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ON THE NERVE OF AN n-CATEGORY

by Michael JOHNSON and R.F.C. WAL TERS

CAHIERS DE TOPOLOG.I E

ET GÉOMÉTRIE DIFFGRENTIELLE
CATÉGORIQUES

Vol. XXVIII-4 (1987)

RÉSUMÉ. Street a défini [5] le nerf d’une n-catégorie en

obtenant une description de la n-categorie libre sur le n-

simplex. Le pr6sent article introduit les notions de domaine et

codomaine d’un complexe simplicial orient6 et les utilise pour
caract6riser les mplexes "composables". Le principal résultat

est que la collectio des sous-complexes composables du n-

simplex forme une n-catég n-catégorie libre sur le n-

simplex. Les calculs dans cette n-catégorie sont particuli6re-
ment simples car les compositions sont donn6es par la réunion

des complexes simpliciaux.

The nerve of a category C is the simplicial set [2] whose n-

dimensional elements are composable n-tuples of arrows of C [4],

Equivalently, the n-dimensional component of the nerve is the set of

functors from the ordered set [n] = {0,1,2,...,n} (considered as a

category with a morphism from i to j if and only if i , .f ) &#x3E; into the

category C. Geometrically, an element of the nerve of dimension n is

an n-simplex whose (1-dimensional) edges are arrows of C, and whose
faces are all commutative.

John E. Roberts is credited [5] with the generalization of this

notion to r-categories. The nerve of an r-category C should be the

simplicial set whose n-dimensional elements are n-simplices with n-

cells of C in each face of dimension m. Making this notion precise
has proved to be difficult. Roberts [3] was able to describe expli-
citly the nerve of a 3-category but was unable to do so for r &#x3E; 3.

Ross Street realized as early as 1980 that an explicit
description of the nerve construction depends upon an understanding
of "the free n-category on the z-simplex". Recently [5] Street has

succeeded in defining this n-category which he calls the n-th

oriental and writes as D".
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This paper reexamines the construction of the free z-category
on the rrsimplex, and obtains a new description of Street’s orientals.

Our approach is to consider the elements of the combinatorial

n-simplex of dimension m as n-cells with a chosen orientation. In

Section 2 we show how to calculate the domain and codomain of an

arbitrary subcomplex of the n-simplex, and in Section 3 we use this

to characterize the well-formed subcomplexes of the n-simp1ex -
those which can be obtained from individual elements by legitimate
n-categorical compositions. Section 4 is devoted to demonstrating
that the compositions involved are free in the sense that composing
two well-formed subcomplexes can never create a loop of any
dimension. Finally, Section 5 shows that the well-formed subcomplexes
of the n-simplex do indeed form an n--category.

This paper was presented at the Bangor Conference on Homotopic--
al Algebra at Bangor, Vales, in July 1985. We would like to thank

Ross Street for providing a preprint of his paper [5].

1 , PRELIMINARIES.

PROBLEM: To construct an ir-category on the n-simplex.

EXAMPLE 1. Consider a 2-simplex

Ve wish to construct a 2-category which has as 0-cells the 0-dimen-
sional edges (vertices) of the simplex, as non-identity 1-cells the

1-dimensional edges, and a single non-identity 2-cell corresponding
to the 2-dimensional interior of the simplex. The 0-cells are thus

fully determined. For each 1-dimensional edge we choose, for the

moment, an arbitrary orientation for the corresponding 1-cell. Simi-

larly, we choose an orientation of the 2-cell to obtain

(Here the 2-cell has as domain the vertical 1-cell and as a codomain

the composite of the other two 1-cells) . The 2-category generated by
this diagram by inserting identity 1- and 2-cells and all possible
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compositions (the only non-trivial composition is the codomain of the
2-cell) will be called 02.

We begin with some definitions.

DEFINITIONS. For the set of integers {0,1,...,k} write [k]; for {0,1,...}
write w. If A is any set, and n a natural number, write [A] for the set
of all n-element subsets of A. Let Y be the standard w-simplex with
vertices the natural numbers (thus the set of n-dimensional elements

of Y, Yn, is precisely [n+w1]). Recall that for each natural number

n, greater than 0, Y is equipped with n+ 1 face maps 6o,...,6n: Yn A Yn-l

defined by

and that Y is a graded set (i.e., a sequence of sets indexed by the
natural numbers).

DEFINITION. If X = (X1)iEw is a sub-graded set of Y (i.e. X t C Y t for

all I E u) which is finite dimensional (there exists a least integer
n, called the dimension of X, such that X. = 0 for all m &#x3E; n ) and

finite (each X, is finite) we call X a simplicial structure.

DEFINITION. A simplicial structure which is closed under the appli-
cation of the 6, (i.e., for n &#x3E; 0, x E Xn, I E In) implies 6iX E Xn-I)

will be called a simplicial complex.

In what follows, a simplicial structure will always be assumed

empty at unspecified dimensions.
Notice that in Example 1 we had to choose orientations for all

the elements of dimension greater than 0. We specify now, once and

for all, our choice of orientation.

DEFINITIONS. If X is a simplicial structure, and x E X is of dim-

ension n greater than 0, x will be oriented away from its

odd faces 

and towards its

even faces

The element x will be said to begin at its odd faces and end at its

even faces. If x, x’ are n-dimensional elements and an n-dimensional
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element y is an even face of x and an odd face of x’ then y will be

said to be between x and x’.

EXAMPLE 2. Consider the simplicial complex

{{0,2,3},{0,1,2}}, {{0,1} ,{1,2} ,{2,3} .{0,2} ,{0,3}}, {{a} ,{1} ,{2},{3}}

which may be represented (omitting braces and indicating orientation)
as

Notice that {0,3} begins at its odd image {0}, and ends at its even

image f3); {0,2,3} begins at {0,3} and ends at {0,2} and {23}; and that

(0,2) is between {0,2,3} and {0,1,2} .

To construct an n-category explicitly we must determine all of

its cells, One aspect of this is easy: the k-cells must include all

the k-dimensional elements of the simplex. Thus in Example 1, the

three 1-dimensional faces of the simplex all occur as 1-cells.

However, in general many other k-cells will occur because all the

permissible n-category compositions must be considered. Furthermore,
because the n-category compositions allow the ’pasting’ of j- and lr-

cells with j # k, a general k-cell will have structure at several

dimensions. This suggests that a k-cell might best be considered as
a simplicial complex built from simplices of various dimensions, each
of which is generated by an edge of the D-simplex. Our problem then
becomes: To determine which of the sub-simplicial complexes of an n--

simplex can be obtained by legitimate n-categorical compositions of

subsimplices of the n-simplex.
A partial answer is again easy: a K-dimensional complex which

has k-dimensional elements with contradictory orientations, e.g.
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cannot be the result of an n-category composition.

DEFINITION. A simplicial complex of dimension k is called compatible

(i.e., there are no two distinct lr-dimensional elements which begin or
end in the same k-1-dimensional element). By convention a compatible
0-dimensional complex is a singleton (Street [5]).

Notice that compatibility of a complex depends only upon the

nature of its highest dimensional non-empty component. That this is

appropriate can be seen by considering Example 1 as a well-formed 2-

cell and noticing the arrangement of 1-cells. However, this means

that an incompatibility may be hidden in a lower dimension of a com-

patible complex.

Notice that Example 3 is a compatible simplicial complex but cannot
be obtained by legitimate 2-category compositions.

The difference between Examples 1 and 3 is that in Example 1

the incompatibility is between elements of the domain and codomain

of the 2-cell, while in Example 3 the incompatibility occurs within

the domain of the 2-cell. To formalize this we need to be able to

calculate the domain of an arbitrary simplicial complex.

2, DOMAIN AND CODOMAIN.

IDTATION. Let x be a k-dimensional element of a simplicial complex Y
and let A be any subset of [k] = {0,1,...,k}. say A = {a1 ,a2,...,a1}. Write
R. (x) (remove A) for the k-i-dimensional element of Y obtained by
deleting the ay-st, arnd a,-th vertices of x.
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If the elements of A are all even (odd) integers write (x)
(BA(x)) for RA (x).

If X is a set of k-dirnensional elements of a simplicial complex
Y write &#x26; (X) for the set Ux«x RA (x). Similarly FA(X) , BA (X).

If i is an integer less than or equal to k write

and similarly Ei (X) , B,(X). Thus Ri(X) is the set of all 1-dimensional

elements of Y which can be obtained by deleting vertices from

elements of X, while Ei(X) is the set of such elements obtainable by
deleting only even positioned vertices from elements of X.

Write R(X) (E(X), BCX» for the simplicial structure Ri (X)) io [K]

((Ei (X)) iE [K], (B,(X)) io[k], and if Y is a simplicial structure of dim-
ension k write R(Y) (F(Y), B(Y)) for R(Yk) (E(Y k) B(Y k» .

Notice that R(X) is the sub-simplicial complex of Y obtained by
taking X and all the elements underlying it (the image of X by all
the 61, the image of that by all the 6i, etc.). However, E(X) and B(X)

are not in general simplicial complexes. In fact, if X is .It-dimen--

sional, E(X) is empty at all dimensions less than [(k-1)/2] and B(X) is

empty at all dimensions less than (k/2] (one cannot remove more than

about half the vertices if one only removes evenly positioned ones!).
The utility of E(X) and BCX) is that they are precisely the ends and
beginnings respectively of elements of X in the following sense.

Consider an element x of dimension n. By definition of

orientation x ends at its even images En-1 (x). What other elements

might we say are at the end of x ? All those elements of lower

dimension which are between elements of the end are themselves at

the end and there seems to be no reason to include any others.

PROPOSITION 1. Let w be an n-dimensional element of some si.mplieial
complex and suppose k  n-1, then x E Ek (w) iff x is between two

elements y,z of Ek. (w).

PROOF. Suppose

Conversely, suppose y,z E E+1 (w) are given and suppose x E Ek (y),
x E Bk (z). Then y # z so
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for some a1, a2,..., an-k , and x = E(a1,a2,...,an-k (w).
Thus elements at the end of x are precisely those in Ek (x), k =

1,2,.... For this reason we refer to E(X) as the end of X. Similarly
B(X) will be called the beginning of X.

EXAMPLE 4. Let x = (0,1,2}. R(X) may be represented by

Applying the definition

Notice that for X of dimension n and cardinality greater than 1,
B(X) is just the union of the beginnings of x for x E Xn, and not

necessarily the beginning in any global sense of the ’composite’
orientation of X.

DEFINITION. For a simplicial structure Y of dimension n define the

domain of Y, dom(Y), to be Y-(ECY) (the global beginning of the n-

dimensional orientation is that which remains when all the elements

which are at the end of any n-dimensional element are removed) and

the codomain of Y, cod(Y), to be Y-B(Y).

THBOREX 2. Let X be a simplicial complex, then

The proof depends upon two lemmas.

LEXKk 3. If a, b are k-dimensional and there exists a sequence of k-
dimensional elements a = ao, ai, ai,...,an = b such that for j = 0,1,...,n-1
there is some k-l-dimensional face between aJ and aJ+’. then
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PROOF. See Corollary 10.

COROLLARY 4. If X is a simpljcial complex of dimension k then dom (X)
is a simplicial structure (though not necessarily a complex) of

dimension k-1.

PROOF.

so dom(X) is at most k-1-dimensional.

To see that dom(X) is k-1-dimensional choose some ao e Xk, and
some yo E Bk-1(ao). If yo ¢ dom(X) it can only be because yo E E (a1)
for some al E Xk. Now choose any y, E Bk-t (a1), and repeat. Notice that
by Lemma 3, aj # a, for all I  j, so since Xk is finite we must

eventually locate a 7. E (dom (X))k-1.

LENNA 5. Let X be a simplicial complex of dimension k and suppose
x e dom(X) and x E E(z) for some z E Xt-,, then there exists a

v E (dom (X)) k-1 r such tha t x E E(v).

PROOF. If z e dom (X) we are done, so zuppose z = E (J) (W) for some

w E X,, j E t kJ . Suppose x = E(a1, a2,...,an) (2). Now j a" (since if j &#x3E;

an, x = E(a1, a2,...,an, ,.1) (w) ;. dom(X)), so suppose j   an but j &#x3E; an-1 ,

where fcr simplicity we set ao = -1. Then

Similarly, if zi = B(ah+1) (W) e dom(X) we are done, otherwise z1=

E(j1) (WI) for some Wt E X k, ji E lkl, etc.
This process must terminate since, by Lemma 3, it cannot cycle

(w and w, have a k-1-dimensional face, &#x26;.h+1’ (w), between them) and

simplicial complexes are finite.

DUALITY. Notice that, exactly as in ordinary category theory, we can
obtain dual results by reversing the chosen orientation of all

elements of any given dimension, say k. We call a result so obtained

the dual, of the original result. Thus Lemma 5 which involves cells

of two different dimensions, k and k-1, yields four lemmas: Dualizing
the k-th dimension changes both occurences of ’dom (X)’ to ’cod (X)’

while dual k-1 changes both references to ’E( )’ to ’B( )’, and these

changes are independent. Similary the dual,-, of Theorem 2 says
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and the dual of Corollary 4 claims that cod(X) is a A-1-dimensional

simplicial structure.

PROOF OF THEOREN 2. Required to show:

and

so it suf f ices to show that

Suppose X is k-dimensional. Notice that both sides are empty for

dimensions greater than k and both equal Xk at the lr-th dmension.

C : Suppose x E E(X), x of dimension k-1 or less, say

If x E B(X) then x E RHS, so suppose x £ B(X). Then

hence by dualk of Lemma 5 , x E F(X-B(X))-
Suppose x E E(X-E(X)), say

If x c B(X) then x E RHS, so suppose x E cod(X). Since x E E (y) and y
is k-1-dimensional we can apply the dual, of Lemma 5 to obtain that

x c E(X-B(X)).

J : The converse is precisely the dualk of C .

3. THE CONSTRUCTION OF On.

Now that we have defined domain and codomain, and shown that

they satisfy the basic relations dom don = dom cod, we can formalize
our desire for compatibility within domains and codomains at all

dimensions.
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DEFINITION. Call a simplicial complex well-formed if X, dom (X),
cod(X), dom dom(X), cod dom(X), dom cod(X),... are all compatible
simplicial complexes.

Notice that in view of Theorem 2 the binary tree of height n+1

in this definition is in fact a list of n+1 pairs

DEFINITION. If n is a natural number, the set On (to be given an n-

category structure below) is the set of well-formed sub-simplicial
complexes of the standard n-simplex (considered as a simplicial
complex Y whose k-dimensional component is Yk - [[n k+1]).

We will show that On is non-trivial; in particular, for any
z C [n], R (z) E On. First some

NOTATION. Let z be an n-dimensional element. If A = {a1,a2,...,ao} is a

set with a,  ai and at even whenever i is even, odd whenever 1 is

odd (i.e., arranged in increasing order elements of A are alternately
odd and even, beginning with an odd), write AA’ (z) for RA (z), If

elements of A are alternately even or odd, beginning with an even,

write AAo (z) for RA (z) (mnemonic: alternating removal, beginning with
an element of parity 0). As before write AJ1 (z) for the set of all j-
dimensional elements obtainable from z by removing elements of

alternating parity (beginning with an odd) and

Our aim is to express dom j (R(z)) in terms of A,,-J’(z). We begin
by characterizing the ends of An-TJ (z).

LERU 6. Suppose given A, alternately odd and even, beginning with an
odd, say A = {a1,a2,...,aj} and, for ease of exposition, let ao = -1,
then x E E(AA1 (z)) iff there exists a set B, with the property that

for any b E B:

such tha t
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PROOF. (=) Such an x is an end of AA’ (z) since ai-l  b  ai, b it

a, mod 2 implies that the element of z in position b will be in an

even position in AA’ (z). Similarly for b &#x3E; al.

=) If RAUB (z) = x and B does not satisfy the property, then
there exists some £ B with a,-i  b  a,, b # a, mod 2, or with

b &#x3E; a j but b 9 a, mod 2. Now the element of z in position b must be

removed from AA’ (z) to get x but it will be in odd position so that
x £ E (AA1 1 (z».

LEXXA 7. Suppose z is an n-dimensional element, then

PROOF. By induction on j. True f or j = 0,1.

Suppose true for j, then

so it suffices to show

J : Suppose

then x E E (R (An-j,’ (z))) so x E E (k (z)) for some A, so there exists a
B as in Lemma 6 with x = RAUB (z), but’ then x E R(An(j+1)’ (z)) since
there can be no J+l element alternating (beginning odd) set of

vertices to be deleted.

C : Suppose x E dom(R(An-j(z)), then x E R(AA’ (z)) for some A =

{a1,a2,...,aj} say, but x 0 E(An-j (z)). As before write x as RAUB (z). Now

since x 1 E(AA’ (z)), B does not satisfy the property given in Lemma

6, so either there exists b E B, b &#x3E; aj with b# ai mod 2, whence

or there exists some b E B such that for some i E [j], at-,  b  a,,

(allowing again ao - -1) and b = at mod 2. Furthermore, we can choose
such a b so that there exists b’ with b  b’  a, and b’ # at mod 2

(if not, then writing ci for the least element of AUB such that

81-1  ci 4 ai and ci =- a, mod 2 we see x e E (A(c, c2,...,cj)’, (z))
contrary to assumption) and then
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THEOREX 8. Suppose n is a natural number and z C In] then R(z) E On.

PROOF. Trivially R(z) is a compatible simplicial complex.
Furthermore, for all j, dom j (R(z)) is a simplicial complex

(since, by Lemma 7, it is R (An-J j (z)), and is compatible since if x,y E
An-j’, (z), x # y then 6 iX = 6hy implies

and

hence

and so I 7 h mod 2 (since if, without loss of generality, ak., &#x3E; bk+ "
then

j E k+1-k = 1 (mod 2), and h T ki-1 - (k+1) = 0 (mod 2)).

Similarly, codJ(R(z) = R (An-j o (z)) is a compatible simplicial
complex.

4. THE NON-EXISTENCE OF CYCLES.

We aim to exhibit On with an n-category structure which uses

dom and cod to build source and target maps. Such a structure must

satisfy
dom(B*A) = dom (A) (t) .

It appears that composition should be set theoretic union whence

dom(B*A) = dom(BUA) = BUA - F(BUA) = BUA - ((B)U(A)).

Thus we will not obtain (t) if it happens that dom (A)nE(B) # 0, which

may be thought of as a cyclical behaviour as shown in the figure
where x is a supposed element of the intersection
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In this section we will prove that such cycles do not occur in

O" and in Section 5 we will exhibit On as an n-category,

NOTATION. Suppose k &#x3E; 0. If a, b are k-dimensional elements of some

simplicial complex, write a Q b when there exists a finite sequence
a - ao, a,...,an = b of k-dimensional elements such that 0  v  n

implies that there exist i even, j odd in [k] with 6,a, = 6,a,.i (i.e.,
a sequence of k-dimensional elements from a to b in which successive

elements have a common k-1--dimensional face which occurs as an end

of the first and a beginning of the second. Pictorially

LEKKA 9. If a  b th en B (a) OE (b) = 0,

PROOF. By induction on the dimension of a, b, say k.

True for k = 1 since a  b implies that there exist

with aio  at J and aiJ = ai+1o, hence an’, the only end of b is greater
than aoo, the only beginning of a.

Now suppose a, b k-dixnensional and a 4 b, then we have

and a,+i is obtainable from at by deleting an even positioned element
and inserting an odd positioned one.

Now if

then writing ai {aik} = a’, we obtain the k-1-dimensional sequence
a’ o,a’ , ,a’ 2,... ,a’ n showing that a’o Q an and use induction (since

B(ao)nE(an) # 0 implies B(a’o)nE(a’n) # 0).
If, on the other hand, aok # all for some j, then if k is odd, 

aok  aJk  ank and so ank E ao but for any x E E(an). a" k E x, therefore

x E B (ao) hence B(a)nE(b) = 0. Similarly, if k is even, 80k &#x3E; ajk &#x3E; 8nk
and so aok / an but for any x E B (ao), aok 6 x, theref ore x E E (an)

hence
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COROLLARY 10. If a, b are k-dimensional, a 4 b, then

PROOF. Immediate from Lemma 9.

Unfortunately far more subtle cycles such as

might occur in On. To show that this cannot happen we will establish
for On the following two properties.

Let A be a k-1-dimensional well-formed simplicial complex, let x
be a k-dimensional element with dom(R(x)) C A and write X = R(x).

First we need to develop some tools to use in our inductive

proof of Pl and P2.

THEOREX 11. A, X as a bove, then P1, P2 imply that AUX is a well-

formed simplicial complex.

PROOF. AUX is trivially compatible and is a simplicial complex since
A and X are. Furthermore

dom(AUX) = AUX -E(X) = (A-E(X))U(X-E(X)) = AUdom (X) = A

(using P1 ) and so it and all dom"(AUX), cod "(AUX), n h 2 (using
dualk-l of Theorem 2) are compatible simplicial complexes, because A
is well-formed.

It remains only to consider

which is a simplicial complex since cod (X) is (Theorem 8) and, by P2,
A-B (X) is. Finally cod(AUX) is compatible since suppose not, then
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there exists z * w E (cod(AUX))k-I r (Corollary 4) and 1 =- j (mod 2) 

such that 6,z = 6,w. Now, z, w are not both in A-B(X), since if it is

A-1-dimensional then it must be compatible being a subcomplex of a

compatible k-1-dimensional complex (A), nor in cod(X) since it is

compatible (Theorem 8). Hence without loss of generality, suppose
w E A-BOC), z E cod(X). Now 6iz e dom(X) (since 6 iz = 6,w e A, so

6 i z £ E (X) by Pl) so by Lemma 5 there exists v e (dom(X))k-I C A,
b =- 1 (mod 2) such that 6hV = 6iz = 6,w, contradicting the

compatibility of A since v E Bk-1 (X), w E A-B(X).

COROLLARY 12. A, X as above, P1, P2 ; then

is well.-formed.

PROOF. Immediate.

LEXXA 13 (Decomposability). Suppose Q is well-formed k-dimensional

and Y is a set of k-dinensional elements of Q such that, if y E Y,
w d y then w E Y, then there exists an enumeration yo, yl,...,yn,, of the

el emen ts of Y such that

PROOF. Firstly, there exists a suitable yo since, choose a y E Y, if

Bk-1, (y) q dom (Q) it can only be because there is some y’ 4 y with

Ek-1(y’)nBk-1 (y) # ø. Repeat to obtain Vl 4 y’ 4 y, etc. This process
must terminate yielding y(n) = yo because Qk is finite and, by Corol-

lary 10, 4 is antisymmetric (so the procedure cannot cycle).
Similarly there is y, E Y- lyol such that

Finally notice that because of the compatibility of Y (inherited

from Q), Bk-1 (yi)nBk-i (yi) = 0, yi # y, hence if

then

NOTATION. If Q is well-formed k-dimensional and y s Q write
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As usual if ’ 

COROLLARY 14. Suppose Q js well-formed k-dimensional, W # Z E Qk,
and, for any k-1-dimensional well-formed A C Q, x E Q... wi th dom (R(x))
= dom (X) C A, properties Pl and P2 hold, then E (w)nE(z) = 0.

PROOF. Let Y = 4 ({w,z}) and suppose there is an a E E(w)nE(z). By
the decomposability lemma there is an enumeration yo.y,....,y" of

elements of Y such that

Since, by Theorem 8, 

Corollary 12 applies (with A = dom(Q)) and dam(Q)UE({yo})-B({yo}) is

well-formed. Proceeding inductively, A = dom (Q)UE(Y)- B(Y) is well-

formed. Furthermore either Bk-1 (W) and Bk-1 (z) C A and hence dom (w) C

A, so using Corollary 12 again A’ = AUE(w)-B(w) is well-formed, or w
or z E Y (but not both). Suppose, without loss of generality, w E Y

then let A’ = A. Now in either case a c A’ since a E E (w) and for any

y E YU {w}, a £ B (y) (by Lemma 9), and Bk-1 (z) C A’ hence dom (R (z))

C A’ but a E E(z) contradicting Pl.

COROLLARY 15. Suppose Q is well-formed k-dimensional, y 6 Qk,

dom(R(y))= dom(Y) C dom(Q) and, four any k-1-dimensional well-formed

A C Q, x E Qk with dom(R(x)) C A, properties Pl and P2 hold, then

Q-B(Y) is well-formed.

PROOF. If Q- B (Y) is A-1-dimensional then Q-B (Y)= cod (Q) which is

well-formed, so suppose Q-B cY is k-dimensional. Then Q-Bd) is

trivially compatible since Q is, and it is a simplicial complex since
suppose not, then there exists a E B (Y)nR(z) for some z E Qk-{y}.
Furthermore a q E(z) since a E B(Y) C dom (Q) , therefore a E R (w) for

some w E Bk-1 (z) and w E dom(Q) or E(z2) etc. to obtain w E dom(Q)
with a E R(w), w e Bk-1 (zn) but then by P2, w E B"’-l(Y) and zn # y
because a £ R(E,.-,(y)) but a E R(Ek-1 (zn)) contradicting Q well-formed.

Furthermore,
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is well-formed and so dom "(Q-B (Y)) , cod "(Q-B (Y) are compatible
simplicial complexes for n&#x3E; 2.

It remains only to show that dom Q-B (Y) is a compatible
simplicial complex. Now.

which is a compatible simplicial complex by Theorem 12,

COROLLARY 16 (Paring down). Suppose Q is well-formed k-dimensional,
Y C Qk satisfies 7 E Y, w l y implies w E Y, and, for any k-l-

dimensional well-formed A C Q, x E Qk with dom (R(x) C A, properties
Pl and P2 h o1 d , then Q-B (Y) is well-formed.

PROOF. The decomposability lemma provides a sequence in which the

elements of Y can be removed from Q and Corollary 15 shows that at

each step what remains of Q is well-formed.

NOTATION. Suppose k &#x3E; 0. If Q is a k-dinensional complex and x,y E Qk
write x lQ y if there exist zo = x, z,, zz,..., a" - y such that

Let

EXAXPLE 5. Suppose that PI, P2 hold, that Q is well-formed k-

dimensional and y e Qk, then Q - B(Qy) is well-formed.

We are now in a position to prove Pl and P2 for all A, X. The

proof is by induction and uses paring down of k-1-dimensional

complexes for which Pl and P2 have been established to prove Pl and
P2 for k-dimensional complexes.

THEOREM 17. Let k be any natural number greater than zero and

suppose A is k-1-dimensional well-formed, x is a k-dimensional

element, X = R (Y) and dom(X) C A then
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PROOF. By induction over Ir.

If k = 1 then any well-formed k-1-dimensional complex is a sin-
gleton, say {{a}}, and any k-dimensional element x is a pair {xo,x,}.
To say dom (R(x)) C A is to say a = xo, but E (x) = x,, B (x) = xo,

hence E(xXlA = 0 and B(x)nR(y) # 0 implies y = a - xo E B(x).

Suppose true for It-1, i.e., for all well-formed k-2-dimensional

complexes A, for all k-1-dimensional elements x such that

dom (R (x)) C A, Pl and P2 hold.
(P2) Suppose P2 is false for some k-1-dimensional well-formed A, and
x a k-dimensional element with dom(R(x)) C A, then there exists

y E A, 7 f B(x), a E B(x)nR(y), say a = B(ao,a1,..., ,ar) (x). Now there are

w,z E Bk-,(x) with a E B(w), a E E(z) (choose w = B(ar) (x), z =

B(a) (x)) and y 0 Rex) (since a E B (x), a E R (y), y E R (x) imply y e
B(x) contrary to assumption). In fact, we may choose y to be k-1-

dimensional since a £ dom(A) (because a e E (z), z E B (x) C A) and

dom(A) is well-formed hence a simplicial complex so y V dom(A),
therefore there is some y’ c A, k-1-dimensianal with ,y E E(y’) and
therefore with a E R(yl) and y’ 0 R(x) (since y E R(x)), hence

y’ £ B (x).

So suppose y, z and w are all k-1-dimensional. Now y 4A w since
if not then y E A - B (AwUW) = A’ say, which is well-formed by k-1-
dimensional paring down, but a E R(y), a f A’, contradiction. Similar-

ly z 4A y (using the dual k-1 of paring down for k-1-dimensional

complexes). However z 4A y 4A w, Z, W E B(x), y ( B (x) contradicts the

following lemma.

LEMA 18. Suppose A its a k-1-dimensional well-formed simplicial
colnplex and x is a lr-dimensional element such that dom (R(x)) 0 A.

Suppose that z = &#x26;.0) (x), w = B(ar) (x), ao  a,, then

(1) Z d A W.

(ii) If v is k-1-dimensional and Z A v 4A w then v c Bk-t (x).

PROOF. (i) z 4a w since E(ar-1) (z) = B(ar) (w) .
(ii) Suppose

with

Ve show by induction that zi E Bk-1 (x).
True for zo = &#x26;.0) (x).
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Suppose z, E B (x), say zi = B(a) (x) then for some b, q, Zi+1 =

E [b] (B(a) (x))U{q} where q is odd positioned. Now ao ( a  ar since z 4

zi  w and b &#x3E; a since all elements in positions less than a occur in
w, so if one were removed it would need to be replaced which could
only be done by removing/inserting an even lower positioned element,
which in turn must be inserted/removed, etc. But then an odd image of
Zi+1 is

which is an odd image of Ab.1) (x), contradicting the well-formedness
of A unless zi+1 r = B(b+1) (X)-

PROOF OF THEOREM continued.

(P1) Suppose A is k-1-dimensional well--formed, x a k-dimensiohal

element such that dom(R(x)) C A, and a E E (x)nA. The proof will

follow from three lemmas.

LfiXXI 19. A, X, a as above, then a c dam (A).

PROOF. Suppose a E dom (A) , then the unique end of x of minimal

dimension, a’ E dom (A) and a’ e E(w) where w = E(j) (x), j = k for k

even, k-1 f or k odd. Now Bk-2(w) C A (since Bk-2(w)n(x)= 0), hence

writing

A - B (AY UY) = A’ say is well-formed, and Bk-2 (w) C dom (A’).

But dom (A’) is k-2-dimensional well-formed, w is k-1-dimension-
al, a’ E dom (A’) (since

and by Lemma 9, a’ 4 B(Y) since y E Yt.-i implies y 4 w and a’ E E(w)),
and a’ E E(’w) contradicting the inductive hypothesis.

LBXXA 20. A, X, a as above, then a is not k-2-dimensional

PROOF. Suppose a is k-2-dimensional and note that, by Lemma 19,
a £ dam (A) and by dualk-i of Lemma 19 , a 4 cod (A) .

Now A is lr-1-dimensional. If j  k-l and a,b E A,, write a 4A b

when there exist a,o E Ak-1, a 4A A with a E B(a), b E E (B). Let
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and let w = E(k) (x) if k is even, and E(k-1) (x) if k is odd. Notice

that A’ = A-B(Y) is, by Jr-1-dimensional paring down, well-formed

k-1-dimensional and a E dom(A’). Hence if Bk-2(W) C A’ we may obtain

a contradiction exactly as in the proof of Lemma 19. So suppose there

exists b c B..-2(w) with b 4A a (i.e., b E B(Y)). Similarly, for z =
Eco) (x), there exists c E ECk-2) (Z) with a 4A c (otherwise we could use
the dualk-1 of the proof of Lemma 19 to obtain a contradiction to the
dual*.-i of Pl which is assumed true). But b 4a a implies that there

exists B,a E Ak-1, B 4A a with b E Bk-2 (B) , a e ECI:-2) (a). a A c implies
that there exists al,Y E Ak-1, a’ 4A I with a e Bk-2(a’), c e E(k-2) (1C).

Notice B QA a 4A a’ 4A Y and, using the compatibility of A, j3, y e

Bk-I (x) hence by Lemma 18, a,a’ E Bk-1 (x) too. But then by Proposition
1, a E Bk-z (x) which contradicts a E E( k-2) (JY)’

LEXXA 21. A, X as above; then A’ = (AUX)-B(X) is well-formed k-l-

dimensional.

PROOF. A’ = (A-B(X))U(X-B(X)) is a union of simplicial complexes (by
Theorem 8 and k-dimensional P2 which has already been proved) and

hence is a simplicial complex.
A’ is compatible since suppose

then u, v are not both in A-B(X) nor X-B(X) = cod (X) by the compa-
tibility of those complexes so without loss of generality suppose
u E A- B (X) , v E cod(X). If 6jv e dom(X) proceed as in the proof of

Theorem 11. If Ô J v f dom(X) then 6,v E E(k-2) (X) but

contradicting Lemma 20.
Furthermore, dom (A) = dom(A’) since:

dom (A ) C dom(A’): A’ J A- B (X) D dom (A ) (elements of B (X) are k-1-

dimensional or ends of k-1-dimensional elements), E (A’) C E(A)UE(X) 

(using Lemma 5), and

(using Lemma 19).

dom (A’) C dom(A): A J dom(A’) (elements of E(X) are lc-- 1 -dimensional

or ends of A-1-dimensional elements), E(A) C E(A’)UB(X) (using dualk
of Lemma 5), and
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since J.f x E B(X), x 4 A’. Duallyk-, cod(A’) = cod (A), so all lower

dimensional domains and codomains are compatible simplicial
complexes.

PROOF OF THEOREM tcontinued) . Now finally the minimal dimensional

end of X, a’ E AUX - B(X) = A’ and a’ £ dom(A), so if Pl is assumed

false for X, A, then a’ e E(w’) for some w’ E A. But we have seen that

a ’ E E(w) for w = E(j) (x) (j= k or k-I ) . Now w# w’ s ince Ek-1(x)nA
= 0 (because if not, Ek-2(x)nA # 0 contradicting Lemma 20). But

w’ E A’ (since if w’ E B(X), then a’ £ E(X) as a’ E R(’w)), contra-

dicting Corollary 14.

5 0. AS AN N-CATEGORY.

DEFINITIONS (Street [5]). A category (A,s,t,*) cons ists of a set A,
functions s,t: A e A satisfying the equations

and a function

satisfying the equations

and the axioms:

(right identity)

(left identity) 

consists of two categories
satisfying the conditions
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DEFINITION. Suppose n &#x3E; 0. For I = O,l,...,n, define Sl,ti: On -&#x3E; On by:
let X be a k-dimensional element of O", then

Notice Si (X), t,(X) are i-dimensional for I  k, k-dimensional for

I ? k.

LEIINA 22. Let i be a natural number. Suppose A, B are well-formed

simplicial complexes such that si (B) = ti (A), then

PROOF. By induction on the dimension of AUB.
If AUB is of dimension less than or equal to 1, then 5t (B) =

ti (A) implies A = B, so (i), (ii), (iii) and (iv) follow.

Suppose AUB is of dimension i+1.

(i) Suppose x E AnB but x 0 sleB) = tt(A). Then A, B are both i+1-

dimensional (since if either were not, then S1 (B) = B or ti (A) = A,
whence x £ S1 (B) = tt (A) implies x f AnB) , so

and x 0 si (B) implies x E E(w) for some

well-formed, so

is well-formed too (by Corollary 12 and Lemma 13). Similarly, 
x £ tJ (A) implies x E B(z) for some z E AJ"" and if
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then y E B’ (by Lemma 9). Thus

is well-formed (dualsk of Corollary 12 and Lemma 13) and x e B". But

dom (w) C B" and x E E (w)nB", contradicting Theorem 17. Thus

(since

and by (i), E(Bi+,)nA = 0).

Dually,

AUB of dimension i+ 1. then

(iv) AUB is compatible because x e E, (B) implies x 0 dom (B) which ,
implies (using (i» x t A and similarly Bi(A)nB = 0, and is a

simplicial complex because A and B are. Finally

are well-formed because A and B are.
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Now, suppose for all well-formed A, B with AUB of dimension

less that h (h &#x3E; i+1) and si(B) = t,(A), (i), (ii), (iii) and (iv)

hold, and suppose AUB is of dimension h, si(B) = tl (A), then:
(i) Suppose x E AnB but x £ S1 (B) = ti (A). We may suppose x is

of dimension less than b since if not, choose any v E Bh-i (x) then

v E AnB, v is of dimension h-1, and v £ ti(A) = St(B), so v will do.

Let

(possibly empty, otherwise a singleton by Corollary 14) and

Put

then A’, B’ are well-formed and

(Corollary 12, Lemma 13 and Theorem 11). But x E A,nB’, x e Si (B’)
= ti (A’) and A’, B’ are of dimension less than h, contradicting (i) in

the inductive hypothesis.

Similarly

if j &#x3E; h, if j  h then
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and similarly

(iv) AUB is a compatible simplicial complex because A and B are
and

Furthermore

are well-formed by inductive hypothesis (iv). Thus AUB is well-

formed.

THEOREM 23. (On, (Si,ti,U)iE [n] is an n-category.

PROOF. Straightforward verification of the definition using Lemma 22
and Theorem 2.

Thus the On are w-categories. In fact, the collection (0") "ew is a

co-simplicial object in the category u-cat of w-categories and u-

functors and so for any w-category X, (ù-cat (0-;1.) is a simplicial set
- the nerve of the u-category X.

Furthermore the left Kan extension [1] J of 0 along the Yoneda

embedding yields a construction of w-categories on simplicial sets

which is of importance in its own right. This construction will be

taken up elsewhere.
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