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LIMITS AND COLIMITS OF CONVEXITY SPACES
BY Robert J. MacG. DA WSON

CAHIERS DE TOPOLOGIE
ET GtOMtTRIE DIFFGRENTIELLE

CATTGORIQUES

Vol. XXVIII-4 (1987)

RESUME. Une prdconvexit6 [convexité] sur un ensemble

consiste en une famille de sous-ensembles (ensembles convexes),
ferm6e par intersections arbitraires let unions filtrantes]. On

examine deux categories principales dlespaces A préconvexité.
dont les morphismes sont, d’une part, les fonctions de Darboux

(celles qui pr6servent les ensembles convexes) et, d’autre part,
les fonctions monotones (celles qui refldtent les ensembles

convexes). On compare les limites et les colimites dans ces

categories, et dans certaines sous-cat6gories importantes. Fina-
lement, on identif ie une sous-cat6gorie reflexive de la cat6gorie
dlespaces A convexité comme 6tant la completion inductive de la

cat6gorie connue des complexes simpliciaux finis.

There has recently been considerable interest in the properties
of "convexity spaces" or "aligned spaces", structures which generalise
the linear structure of Euclidean space in the same way that topo-
logical spaces generalise its metric structure. Like a topological
space, a convexity space consists of a set with a distinguished
family of subsets (usually called convex sets); they obey different

axioms of union and intersection, however. Generalised convexity
theory has been described as "rigid sheet" geometry, in contrast to

the topologists’ "rubber sheet".
Many important constructions in topology, such as the product

of topological spaces, depend on the nature of the continuous

functions between topological spaces. In the case of convexity spaces,
there are two obvious analogues. Most authors so far have dealt

mainly with maps such that the inverse images of convex sets are

convex; Jamison-Valdner E61 in particular has considered the category
of convex aligned spaces (in the terminology of this paper). Here, we
will exten d that investigation, and also consider a different

categorical structure on the class of convexity spaces, using maps
which map convex sets to convex sets. We will see that an important
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subcategory of this category is the completion under directed

colimits (ind-completion) of the familiar category of finite

simplicial complexes with simplicial maps.

1. DEFINITION.

A preconvexity K on a set X is a collection of subsets of X

such that the intersection of any (non-empty) subcollection of K is

again a member of K. If K is also closed under nested unions (or

directed unions; the apparently more general case gives rise to the
same closure system), we will call it a convexity on X. We will call

the pair (X,K) a (pre)convexity space, and the elements of K convex

sets. (We do not call the elements of a preconvexity "preconvex",
because that would suggest that the sets themselves neeeded to be

completed in some way to become convex; whereas we will see that the

most natural way to make a convexity out of a preconvexity is to add
new sets, rather than to change the existing ones.) If X is itself an

element of K, we will call (X,K) a con vex (pre)convexity space.
Several authors have taken this as an axiom for all convexity spaces
(see, e.g., 16, 8, 10, 11, 12]). While this is useful in many cases, we

will keep the greater generality here.
Various authors, such as Jamison-Waldner [6] and van de Vel

1121, have considered functions between Cpre)convexity spaces.

Usually, these have been taken to be the functions which reflect

convex sets; if A is convex in the codomains of f, f-1 (A) is convex in

the domain of f. Perhaps a little confusingly, these are referred to
in [12] and elsewhere in the literature as "convexity-preserving" or

"CP" functions - a term which might be applied more appropriately to
a function under which the image of a convex set is convex. Here, we
will consider (separately) both types of function. In order to avoid

confusion, we will call a function which reflects convex sets

monotode, and one which preserves them Darboux - in each case, by
analogy with the special case of the real line. (It should be noted,
however, that other authors have generalised the concept of a Darboux
function topologically as a function that preserves connected sets.)

In an established categorical tradition, we will distinguish
between objects in categories with Darboux maps and objects in

categories with monotone maps. We will refer to a (pre)conve..yity
space in the first instance, and to a (pre)aligned space in the

second. (The term "alignment" was introduced by Jamison-Waldner [6],
who considered the category of convex aligned spaces. I will take the

liberty here of extending his term to include the nonconvex case; it
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will be seen that many of his results remain true in the more general
setting.) The justification for this is that, while every alignment is
a convexity, and vice versa, the coproduct alignment (for instance)

is not the same as the coproduct convexity. We will thus use such

categories as:

Precxr. preconvexity spaces with Darboux maps;
Cxy: convexity spaces with Darboux maps;
.Prealn: prealigned spaces with monotone maps;
A.ln: aligned spaces with monotone maps.

A preconvexity space (or prealigned space) will be said to be

S1 if every point is a convex set 161. If, for any two distinct points
x,y, there is a chain of convex sets Ao, A1, A2, ..., An such that

we will call the space connected. Note in particular that any convex
space is connected.

2. EXAMPLES.

In the examples that follow, P(X) is the power set of X, and E
is the Euclidean convexity on R", consisting of all sets which are

convex in the usual sense.

EXAMPLE 2.1. Let X be a subset of R", and let K = EnP(X). Then (X,K)
is a convexity space. Its embedding into (R",E) is Darboux. (X,K) is

convex iff X E E; in such a case, and only then, the embedding is

also monotone. (X,K) is Si, and connected iff it is polygon-
connected. This is an example of a subspace convexity.

EXAMPLE 2.2. Let X be a subset of R" , and let K = {AnX I A E E}

(Figure 1). 
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The embedding of this space into (R",E) is monotone, but only
Darboux if X E E; (X,K) is always convex and S, . This is an example
of a subspsce alignment.

EXAMPILE 2.3. Lassak [9] considers the family Ka of sets in R " gener-
ated from a given set A by intersections, homotheties, and directed
unions. If A is the unit ball, KA = E. However, the unit cube yields
the box convexity, whose convex sets are cartes ian products of

intervals. We shall see later that this is a special case of product
alignment.

The properties of (R",KA) depend on A. The space is convex iff

the affine hull of A is all of R" ; otherwise, it is not even

connected.

It is S, iff A is not the union of a parallel family of semiinfinite
rays.

BYAIIPLB 2.4. The compact sets in R " form a preconvexity but not a

convexity. It is Sl, connected, but not convex.

EXAMPLE 2.5. The subspaces of a vector space f orm a convexity which
is convex but not S, .

If we define an algebra to be a set equipped with a family,
possibly inf inite, of f initary operations, and a subalgebra to be any
subset closed under all of those operations, we may consider Example
2.5 to be a special case of the next example. (Note that a vector

space is an algebra with one nullary operation [the origin], one
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binary operation [addition], and one unary operation for every scalar
in the underlying field [scalar multiplication].)

BIAXPLB 2.6. The subalgebras of any algebra form a convexity. This

was proven by Birkhoff and Frink Ill in 1948, although they did not

emphasize the connection with geometry, or call the structure a

convexity. Such a convexity space is always convex; it was shown in

[1] that any convex convexity space may be so obtained, for a

suitable algebra over the underlying set. It may be shown also that

such a convexity space is 8, iff for every operation f and for every
element a, f (a,a,...,a) = a [3]. (Such an algebra is sometimes called

affine.)

EXANPLE 2.7. The sets in R" which are starshaped about the origin
form a convexity which is convex but not S, . (Note that the sets

which are starshaped about an unspecified point do not even form a

preconvexity, as the intersection of two of them may not be

starshaped about any point.)

EXAMPLE 2.8. In a differentiable manifold It let Kg consist of those
sets such that there is a unique minimal geodesic arc joining every
pair of their points, and which contain that arc. (If. is R " with
the usual manifold structure, this reduces to the usual convexity.)
This is a convexity on X. Its properties are described in [2], where
it is shown that any sufficiently small e-ball about a given point in
X is in K,. (M,Kg) is not generally convex; it may be shown that it

is connected iff M is topologically connected.

EXAMPLE 2.9. Let G be a graph. A set of vertices of G is geodesically
convex if it contains, with each pair of its members, all vertices of
all shortest paths between them; and monophonically convex if it
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contains, with each pair of its vertices, all vertices of all

chordless paths between them [4, 61. (A path is chordless if it is

the induced graph on its vertices.) Both of these definitions give
rise to convexities on graphs. Figure 4a shows a geodesically convex
set. Figure 4b a monophonically convex set.

EXAMPLE 2.10. Let G be a graph; the cliques (complete induced sub-

graphs) form a convexity on G. Note that every induced subgraph of
a clique is itself a clique; thus in this convexity, every subset of
a convex set is itself convex. Such a convexity space is called

downclased.

EXAMPLE 2.11. Let K be a finite simplicial complex; then the sim-

plexes of K form a convexity on K. Like the previous example, this

convexity space is downclosed. Furthermore, any simplicial map from K
to another finite simplicial complex L corresponds to a Darboux map
between the corresponding convexity spaces. The implications of this
will be considered in the final section of this paper.

3. FUNCTORIAL CONSTRUCTIONS.

DEFINITION 3.1. Let X be a set. The following are convexity spaces:
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Figure 5 illustrates these for a three-point set. It is clear that any
function X -i Y induces a Darboux and monotone function Xp e Yp. Thus,
there is a f unctor P: Set e Cxy and a f unctor P: Set -i Aln, each of
which assigns to each set the power set convexity (alignment).
Similarly, there are functors D, T: Set -&#x3E; Cxy and functors I, T:

Set e AIn. If f: X e Y is not mono, .f: Xn e Yo is not monotone; and if
f: X -&#x3E; Y is not epi, f: Xx e yx is not Darboux. Similarly, in either

case, the singleton convexity fails to induce a functor.

PROPOSITION 3.2. The category CPrealn of convex prealigned spaces is
a coreflective subcategory of Prealn.
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(Recall that a subcategory is reflective (resp. coreflective) if the

inclusion has a left (resp. right) adjoint.)

PROOF. The functor

is right adjoint to the inclusion CPrealn -&#x3E; F’realn..

COROLLARY 3.2.1. The category CAln of convex aligned spaces is a

careflective subcategory of Aln.

PROPOSITION 3.3. The categories Cxy, and Precxy, of S, (pre)convexity
spaces are reflective subcategories of Cxy and Precxy respectively.

PROOF. The functor

is left adjoint to the inclusions. ·

PROPOSITION 3.4. The functors T : Set -&#x3E; Cxy, T : Set -f Precxy, D:

Set -&#x3E; Cxyi, D: Set a Precxy1 , P: Set -t Aln, and P: Set -&#x3E; Prealn are

left adjoint to the appropriate forgetful functors; and the functors

T: Set -&#x3E; Aln, T: Set e Prealn, I: Set -&#x3E; CPrealn, I: Set -f CAln, P:

Set -&#x3E; Frecxy and P: Set -&#x3E; Cxy are right adjoint to the appropria te
forgetful functors.

PROOF. We will prove one case; the rest follow the same pattern. Let
U: Czy, e Set be the forgetful functor, X a set, and (Y,L) an Si

convexity space. Then any Darboux function f: L e (Y,L) is also a

set map f: X A Y; and, conversely, f or any set map g: X -&#x3E; Y, then g:
Io -&#x3E; (Y,L) is Darboux, as all the singleton sets in (Y,L) are convex.
Thus, we have a natural isomorphism between the hom-sets

CX, U (Y,L)]sot and [10, (Y,L)] cxr1. 

COROLLARY 3.4.1. The forgetful functor from Precxy, Cxy, Presln, and
Aln to Set preserve all limits and colimits that exist in their

domain..



315

Thus, we know what the underlying sets of any (co) limits that

exist in Precxy, Cxy, Prealn, or Aln are; in the next section we shall
determine when they exist and what the appropriate convex structures
are.

PROPOSITION 3.5. Aln is a coreflective subcategory of Prealn¡ Cxy Is a
reflectl ve subcategory of Precxy.

PROOF. For any preconvexity K on X, let

This is a preconvexity; for let {ABY I Y E ro) be directed sets, with

unions As, and let r be the poset product of the posets rv - Any pro-
duct of directed posets is itself directed; and

Aow, nBABys E K; and

is directed by r, so n...A. E K-. Furthermore, any nested union of

directed unions is itself directed; so K- is a convexity. Any element
of K is also in K-&#x3E;, so the identity map i: X 4 X induces a Darboux
map (X,K) -&#x3E; (X,K-) and a monotone map (X,K-) -&#x3E; (X,K); these are the
desired reflection and coreflection. ·

We will refer to the reflector as Cx: Precx e Cxy, and to the
coreflector as Cx: Prealn -&#x3E; Aln. As they act in the same way on

spaces and on maps, this should not lead to confusion.

DEFINITION 3.6. A preconvexity space will be said to be downclosed if
every subset of a convex set is also convex.

We have already come across some examples of downclosed pre-
convexity spaces; see, for instance, Examples 2.10 and 2.11. Any
downclosed convex preconvexity space has, of course, the powerset
convexity! The two examples just mentioned, however, show that there
are also non-trivial downclosed preconvexities.

PROPOSITION 3.7. Th e category DcPrealn of downclosed prealigned
spaces is a coreflective subcategory of Prealn; and DcPrecxy is a

reflective subcategory of Precxy. Also, DcAln is a coreflective sub--



316

category of Aln, DcCxy Is a reflective subcategory of Cx,y, and the

(co)reflector Dc commutes with Cx.

PROOF. Let (X,K) be a preconvexity space, and define

K C Koc ; so the identity map i: X a X induces the reflection

(X,K ) H (X,K dc) and the coref lection (X,K dc) l-&#x3E; (X,K). To see that Cx
and Dc commute, suppose that A C K, and that K is the union of the

directed family {Ky}; then A is the union of the directed family
{AnKy}.

Jamison-Waldner observed in [61 that many of the properties of

aligned spaces depend only on the hulls of their finite subsets. The
next two results show a new way to consider this "finitary property",
via an equivalence between downclosed convexity spaces and down-

closed spaces with only finite convex sets. For any setX, let F(X) be

the family of f inite subsets of X.

DEFINITION 3.8. A preconvexity space will be said to be finitary if
every convex set is finite.

PROPOSITION 3.9. The category FjnDcPrecxy of finitary downclosed pre-
convexity spaces is a reflective subcategory of DcPrecxy.

PROOF. Fin : (X,K) l-&#x3E; (X, KnF(X)) is a functor, for the image of any
finite convex set under a Darboux map is again a finite convex set.

If (X,K) is finitary, then f: (X,K) 4 (Y,L) is Darboux iff f:

(X,K) e Fin(Y,L) is Darboux; thus Fin is right adjoint to the inclu-

sion

FinDcPrecxy -&#x3E; DcPrecxy.

Note that there is not an analogously-defined functor for pre-

aligned spaces, as the preimage of a finite set is not in general
finite.

THBOREX 3.10. The functors Fin and Cx give an equivalence between the
categories FinDcPrecxy and DcCxy.
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PROOF. If a finite set F is the directed union of sets {Fy}, F E {F};
thus FinoDc = Fin. Similarly, CxoFinoDc = CxoDc ; for if a set A is

the directed union of convex sets {Ay}, the finite subsets of the sets
{Ay} form a directed family whose union is A; and in a downclosed

space, those finite subsets are themselves convex. Combining the two
identities just proved,

and

Thus (Fin,Cx) form an equivalence of categories between FinDcPrecxy
and DcCxy.

4. LIMITS AND COLIMITS, 

Jamison-Valdner has shown 161 that CAln is complete and

cocomplete. In this section, we will consider the more general case
of arbitrary prealigned spaces, and the corresponding (but in some

ways quite different) behaviour of preconvexity spaces. From Corol-
lary 3.4.1, we know that any such limits or colimits that exist must
have the same underlying sets as the corresponding limits or

colimits in Set ; it remains to determine when there exists an

appropriate convexity structure, and what it is.

THBORBIrI 4.1. PreAln is compl ete and cocomplete.

PROOF. Given a prealigned space (X,K) and a set epimorphism f:

X ee Z, f induces a quotient prealignment

on Z such that f: (X,K) e (Z,f*K) is monotone, and such that h :

(Z,fyK) 4 (Y,L) is monotone whenever hf is monotone. The coequalizer
of a pair 

is the set of equivalence classes of Y under the relation

f1 (y) = f2 (y) with the quotient prealignment. Similarly, given a set

monomorphism f: Z &#x3E;-&#x3E; X, f induces a subobject prealignment
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and the equalizer of the pair given above is the set

with the subobject alignment.
The coproduct of prealigned spaces (Xi,Ki) must, by Corollary

3.4.1, be the disjoint union of the sets Xi with a suitable pre-

alignment. As the injection from each space (Xi,Ki) must be monotone,
no set in IIiXi can be convex whose restriction to any X, is not

convex. The finest such prealignment on 6xXi is of the form

If the coproduct prealignment were any coarser, the injections

would not factor through (6xXi,K ); so K is the coproduct
prealignment.

Similarly, the product of prealigned spaces (Xi,Ki) must be the

cartesian product of the sets X, with a suitable prealignment. The

projection to each factor space must be monotone; so every set of the
form pi-1(K), K ~ Ki, must be convex, as must their intersections. But
this requires that every set of the form X I Ki, K, £ Ki, must be

convex; and this must be the product prealignment, as we cannot

factor the projections through any finer prealignment on X I Ki.
This concludes the proof, as any category with all (co)products

and binary (co) equalizers is (co) complete. 10

COROLLARY 4.1.1. Aln its complete and cocomplete.

PROOF. Aln is a coref lective subcategory of Prealn, and thus the

inclusion reflects all colimits. Furthermore (see, e.g., [51, p. 280), a
coref lective subcategory of a complete category is complete, and the
limit of any diagram in the subcategory is the coref lection of the

limit in the larger category. Thus equalisers in Aln are the same as

F’realn equalisers, while 

COROLLARY 4.1.2. DcPrealn and DcAln are complete and cocamplete.
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PROOF. This follows the same pattern as the proof of the previous
corollary; colimits and equalisers are reflected, while the product in
Dc (Pre) Aln is the downclasure of the product in (Pre) Aln. 

Note that the product in Prealn is the box product, whose

convex sets are cartesian products of convex sets in the factor

spaces, while the other products are coreflections of the box

product. The Aln product only differs from the Prealn product when
there are infinitely many nontrivial factors. We may write the

various products as follows:

As an immediate consequence of these constructions, we have (in

any of the four categories considered above):

OBSERVATION 4.1.3. (Co)limits of convex spaces are convex; (co)limits

of S, spaces are Si; and products and colimits of connected spaces
are connected..

In the case of (pre)convexity spaces, the situation is not quite
so straightforward. It will be seen that Cxy and Precxy are neither
complete nor cocomplete; the following theorem summarises their

general completeness properties.

THEOREX 4.2. Cxy, and Ps-ecxy have all coproducts and all equalisers,
and these are reflected by the inclusion.

PROOF. Given a preconvexity space (X,K) and a set monomorphism f;

Z &#x3E;-&#x3E; X, f induces a subobject preconvexity

on Z. The equaliser of a set of maps ffi: (X,K) -&#x3E; (Y,L)} is the set



320

with the subobject preconvexity. If K is a convexity on I, and {A}

is a directed family of elements of *fK, then UfAy E K, and UAt is in

*fK; thus if the domain of a set of Darboux maps is a convexity
space, so is their equaliser.

By Corollary 3.4.1, if a set of spaces (Xi,Ki) has a coproduct in
Frecxy, it will be the disjoint union of the sets with the suitable

preconvexity. In order that the injections q j : (Xi,Ki) -&#x3E; (X,K) may be

Darboux, it is necessary that every set A which is convex in some

(Xi,K1) must be convex in the coproduct preconvexity. As before, it is

not possible to factor these projections through any finer

preconvexity; so (UXi,UK1) is the coproduct of spaces in Frecxy. As
the ranges of different injections are disjoint, and every convex set
lies in one such range, any directed family of convex sets in

U(Xi,Ki) is the image of a directed family of convex sets in some

summand space. If that summand space is a convexity space, then the
union of the directed family will also be convex, as will its image
in the coproduct space.

A consequence of the coproduct construction is the following:

COROLLARY 4.2.1. Any preconvexity space has a unique representation
as a coproduct of connected preconvexity spaces; and if it is down-
closed, Sy, or a convexity space, the connected summands will share

these properties.

PROOF. A component is a maximal connected subset of a preconvexity
space (with the subspace preconvexity). For any point x, if x is

contained in no convex set, ({x),O) is a component; otherwise, the

union of all connected sets containing x is a component. Thus, every
point is in at least one component. But it cannot be in more than one
component, as given y in C, connected to x by a chain of inter-

secting convex sets {Ai}, and z in C2 connected to x by a chain of

intersecting convex sets {Bj}, the chain A1, A2,...,An, Bm,...,B2z, B1, is a

chain of intersecting convex sets connecting y to z. Thus C,UC2 is

connected, contradicting our assumption of maximality.
Thus, the underlying set X of a preconvexity space (X,K) is the

disjoint union of the underlying sets of the components of (X,K). But

any convex set is connected, hence contained in a component; so (X,K) 
is the coproduct of its components. Finally, if a space is downclosed,
Si , or a convexity space, so are its subspaces..
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We may contrast this with the situation in Prealn, in which co-

products of connected spaces are connected (Observation 4.1.3); or in

Top, where some, but not all, spaces (consider the rationals with the

usual topology) can be decomposed into a coproduct of connected

spaces.

EXAXPLB 4.3. Precxy does not have coequal isers . For let X be {0,1}
with the discrete convexity, and let Y be (0,1)x[0,11 J with the disjoint
union convexity on the two copies of 10,11. Then

are both Darboux from X to Y. If there were a coequaliser for these
two maps, it would have to consist of the two unit intervals with

their corresponding endpoints identified (Figure 6); but then the two
endpoints would, together, be a convex set in the coequaliser pre-

convexity. However, the map h: (i,j) l-&#x3E; j, which maps Y onto 10,11,
also satisf ies hof = hog ; but it cannot be factored through the set
quotient map ir in Precxy, as {0,1} is not a convex set in 10,11..
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It is not difficult to see where the problem arises. In cons-

tructing coequalisers, or other quotients, two previously disjoint
convex sets may have intersecting images, and their intersection may
have to be included as a new convex set. This addition, however, may
make the induced preconvexity too strong to factor other Darboux

functions through. In the case of downclosed spaces, however, the

subsets of a convex set are all already convex, so this problem does
not arise.

THEOREX 4.4. DcPrecxy has coequalisers and is cocomplete.

PROOF. Given a downclosed preconvexity space (X,K) and a set

epimorphism f’ X aa Z, f induces a downclosed quotient preconvexity
f*K = (fA I A ~ K} on Z. The coequaliser construction follows as

before.

The situation with regard to products is similar. In general,
attempts to construct a product fail due to the necessity for convex
sets that do not arise from the projection maps, but from closing up
under intersection. The next theorem shows that when we can prevent
this, there is a product.

THEOREX 4.5. Two preconvexity spaces (X,K), (Y,L) have a product in

Precxy if one of the following conditions is satisfied ;
a) X or Y has only singleton convex sets.
b) X and Y are downclosed.

PROOF. If (a) or (b) is satisfied, the DcPrealn product (X,K)D (Y,L)
is also a product in DcPrecxy. Suppose, on the other hand, that (b)

is not satisfied. Then there exists A convex in (WLOG) X, with B C A
non-convex. If (a) is not satisfied either, there exists a non-

singleton convex set C C Y. Select b E B, c-i, C2 e C, and let Z be AUC
with the singleton convexity. Define f, g1 and 8’2 as follows:

otherwise z H b ;
otherwise z H z ;
for z E ABB, else z h z ;

All of these are Darboux; so if there is a product preconvexity on
XxY, (f,g1): Z -&#x3E; XxY must be Darboux, and hxm U bxC must be convex

(see Figure 7). Similarly, (f,g2) must be Darboux, and so the image of
Z under that map, BxC1 u (AXB)xa u bxC, must be convex (Figure 8).
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Figure 7:

Figure 8:

PROPOSITION 4.6. DcPr-ecx7, DcCxy, DcPrecxy, and DcCXY1 are complete
and cocomplete.

PROOF. It is easily verified that the DcPrealn product ,8 is also a

product in DcPrecXYi and the DcAln product 8 is also a product in

DcCxy. As these products preserve the S, property, they are also the
products in the categories DcPrecxy1 and DcCxy,..

PROPOSITION 4.7. If J is a diagram in Dc (Pre)cxy wh ose 1llorphisms are
monotone as well as Darboux, its limit in Dc(Pre)cx7 is the same as
its limit in Dc (Pre)aln.

PROOF. It only remains to show that, for a downclosed preconvexity
space (X,K) and a set monomorphism f: Z &#x3E;-&#x3E; It the subobject preconv-
exity and the subobject prealignment agree, as this implies that

equalisers agree: and if equalisers and products agree, all limits do.
For any space (X,K), we have

However, if (X,K) is downelosed,
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S , INO-FINITENESS.

It is often of interest to extend a category which does not

have some sort of limit by giving it formal limits of that type. It

is frequently found that the extended category shares some nice

properties of the original. For instance, if we adjoin cofiltered

limits to the category of finite groups, we obtain the category of

profinite groups. As cofiltered limits and filtered colimits are

particularly suited to the preservation of properties related to

finiteness, profinite groups retain some of the good behaviour of

finite objects.
The next theorem describes the ind-completion (closure under

filtered colimits) of the category of finite downclosed preconvex-
ity spaces. (For a clear introduction to ind- and pro-completions,
the reader is referred to [7], Ch. VI, §1, whence Definition 5.2 has

been adapted.)

DEFINITION 5.1. For a concrete category C, let Cr be the full

subcategory of finite objects in C (that is, objects with finite

underlying sets).

DEFINITION 5.2. For a small category C, Ind-C is a category whose
objects are all small filtered diagrams in C. If D: J -&#x3E; C and E: K -&#x3E; C

are two such diagrams, a morphisn f: D -&#x3E; E is a family

where each fj is an equivalence class of morphisms from D(j) to

objects in the image of E, satisfying the compatibility condition

that if g: j -&#x3E; j’ is a morphism of J, and if h: D (J’) -&#x3E; E (k) E fj,
then bod(g) e fj (Figure 9).

The equivalence relation defining the clazsez fj makes two

morphisms

equivalent iff there exist h: k a k" and h’: k’ e k" in K such that

E (h) og = E(h’Jog’ (Figure 10).
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Figure 9:

Figure 10
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THEOREX 5.3. Ind-DcPrecxy = FinDcPrecx7.

PROOF. DcPrecxy is cocomplete, so K: D H colim (D) is an isomorphism
from Ind-DcPrecxy,, to a subcategory of DcPrecxy. It remains to

identify the objects of this subcategory and to show that it is full.

Colimits in DcPrecxy are preserved by the forgetful functor to Set,
and have preconvexities of the form

. is the cocone map) .

Thus any colimit of finite spaces has only finite convex sets, and

Conversely, any object of FinDcPrecxy is the colimit of its

finite subspaces, filtered by inclusion. Thus,

Furthermore, the restrictions of a Darboux map between two down-

closed preconvexity spaces to their finite subspaces obey the compa-
tibility condition of Definition 5.2; so any morphism of FinDcPreczv
corresponds to a morphism of Ind-DcPrecxy,, 

COROLLARY 5.3.1. Ind-DcPrecxy, 0: DcCxy.

PROOF. Apply Theorem 3.10 to the preceding result..

We can define a convexity on a finite simplicial complex in

which the simplexes are convex sets; in this convexity, any

simplicial map is Darboux. Furthermore, any Si finite downclosed

preconvexity space can be so generated. (If it is not Si, there are

points which are not contained in any convex set.) If we let SC be

the category of simplicial complexes and simplicial maps, it follows

that

As colimits of Si spaces are themselves Si, we can easily deduce:

PROPOSITION 5.4. Ind-SC, = DcCxy, ..

This suggests that downclosed convexity spaces may be regarded
as generalised simplicial complexes. This may be used as a basis for
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a homology theory of preconvexity spaces (see [3], now being prepared
for more general publication).

In the case of aligned spaces, the corresponding result is even

more straightforward; the interested reader should have no difficulty
proving:

PEOPOS IT IOH 5.5. Ind-Prealn, = Aln.

6. CONCLUSION.

We have seen that several categorical properties of convex

aligned spaces (as introduced by Jamison-Valdner) can be extended to
the larger category of prealigned spaces. We have also developed, in

parallel, the theory of categories of preconvexity spaces. This latter
category is not complete or cocamplete; it has, however, a largest
full subcategory which is complete (and cocomplete), namely the

category of downclosed preconvexity spaces.
Finally, we have shown that the category of downclosed

convexity spaces is equivalent to the inductive completion of the

familiar category of finite simplicial complexes. This provides yet
another way to view the relationship between convexity spaces and

their finite subsets, which has been used in [3J to develop a very
simple axiomatisation of the homology theory of preconvexity spaces.
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