition of y), ø and f relate units and

counits as f ollows :

From these diagrams, from the definition of X, and from naturality, it

follows that X relates units and counits as follows:
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This means precisely that (H,X) is a monad opfunctor. The first of

these diagrams is easy; the second requires an enormous diagram (see

[8]), but it is not inherently difficult. The first equation follows

riirArtlv from the first nf these two diagrams: the second equation

follows by:

So we have a split coequalizer; thus, since U is monadic, we may

apply the lemma, and observe UG = HUA.

Finally, for completeness, we mention the well-known left

adjoint analogue of Theorem 1.4, namely:

THEOREK 2.4. Given

with JW = U, F -i U, and J fully faithful: W has a left adjoint.
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