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A NOTE ON LIE ALGEBROIDS WHICH ARISE FROM
GROUPOID ACTIONS

by Kirill MACKENZIE

CAHIERS DE TOPOLOGIE

ET GÉOMtTRIE DI FFÉRENTIELLE
CATÉGORIQUES

Vol. XXVIII-4 (1987)

RÉSUMÉ. On calcule l’algébraïde de Lie au moyen des produits
semi-directs g6n6raux de groupoides diff6rentiables, dans le

sens introduit par Brown, d’apres Frdhlich, pour les groupoides
discrets. En utilisant ceci comme mod6le, on définit les actions
des alg6broides de Lie sur d’autres alg6broides de Lie, et les

produits semi-directs g6n6raux d’algebroides de Lie. En parti -
culier, on d6termine l’algébroïde de Lie d’un rev6tement (dans le

sens que lui donnent Gabriel et Zisman, Higgins et Brawn) de

groupoides diff6rentiables, et on d6finit un concept corres-

pondant de revetement d’algebroide de Lie; un rev6tement

d’algebroide de Lie sera alors équivalent à une de ses actions

sur une surmersion. Proc6d6 au cours duquel on definit les

images r6ciproques des alg6broides de Lie transitifs par des

applications différentiables arbitraires et on donne une

définition simple d’un morphisme d’algebroides de Lie transitifs.
Comme exemple non-standard, on calcule certains alg6broides de
Lie associ6s A une extension de fibrés principaux.

The concept of a groupoid action on a set fibered over its base
was introduced by Ehresmann 141 and is fairly well-known. If H is a

groupoid on base B and p: M -&#x3E; B is a map, then an action of H on p
induces a groupoid structure on the pullback set H*M (of p over the
source projection of H&#x3E; and the intrinsic properties of this groupoid
embody the properties of the action. Subsequently Higgins 161 defined

a covering of a groupoid S2 to be a groupoid morphism TT e Q which

restricts to bijections on the a-fibres, and showed that the

construction Q H Mt gives (the object map of) an equivalence p of
categories between the category of actions of Q and the category of
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coverings of S2. This equivalence was extended to topological
groupoids by Brown et al [3].

In [2], Brown observed that this construction is a. special case
of a very general semi-direct product of groupoids, originally due to
Frohlich. Here the groupoid which receives the action must be suitably
fibered over the base of the acting groupoid, and this imposes
constraints on which groupoids can act on which: for example, the

only groupoids which can act on transitive groupoids are effectively
groups. The first purpose of this note Csl) is to calculate the Lie

algebroids of the differentiable version of these general semi-direct
products. Once we have done this, we formulate in §3 a corresponding
concept of the action of one Lie algebroid on another, and construct
the corresponding semi-products. It is worth pointing out that this

does not follow automatically from the results of 91. One is

accustomed to the fact that algebraic constructions for Lie groups
have analogues for Lie algebras, but this depends in part on the fact
that every Lie algebra is the Lie algebra of a Lie group. It was

shown by Almeida and Molino [1] J that not all transitive Lie

algebroids are the Lie algebroids of Lie groupoids; in fact the

integrability obstruction for a transitive Lie algebroid [7] suggests
that, amongst transitive Lie algebroids, the non-integrable ones are,

in some sense, generic. Here we are dealing with actions and semi-

direct products of general differentiable groupoids and not

necessarily transitive Lie algebroids, and there is, a priori, even

less reason than in the transitive case to expect that constructions
for differentiable groupoids will always be modelled by constructions
for general Lie algebroids.

This concept of a Lie algebroid action includes as a very

special case the concept of an infinitesimal action of a Lie algebra
on a manifold, as well as the concept of a Lie algebra g acting on a
Lie algebra h by a morphism g e Der (h). The semi-direct product in
the former case is related to the infinitesimal graph (Palais [10])

of the action, and a general result on the integrability of Lie

algebroid actions in the sense given here should be of very great
interest. (That this may be very difficult is suggested by the

complexities of Pradines [12].)
As a novel application we calculate in §2 certain Lie algebroids

associated to the geometry of an extension of principal bundles. In

181 we showed that an extension of principal bundles is characterized
by a single Lie groupoid together with a group action upon it. There
are in fact several groupoid actions and semi-direct products
associated with this structure, and in §2 we calculate the corres-

ponding Lie algebroids. The importance of this will be demonstrated

elsewhere.
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An intermediate step in the work is to calculate the Lie

algebroid oi the pullback of a differentiable groupoid over a sur-

jective submersion. Abstracting this, we define general pullbacks of

transitive Lie algebroids over arbitrary smooth maps, and use them to
give, in §3, a very simple definition of a morphism of transitive Lie
algebroids. (The definition of a morphism is usually a simple matter,
but for Lie algebroids it is a surprisingly difficult question; see
Pradines (11] J and Almeida and Kumpera [0].)

I am most grateful to A. Weinstein for the crucial formula in 1.2,
and to P.J. Higgins for arguing that the case of general semi-direct
products could be handled by the same methods as that of covering
groupoids, as well as for many valuable comments throughout the

evolution of the work. I also thank A.C. Ehresmann for pointing out
some references.

We refer throughout to 171 for background on differentiable

groupoids and Lie algebroids, and for our conventions. In particular,
we omit the details of most proofs, since the techniques needed can
be found in [7].

1, THE LIE ALGEGROIDES OF SEMI-DIRECT PRODUCTS.

The following definition of a smooth action of one

differentiable groupoid on another is a smooth version of that given
in Brown 12 1.

DEFINITION 1.1. Let S2 be a differentiable groupoid on B, let V be a

differentiable groupoid on lri, and let p.’ V e Oe be a groupoid
morphism and a surjective submersion, from W to the base groupoid Oe
on B. Then Q acts smootbly on W via p if there is given a smooth
map:

such that

(1) p (Xw) = A (X) for all (X, w) E H*W;
(ii) the map w H xw, p-’ (cxX) -&#x3E; p-’ (AX) is an isomorphism of

differentiable groupoids, for all X e Q;
(iii) u(xw) = (wX) w, whenever x w and oX are defined; and

(iv) (pw)-w = w, for all w E W. ll
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For any manifold X we denote by Ox the base groupoid on X, in

which every element is an identity, and the multiplication is the

identification of the diagonal in XxX with X. The morphism p: W -&#x3E; 09

in 1.1 is therefore determined by the induced map po: M e B of the

bases, for p = Pooa’ = PooB’. Notice, too, that po is constant on the

transitivity components of W, so that if W is transitive, then B must
be a singleton and Q a group. Lastly, each p-I (x), x E B, is the full

subgroupoid of W on po-1 (x), and is easily seen to be a

differentiable subgroupoid of W.
Actions of differentiable groupoids (and categories) on fibred

manifolds were defined by Ehresmann in [41; see also [5]. Notice that

in 1.1, H acts on the surjective submersion pb: K 4 B in this sense,

and the source and target projections a’,B’: W e M are now equi-
variant.

Given a smooth action of Q on W via p, as in 1.1, the semi-

direct product groupoid QxW given in Brown [21 and there attributed

to Frohlich has a natural differentiable groupoid structure with base
M. Here HxW is the manifold H*W with the groupoid structure

and

defined if a’(W1) = X2 B’ (w2) . The identity corresponding to m 6 M is

(po(m)-,m-) and the inverses are (X,W)-1 = (X-1,X(w-1)). It is routine

to verify that S2aW is a differentiable groupoid. on M. Our purpose
now is to calculate the Lie algebroid of i2xW in terms of those of Q

and W, and we build up to this through two special cases.

CASE I. Here we suppose that Q = G is a Lie group acting smoothly on
a manifold V = M. The semi-direct product GKOh was in 171 denoted

GxM; we still occasionally call it the action groupoid corresponding
to the given action. In ([7] , III, 3.22) we noted that the vector

bundle A (GxOM) is the trivial bundle Mxg, and the anchor Mxg -&#x3E; TM is

the map Cx,X) -&#x3E; X* (x) where X* e rTM is the vector field on M

generated by X E g, namely

We extend this notation to any map X: N -&#x3E; g, by defining
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Thus : 

The following result is due to A. Weinstein.

PROPOSITION 1.2. The Lie algebroid bracket on A (GxOM) = Xxg is

for X,Y: M -&#x3E; g. Here X* CY) , Y*(X) denote Lie dervatives, and I , 1* is

the pointwise bracket of maps into g.

PROOF. Define a morphism o from G«0n into the trivial groupoid MxGxM

by (g,x) l-&#x3E; (gx,g,x). This induces a morphism

of the Lie algebroids (see, for example, [7], III, §3), and since 0 is

base-preserving, o* must be of the form

In fact Y = X, as is easy to see, and we write, briefly, o* (X) - X*®X
Now the result follows from the formula for the bracket on TM® (Mxg) 
(see, for example, 171, III, 3.21). //

CASE II. Here we consider a general differentiable groupoid Q on B,

acting on a surjective submersion p: X 4 B. The role of the trivial

groupoid MxGxM in 1.2 is taken by the inverse-image groupoid P*H
whose elements are all triples

and which has the groupoid structure

and

def ined if m2’ = m2, This construction is also due to Ehresmann [4].

Note that trivial groupoids are precisely the inverse-images of

groups; to exploit this analogy we will sometimes write P*H as M*Q*M.
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PROPOSITION 1.3. The Lie algebrold of gO is the following pullback in
the category of vector bundles over M,

where TM -i P*(TB) and p* (AQ) -&#x3E; P’ (TB) are induced by T (p): TM -i TB and

the anchor AQ -i TB, respectively. The anchor of A (P*Q) is the left-

hand side of the square. Regarding r(P*(AQ)) as the tensor product
C (M)+rAH over C(B) for which f+uU= f(uop)+U, the bracket on A (p*Q)
is

where

PROOF. Notice that P*H is the pullback manifold

Therefore the tangent bundle of gO is

Imposing the condition Y = 0 therefore forces V E TaS2. Now restrict-

ing to the identity submanifold, we get the required vector bundle.

The formula for the bracket is proved by the same method as for the
case where Q is a group (see, for example, [7] III, 3.21). //

If p: M -i B is a covering M = B" 4 B of B with group 1(, then

TB" e P*(TB) is an isomorphism of vector bundles, and consequently
A(P* Q)-&#x3E; P*(AQ) is an isomorphism also. Transferring the bracket to
r(p*(AQ)) = C B-&#x3E; ®rAH, it becomes
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where X, Y are the n-invariant vector fields on B- which correspond
to X, Y E rTB.

PROPOSITION 1.4. Let Q*M e M, (X,m) 14 xn, be a smooth action of a

differentiable groupoids S2 with base B, on a surjective submersion p:
M e B. Then A(HxOM) is the vector bundle p*(AQ) on M with anchor the

map

and bracket

PROOF. Consider the morphism

and proceed as in 1.2. //

CASE III. This is the general case, where a differentiable groupoid S2

with base B acts on a differentiable groupoid W with base M, via a

morphism p: W -&#x3E; OB.
First of all, observe that the manifold underlying H2xW is Q*W

the pullback def ined by a: Q -4B and p: W -&#x3E; B. It follows, much as in

1.3, that the vector bundle underlying A (QxW) is po* (AQ)+AW. By
differentiating

one finds that the anchor of A(QXW) is a-po(AH)+AW i TM,

Here a denotes the anchor AQ 4 TB, a’ denotes the anchor AV e TM, and
X* refers to the action of H on po : M e B. On the section level we

have

where
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To calculate a general bracket, [(f +X)+U, (g+Y)+V], break it up
into

For the f irst term, observe that this is tpt* (f ®X),O* (g+Y)] where O is
the morphism

From 1.4 we therefore have

Similarly, for the last term, use the morphism

to obtain [0$U,0$V] = 0$CU,V].
For the second term, we have first of all that

Next, consider an element X E H*y, any x, y E B, and the isomorphism
of differentiable groupoids p-I (x) e p-’ (y) which it induces. Since

¡r’ (x) is the full subgroupoid of W on p;’ (x), it follows that

A(P-1 (x» is the restriction of AW to p-o1 (x). We denote the induced
isomorphism of Lie algebroids A (p)-1 (x)) e A (p-1 (y)) by p(x). Now let

ExptX be the exponential of X in a f low neighbourhood N C B of a

given x E B. From the formula for a Lie algebroid bracket as a Lie
derivative (see, for example, [7], III, 4.11 (1il» we get

and we denote this by p* (X) (V).
By p(ExptX)(V) in this formula we mean the local section of AW

def ined at n 6 Po-1 (N) to be

where Ot = BoExp tX is the local flow of a (X). Notice that the action

of H on X is involved in the point at which V is evaluated. The conv-
entions here are those of ([7], I I §5).
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Putting all this together, we have the following all-inclusive

result.

THEOREM 1.5. Let the differentiable groupoid Q with base B act on the

differentiable groupoids W on M via a surjective sublaersive morphisms
p: W -&#x3E; 08. Then A (QxW) = po* (AG)®AW has anchor

and bracket

where

A note on terminology. Groupoids of the form H+OM were originally
defined in 141. In [7] we called them action groupoids; in the term-

inology of Higgins (6) and Brown et al [31, they are covering group-
oids, reflecting the fact that the set-theoretic version of this

concept models the theory of covering spaces. We avoid this latter

terminology here, because of the danger of confusion with coverings
(in the topological sense) of the various spaces involved in a

groupoid.

2. THE LIE ALGEBRO I DS ASSOCIATED WITH A PBG-

GROUPOID.

This section gives an extended application of the results of Sl.
We show that action groupoids and a general semi-direct product
arise in connection with extensions of principal bundles, and use

this fact and the results of §1 to calculate several Lie algebroids
associated with such an extension. This section may be omitted with-
out loss of continuity.

We refer the reader to 181 for the concept of a PBG-groupoid
and the equivalence between extensions of principal bundles and PBG-
groupoids.

Let

be an extension of principal bundles, and let
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be the corresponding extension of Lie groupoids. Let ll = (QxQ)/N be

the associated PBG-groupoid.
What follows is founded on the observation that ll is naturally

isomorphic to a certain action groupoid OxOp. Regarding P as Qb, for

some chosen b E B, and identifying Bb :Hb -&#x3E; B with p, there is a

natural action of O on p: P -&#x3E; B, namely (V,X) H n (y)X. In terms of

O = (QxQ)/H, the natural isomorphism 11 e $«Op is

Notice that the (right) action of G = Qbb on ll now becomes (1, U)g =

(y, ug).
It now follows immediately from 1.4 that the Lie algebroid A’ is

the vector bundle p*(AO) with anchor f OX H m* (xj and bracket

where f,g E C (P) , X,Y c rAO. n,:: AO -&#x3E; Ai2 is the Lie algebroid morphism
induced by n, and n* (X) is the G-invariant vector field on P corresp-
onding to n* (X) E rAS2. This expression for A1f is given in (181, §4),
but appeared somewhat mysterious there.

Next we consider the principal bundle ll (O,G,q). where q: 1 4 O
is the map denoted # in [8]. In terms of g - OxOp, the map q is the

natural morphism (y,u) H Y. We want to find the Atiyah sequence of

this bundle, or equivalently the Lie algebroid of the associated

groupoid (llxll)/G with base 0; we denote this groupoid by 0. Elements

of 0 are orbits (Y2,ub),(Y1,u1)&#x3E; of the diagonal action of G on ,.. ;
thus

for g E G . Define a morphism from 8 to the inverse-image Lie group-
oid (a’)*H, where a’: O -&#x3E; B is the source map of O, by

T his is clearly well-def ined, and it is easy to check that it is in

fact an isomorphism. So from 1.3, it follows that A8 is naturally
isomorphic to TO+s(a1)*(AH) where S = (a’)*(TB) with the bracket given
there.
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Thirdly, notice that 8 carries a second Lie groupoid structure,
this one having base St. Namely, regard ’x1r as the cartesian product
Lie groupoid on base PxP; because G acts freely on ll by Lie groupoid
automorphisms, it follows that (’x1)/G, the quotient groupoid, is a

Lie groupoid on base (PxP)/G = Q. It is straightforward to check that
this second structure commutes with the first, so that 8 is a double

groupoid. Using the above identification of the manifold 0 with

this second structure has source map (Y2,X,Y1) H X, target map

and composition

and is thus naturally isomorphic, under

to the action groupoid (OxO)xOA., where Oxo is the cartesian square

groupoid with base BxB, acting on the surmersion (B,a): Q e BxB by

The Lie algebroid of this second Lie groupoid structure on 8 now

follows from 1.4; as a vector bundle it is B,a)*(AOxA).

Lastly, recall from the remark at the end of §l of 181, that the
semi-direct product groupoid 1r,.G. corresponding to the right action
of G on 1f is naturally isomorphic to the inverse-image groupoid P*O.
It is an instructive exercise to establish directly the corresponding
ismorphism of Lie algebroids

Using the identif ication of A1f with p*(AO) given above or in (181,
4.2), and denoting the anchor A ll -&#x3E; TP by a", this isomorphism is

where V* is the fundamental vector field on P corresponding to V e g.
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On a subsequent occasion, we will abstract the relations between
the two Lie algebroids A, 8 -&#x3E; T0 and A28 -&#x3E; TH, which reflect the com-

mutativity of the two Lie groupoid structures.

3. ACTIONS AND SEMI-DIRECT PRODUCTS OF ABSTRACT

LIE ALGEEROIDS,

We begin by observing that inverse-images of transitive Lie

algebroids over arbitrary smooth maps, can be defined by abstracting
1.3.

TXEOREX 3.1. Let A be a transitive Lie algebroid on base B, with

anchor a, and let f: B’ e B be a smooth map. The pullback

exists in the category of vector bundles over B’. and TB’+r*(TB)f*A is

a transitive Lie algebroid with base B’ when equipped with the left-

hand arrow as anchor, and the bracket

for

PROOF. This is entirely standard, except perhaps for the fact that

the bracket is well-defined with respect to the tensor-product. For
this, it is necessary to observe that X’ and u+X have the same image
in f*(TB), and so too do Y’ and v0Y, //

We denote TB*+t*(TB) ffA by f**(A) and call it the inverse-images
Lie algebroid of A over f. Given two Lie algebroids, A’ on B’ and A on
B, and a vector bundle map ø: A’ e A over oo; B’ -&#x3E; B, there is a nat-

ural map
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If, further, A and A’ are transitive and ø is anchor-preserving, that

is, a’ oo = T(oo) oa, then there is a natural map

and it is anchor-preserving. This leads to the following natural

definition.

DEFINITION 3.2. Let a’: A’ e TB’ and a: A -&#x3E; TB be transitive Lie

algebroids. Then a morpbism of Lie algebroids ø: A’ -&#x3E; A is a vector

bundle morphism over oo: B’ -&#x3E; B, which is anchor-preserving and which
is such that ø-: A’ 4 oo** (A) is a morphism of Lie algebroids over B’ //

A detailed definition of a general morphism of (not necessarily
transitive) Lie algebroids was given by Almeida and Kumpera 101,
based on Pradines [111, and one can readily enough see that this def-
inition is equivalent to theirs, in the transitive case. The point of

this formulation is that it is conceptually simple. Further, the basic

integrability result for general morphisms of transitive Lie

algebroids can now be simply obtained from the base-preserving case
- which was proved in (7] by elementary methods.

To see this, consider first a morphism of Lie groupoids ø:
01 -&#x3E; Q over oo: B’ e B. Factorize o into

where

Applying the Lie functor A (regarded as a functor with values in the

category of vector bundles) to this diagram, one sees immediately
that A (;0 I) is the map
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and that A (o-) is a morphism of Lie algebroids over B’; by the

universality property of pullbacks, A (o-) must be o-. Thus A(A): AQ’ -4

AQ is a morphism of Lie algebroids in the sense of 3.2.

THEOREM 3.3. Let S2, Q’ be Lie groupoids on B, Bit and let ø: AH’-&#x3E; AS2

be a morphism of Lie algebroids over ;0: B’ 4 B. Suppose further that
S2’ is a-sinrply connected. Then there its a unique 11lorphism of Lie

groupoids y: S2’ 4 H over oo, such that y* = o.

PROOF. o-: AS2’ -&#x3E; oo**(AQ) is a morphism of Lie algebroids over B’, and

by 1.3, oo**(AQ) = A(oo*H). So, by the integrability result for base-

preserving morphisms ([71, III, 6.5, for example) , there is a unique
morphism y’ : S2’ -&#x3E; oo*H over B’ , with (?’)* = o-. Now define ? = oo’oy’,
Clearly y* = o. The uniqueness follows by reversing the argument. //

3.3 of itself shows that 3.2 is a correct definition. One can use

3.2 to give a conceptually simple definition of a general Lie sub-

algebroid of a transitive Lie algebroid. Compare (0), where the

reverse process is followed.

This factorization in terms of inverse-images has been used

recently by Pradines [13] to define and characterize quotient
differentiable groupoids.

We turn now to actions of Lie algebroids, and we first consider
the special case which corresponds to Case II of §1. We consider Lie

algebroids which are not necessarily transitive. Notice that if f in

3.1 is a surmersion, then fll*(A) can be defined for any Lie algebroid,
not necessarily transitive. (Most generally, of course, one needs only
a transversality condition on a and T (f))

DEFINITION 3.4. Let a : A e TB be a Lie algebroid and let p : M e B be

a surmersion . Then an action of A on p: M -&#x3E; 4 B is a map

such that

(iii) X* is a projectable vector field on M and projects to a (X)

for all X E rA. //
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If B is a point, so that A is a Lie algebra, this reduces to the
standard concept of an infinitesmal action of a Lie algebra on a

manifold. If H is a differentiable groupoid acting smoothly on p:
M e B, then

defines an action of AQ on p: M 4 B.

Now consider an action of A on p: N -&#x3E; B. Notice that condition

(ii) of 3.4 implies that the map

is well-defined and C (M)-linear and so corresponds to a vector

bundle morphism p*A 4 TM over M. This becomes the anchor of a Lie

algebroid structure on p*A for which the bracket is

the conditions of 3.4 ensure that p*A is now a Lie algebroid on M. We

say that the action is transitive if p*A is a transitive Lie

algebroid. Notice that the natural map p*A -&#x3E; A is now a morphism of

Lie algebroids.

DEFINITION 3.5. (i) The Lie algebroid p*A defined above is the

covering Lie algebroid of the action, and the natural map p*A -&#x3E; A is

the covering 11Jorphism.
(ii) A morphism of Lie algebroids o: A’ -&#x3E; A over oo: B’ 4 B is a

covering if o is a f ibrewise bijection, and oo is a surjective
submersion. //

This terminology is modelled on that of Higgins 161 and Brown

et al [3] for groupoids. Alternatively, one could call pl’A an action
Lie algebroid, but in the case of Lie algebroids there is little

likelihood of confusion with covering spaces.

Suppose o: A’ 4 A is a covering morphism of Lie algebroids over
oo: B’ -&#x3E; B. Then #o*A is isomorphic to A’ as a vector bundle, and so
there is a natural isomorphism
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Namely, given X E T’A there is a unique X- E rA’ such that #oX- = Xooo,
and the isomorphism is f ex H fX-. Now it is easy to check that

X l-&#x3E; a’(X-) is an action of A on oo: B’ -&#x3E; B and that the covering Lie

algebroid is isomorphic to A’. One can easily develop in this context
the refinements of the theory of coverings of groupoids as in, for

example, [6].

Given an action of a Lie algebroid A on p: M e B, there is a

natural morphism from pitA to the inverse-image Lie algebroid

namely (on the section level),

This is a morphism of Lie algebroids over M but need not be of

locally constant rank - this occurs already for A = g a Lie algebra.
Generalizing terminology of Palais [101, one may call the image of

this morphism the infinitesimal graph of the action.

If A is integrable, that is if A = AQ for some differentiable

groupoid S2, then one may ask under what conditions there is an

action of S? on p: M -&#x3E; B inducing the given action of AQ. Since p**(AH)
is the Lie algebroid of p*H, one may formulate this in terms of

integrating the infinitesimal graph, regarded as a subobject of

A (p*H) . However, even when the infinitesimal graph is of locally
constant rank, and thus a genuine Lie subalgebroid of A(p*H), it is

not clear that this is the best approach. This problem is a very
large one, and we will not attack it here.

The following result comes very cheaply on account of the

conceptual apparatus we have already set up.

TXEOREX 3.6. Let o: A’ e A be a covering of Lie algebroids. If both A

and A’ are transitive, and A is integrable, then A’ is integrable.

PROOF. Write A = AH, with H a Lie groupoid. Then the map
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imbeds A’ as a transitive Lie subalgebroid of A(oo*H). So we can apply
([71, III, 6.1) to obtain a unique a-connected Lie subgroupoid S2’ of

oo*H with A -&#x3E; AH’ an isomorphism. //

COROLLARY 3.7. Let A be a transitive Lie algebroid which is trivial-
izable as a vector bundle in such a way that the bracket of constant

sections is constant. Then A is Integrable.

PROOF. Let A = BxV be the trivialization. Then, by identifying elem-
ents of V with constant sections of A, one obtains a Lie algebra
structure on V; denote it by g. Now the condition that the bracket of
constant sections is constant ensures that the map A = Bxg 4 g is a

morphism ot Lie algebroids. It is clearly a fibrewise bijection, and
since Lie algebras are integrable, the result follows. //

In [9] we gave necessary and sufficient conditions that an

integrable transitive Lie algebroid, on a base which is compact with
finite fundamental group, be integrable to an action groupoid of the
form GK08, for G a Lie group acting (transitively) on B. 3.7 now

shows that the Lie algebroid need not be assumed, at the outset, to

be integrable.
It is worth noting that the viewpoint taken here does not

greatly shorten the arguments of [9]. Suppose that we are in the

situation of 3.6. We may assume Q to be a-simply connected, and we
may take the monodromy groupoid 0 = XO’ of Q’ so that we have 0:
AO -&#x3E; AS? with both O and H a-simply connected. Now (by 3.3) o
integrates to y: O -&#x3E; Q. Since y* =o is a fibrewise bijection, it

follows that y, restricted to any a-f ibre, is a surjective submersion
with discrete fibres. Since Q is a-simply connected, ? is an a-

diffeomorphism. However in order for y to induce an action of H on

#o: B’ -&#x3E; B (that is, for ? to be a covering in the sense of [3]), it is

necessary that the map

where

be a diffeomorphism. This does not follow in general - if it did,
then every transitive infinitesimal action of a Lie algebra on a

simply-connected manifold would be integrable, and this is well-known
not to be so ([10], p. 88). The main work of [91 is to get around
this difficulty.
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We come now to general actions of one Lie algebroid on another,
and the resulting semi-direct products.

DEFINITION 3.8. Let A be a Lie algebroid on base B with anchor a, and

let R be a Lie algebroid on base M with anchor r. Let p: R -&#x3E; BxO be a

Lie algebroid morphism over a surjective submersion pb: M -&#x3E; B, from R
to the zero (and totally intransitive) Lie algebroid BxO on B (see

below). Then an action of A on R via p consists of an action

of A on po: M -&#x3E; B in the sense of 3.4, together with a map

such that

Here CDO(R) is the vector bundle whose sections are those

f irst- or zerot"-order differential operators D in the vector bundle R
for which there exists a vector field S on M such that

The field S is then unique and is essentially the symbol (first-order

part) of D. With the map D l-&#x3E; S as anchor, and the commutator

bracket, CDO(R) is a transitive Lie algebroid on M. See, for example,
([7], III, 2.5). Conditions (i), (iv) and (v) above now assert that

there is a morphism of Lie algebroids over M from pb*A, the covering
Lie algebroid corresponding to the action of A on pb: M -&#x3E; B, to

CDO(R), namely (on the section level) f0X R fp (X) .

Consider the condition that p: R -&#x3E; BxO be a Lie algebroid mor-
phism over pb. Since BxO is a zero Lie algebroid, the bracket-

preservation condition is vacuous. The force of this condition is

thus the anchor condition which says that for any V E rR, the vector
field r(V) on M projects to the zero vector field on B. Equivalently,
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rev) is tangent to the fibres of p, or r (V) (uop) = 0 for all

u E C(B). In particular, if R is transitive, then all smooth functions

on B must be constant. So if R is transitive and B is connected, then

B is in fact a point and A is a Lie algebra.

THEOREX 3.9. With A, R and p as in 3.8, let p be an action of A on R

via p. Then the vector bundle po*A*R on M, equipped wi th the anchor

and the bracket

for f,g E C(M), X,Y E rA, U,V E rR, its a Lie algebroid on M.

PROOF. This is a routine, but instructive exercise, after the style of
([7], Chapter IV). The only novel aspect is to check that the bracket

is well-defined with respect to the tensor product; it is at this

point that one uses the condition

With this structure, we denote p*AeR by A«R and call it the

semi-dir,ect product of A and R with action p. Notice that po*A could
now be denoted Ax(MxO), where MxO is the zero Lie algebroid on M .

There are canonical morphisms R e AKR, namely V l-&#x3E; OOV, and AxR -&#x3E; A,
namely (on the bundle level) (m,X)+V l-&#x3E; X. It is instructive to check

that the latter is a morphism, providing we broaden 3.2 to allow non-
transitive Lie algebroids when the base-map is a surjective sub-

mersion. Together these give an exact sequence of Lie algebroids, in

an obvious sense, and there is a morphism Ax(MxO) e A«R, namely

which may be considered to split it. Lastly, the content of 1.5

becomes, of course, that A(HxW) = AHxAW; it is a routine exercise to

check that conditions (i)- (v) of 3.8 hold (compare the proof of III,
4.5 in 171).

This semi-direct product may well be of use in a general co-

homology theory for Lie algebroids, in the manner developed in [2]

for groupoids.
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