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ON FREE TOPOLOGICAL ALGEBRAS
BY Hans-E. PORST

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVIII-3 (1987)

RÉSUMÉ. Etant donn6 une cat6gorie A dlalg6bres topologiques
ou uniformes, on discute sous quelles conditions:

(i) l’alg6bre topologique libre GX sur un espace X. = (X,r)

par rapport A A est alg6briquement llalg6bre abstraite libre sur
X; et

(ii) GX cont1ent X. comme sous-espace.

INTRODUCTION.

More than forty years ago A.A. Markov [13] achieved the first

result on free topological algebras in proving the existence of a

free (Hausdorff-) topological group GX over an arbitrary Tychonoff
space X. = (X,r). According to his time Markov’s notion of a free

topological group GI. was still rather uncategorical; Gx, was supposed
to fulfill the following axioms:

(A) The algebraic structure of Gx, is just FX, the free

(abstract) group over the underlying set X of X. ;
(T) Topologically X = (X,r) is a subspace of G1. = (FX,o) by

means of the "insertion-of-generators map" yx : X -4 FX.

(U) yx : X -&#x3E; GL has the usual universal property.

Correspondingly, his proof was carried out by an explicit
construction of a suitable topology on the free group FX.

*1 The author acknowledges the hospitality of the Department of Mathematics,
Applied Mathematics and Astronomy at the University of South Africa, where he

carried out most of the work presented in this artitle,
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Only a few years later P. Samuel 1171 and S. Kakutani [9]

independently accomplished substantially shorter proofs by focusing
on the universal property (U) (by which GX is determined uniquely for

categorical reasons) and using the purely categorical idea of what

later was called "Freyd’s General Adjoint Functor Theorem". (See [8].)

However for checking Markov’s conditions (A) and (T) they had to

provide some additional arguments, in particular on linear groups.
Very much in the spirit of the latter papers A.I. Mal’cev in

1957 started developing a theory of general free topological algebras
[11] taking the universal property as the only defining condition of
a free (Hausdorff-) topological algebra and considering Markov’s

additional axioms (A) and (T) secondary. He then proved the existence
of these objects in general in the same way as Samuel and Kakutani,

according to the categorical nature of their proofs; but he only got
partial answers to the question when the axioms (A) and (T) will be

satisfied.

A final step of this development was reached by’ 0. Wyler’s
lifting theorem for adjunctions (221 and certain generalizations [3,
21 J (see also Section 3). Here, the specific use of categorical ideas
gives a description of free topological algebras, which is very easy
to handle; it also makes clear why one can’t expect the free

(Hausdorff-) topological group over a space X. to be algebraically
free over X in general.

However, categorical ideas were not used so far to look for

settings where the axioms (A) and (T) are fulfilled. The best (but

apparently not too well known) result in this respect up to now is

due to S. Swierczkowski 1191, who showed that both conditions are

satisfied provided is a Tychonoff space. Swierczkowski’s proof
however makes use of tne additional - but avoidable (see [16]) -

axiom that the free topological algebra over X is algebraically
generated by X ; moreover the actual contents of his construction can
be expressed more explicitly (see [20] and Section 4).

One might add at this stage that one hardly can see Markov’s
result as a predecessor of Swierczkowski, for Markov worked with

Tychonoff spaces for the simple reason that he felt this to be the

most natural class of spaces in this setting, since every Hausdorff-
topological group is a Tychonoff space.

It is the aim of this paper to give satisfactory answers to the
questions when Markov’s axioms (A) and (T) are satisfied. This is

done by combining categorical methods and a specialized and at the
same time strengthened version of Swierczkowski’s Theorem.
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1. PRELIMINARIES.

(1.1) For basic notions and facts from topology we refer to [10].

Moreover we will use the following notations: Top (resp. Top,) denotes
the category of all topological (resp. Tt-) spaces and continuous

maps (I = 0,1,2,...), while Tych (resp. Comp2) denotes the full

subcategory of Top consisting of all Tychonoff (resp. compact
Hausdorff) spaces. Unif (resp. Unifo) denotes the category of all

(resp. all separated) uniform spaces and uniformly continuous maps,
and Met is the category of metric spaces and uniformly continuous

maps. Of particular interest will be the category Top, of all

functionally Hausdorff spaces.
A topological space is called functionally Hausdorff (or a T2M-

space) if every pair (equivalently every finite number, see [181) of

distinct points can be separated by a continuous real (I-) valued map.
Observe that the Tychonoff-reflection of a functionally Hausdorff

space is a bijection, as is immediate e.g. from ([10], 3.9).

If T is a topology on the set X the corresponding topological
space will be denoted by X = (X,r); similarly X. = (X,U) denotes a

uniform space if U is a uniformity on X. I always denotes the closed
unit interval and R+ the set of all positive real numbers.

(1.2) Standard facts from universal algebra can be taken from 1121;
as far as categorical notions are used in this context one might
consult 141, [5] and 1141. In particular we call a quasivariety A
(resp. its underlying functor U: A -&#x3E; Set ) nontrivial if for each set

X the insertion of generators map yx: X A UFX from X into the

corresponding free algebra FX over X is injective (see [12], p. 51).

Throughout this paper the terms algebra, (quasi-) variety, regular
functor are always meant to be finitary and nontrivial. Free algebra
will always refer to a free algebra with respect to an arbitrary but
fixed quasivariety. Differently from [12] we will denote a universal

algebra of type Q by A" = (A,(fi(ni))) where A is the carrier (set) of

A" and (fi (ni)) is its family of operations fi(ni): Ani -&#x3E; A given by the
type Q.

For an algebra A" - (A,(fi(ni))) of type Q we denote by P(A^) its

set of polynomials, i.e., the smallest set of operations on A

containing all the operations f;’"4-’ given by the type Q and all

projections nn: A" -4 A, which is closed with respect to substitution

of operations.
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A subset X of A is said to generate an element a E A if there

is some f: An -&#x3E; A E P (A^) such that a c f [Mn]; the support S. of

a e A is the intersection of all subsets of A generating the element
a. The following simple observation for an algebra A" which is free

over a set X will be used (see [19D:

If a = f(x1,...xn) E A for (x1,...,xn) E X" and f E P(A^), then a -
f(tx1,...,txn) for each map t: X -&#x3E; X with t(x) = x for all x E S.-

(1.3) For basic categorical facts we refer to [8], and (11, [6] l or 171

for the more specific notions of categorical topology. However we use
the term monotopological functor instead of (regular-epi, mono)-top-
ological functor as in [6]; explicitly: a functor T: Jf e Y is called

monotopological, provided:
(i) Y is a regular category in the sense of (51 (i.e., every

source (Y, f1: Y -&#x3E; Yi)iEI in Y admits a (unique) factorization fi =

111 1 oe with a regular epimorphism e: Y e Z and a monosource (i.e., a

point-separating family in case Y = Set) (Z, 1D1: Z -&#x3E; Yi) iEI).
(ii) X has T-initial T-lifts of arbitrary monosources of the

form (Y, mi: Y -&#x3E; TXi)iEI. .

Examples are the underlying functors of Topi, Tych, Unifo.

(1.4) By a topological algebra we always mean a triple

where A. = (A,r) is a topological space and A^ = (A,fi(ni)) is a

universal algebra such that all the operations f1 (nlJ are continuous

with respect to the topology r (and the product topologies); T then

might be called an algebra topology; similarly we use the notion of a
uniform algebra. If A is a quasivariety and X a category of top-
ological or uniform spaces, we denote by A(X) the category of all

topological (resp. uniform) algebras lf such that A^ belongs to A and
A. belongs to X ; the morphisms of A(X) are the (uniformly) continuous
algebra-homomorphisms. Note that in case of a Cmono-)topological
functor T: X -&#x3E; Set the obvious underlying-algebra functor S: A(X) e A
will be (mono-)topological, too ([1, 22])t while the underlying-space
functor V: A (X) 4 X will not be regular in general, but only T-regular
in the sense of [15]. The following easy observation will be of some
importance:

Given a quasivariety A we might form the categories A (Top) and

A (Top2) with underlying space functors V, resp. V2 which will have

ad joints (see Section 3) G, resp. G2. If now X. is a Hausdorff space it
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might happen that Gl belongs to A (Top2) ; then clearly GX is (up to

isomorphism) the same as G2x.. In general however GX and G2X. will be

different; that is why we will call GX the free topological algebra
over X. and G21 the free Hausdorff- (topological) algebra. Similarly for
other subcategories.

2. RESULTS.

We here list some theorems which are immediate consequences of

the following sections.

(2.1) THEORBX. For a uniform space (X,U) the following are equivalent:
(i) (X,U) is a separated uniform space.

(ii) The free uniform algebra and the free separated uniform

algebra over (X,U) coincide; it is algebraically the free algebra over
X, while its uniform structure is separated and contains via

"insertion of generators" the space (X,U) as a uniform subspace.

PROOF. (i) implies (ii) by (5.2) and (5.3.6) while the converse is

trivial.

(2.2) PROPOSITION. If X = (X,r) js a functionally Ha usdort’.t’ space,
then the free Hausdorff (functionally Ilausdorff, Tychonoff) topolo-
gical algebra is algebraically the free algebra over X.

PROOF. Clear from (5.2) and (5.3.1), resp. (5.3.4) and (5.3.5).

(2.3) REMARK. The converse of (2.2) obviously does not hold as the

variety of algebras with no operations except projections shows. But
observe (2.6).

Let V: A(Top) e Top denote the underlying-space functor with

respect to any quasivariety A. Then we have:

(2.4) THEOREM. For a topological space. X = (X,r) the following are
equivalent:

(i) X is functionally Hausdorff.
(ii) VIGIL Is functionally Hausdorff (and the unit Yx lifts to a

continuous injection 7rx.: 2L -&#x3E; VGX).



240

(iii) The free algebra FX over X admits a Tychono.ff algebra
topology r such that Yx lifts to a con tin uous injection

n’x : X -&#x3E; (FX,r).
(iv) The free topological algebra, the free Hausdorff topological

algebra, and the free functionally Hausdorff topological algebra
(:’oil.cide; it is algebraically the free algebra over X , while i t is

topologically a functionally Hausdorff space, such that the insertion

of generators map is continuous.

PROOF. The following implications are obvious: (iii) o (i) and

(iv) 4 (ii) 4 (i).

Next we prove (i) =&#x3E; (iii): Let id: (Xt,.) 1 (X,T’) be the Tychonoff
reflection of X (cp. (1.1)), and let (FX,o) be the free Tychonoff
algebra over (X,r’) (cp. (2.2)). Then the insertion of generators map
is continuous.

Finally (i) implies (iv) as follows: By (2.2) the free functionally
Hausdorff algebra over X is of the form (FX,(r’) and hence coincides
with the free topological algebra (FX,o") algebraically (cp. (3.1)); by
the universal property of (FX,o") the identity (FX,o,") e (FX,o’) will

lie continuous, hence r" is a functionally Hausdorff topology as a re-
finement of r’.

(2.5) REMARK. In view of the proof of (2.4) it might be appropriate
to observe that given a functionally Hausdorff space (X,r) with

Tychonoff reflection (X,r’), the free Hausdorff topological algebras
G2(X,r) and G2(X,r’) do only agree algebraically - one has G2(X,r) =

CFX,d ) and G2(X,7’) = (FX,o’) - but that in general a will be finer

than r’. If however - as in the case of topological groups - the

underlying Hausdorff space functor factors over Tych, then one has

For the sake of completeness we add the following result,
basically due to Burgin [2], which is obvious in view of (2.5).

(2.6) PROPOSITION, Th e free Hausdorff- topological group o ver an

arbitrary topological space (X,7) is algebraically a free group,
namely the free group over Y, where Y is the underlying set of the
Tychonoff (or Top2u)-reflection of (X,r).

C2.?) THEOREM. For a topological space X = (X,r) the following are
equivalent:
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(i) X. Is a Tychonoff space.
(if) VGX is a Tychonoff space and the unit ix lifts to an

embedding nx: X 4 VGX.
(iii) The free topological algebra, the free Hausdorff topolo-

gical algebra, and the free Tychonoff topological algebra over X

coincide; it is algebraically the free algebra over X , and topolo-
gically it is a Tychonoff space which (via insertion of generators)
contains X. as a closed subspace.

PROOF. Obviously (iii) implies (ii), and (ii) implies (i).

By (5.2) and (5.3.4) the free Tychonoff algebra over X is algebraical-
ly the free algebra over X and contains as a subspace. Since the

free Hausdorff topological algebra over X is topologically a

Tychonoff space, as can be shown using the concept of the primitive
topology (see t2 , 11]), it coincides with the free Tychonoff algebra
on I. The fact that is actually a closed subspace of its free

algebra, is shown by a simple topological argument in ([18Jt Proof of
0.2).

(2.8) REMARK. The observation mentioned above, that the free

Hausdorff algebra over a Tychonoff space is Tychonoff again, is based

on the fact that under certain conditions the free topological
algebra functor G preserves embeddings (see 121, Thm. 1]); G will not

do so in general as is shown in ([18], Ex. 3.6). It would be

interesting to know more precisely when G will have this property.

C2.9) REMARK. Observe that for a topological space X the unit yx

might lift to an embedding without X being Tychonoff. If for example
X. is a completely regular space (without T1) and (FX,y) denotes the

free topological algebra over 1, then Yx lifts to an embedding as an
immediate consequence of (3.5) with Co = (FI,rf) of (4.8).

If 0’ is a completely regular topology (as e.g. in topological
groups since they are uniformizable), one gets therefore: X is

completely regular iff yx lifts to an embedding (see also [18] with a

much more involved proof). That this will not hold in general is

shown by the example of (2.3).

3. CATEGORICAL TOOLS.

The main categorical tool to achieve the results mentioned above
is the following generalization of (part of) Wyler’s taut lift Theorem
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1221, a sketched proof of which we enclose in order to make the

following corollaries comprehensible.

(3.1) THEOREX (cp. [3, 211). Le t there be given a commutative sq uare
of functors:

such that S and T are mono- topological, U has an adjoint F (with unit

y), and V preserves initiality of saanosources. Then there exists an

adjoint G of V (with unit n) and a natural transformation X: FT 1 SG

such that for each X E ob X the morphism Xx is a regular epimorphism
and the following diagram commutes:

If S and T are even topological functors, X will be a natural equi-
valence.

PROOF. For an X-object X consider the X-source

Applying T one gets the Y-source

By adjunction there corresponds the A-source

with f* being the unique A-morphism making the diagram

commutative. Let
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be the regular factorization of T(XiV)* (see (1.3)) and let

be the S-initial lift of the monosource (Ax,m,.),, . Then - using our

assumption on V - there exists a unique X-morphism nx : X -&#x3E; VGX with

Txx = uXx o YTX, and which in addition is V-universal. The final

assertion is a, consequence of the observation that, due to the

existence of indiscrete structures, the morphism YTx belongs to the

source T(X|V) and hence 1FTX occurs in the source T(XIV)* which

therefore will be a monosource.

(3.2) APPLICATION. The typical application of the above theorem is

illustrated by the following diagram (cp. (1.4)): 

where U denotes the underlying functor of a quasivariety and where X
is an epireflective subcategory of Top or Unif (e.g., Top2 or Unifo).

Hence for example the free Hausdorff topological algebra G2I.
over a Hausdorff space X. will always exist, but it will algebraically
be only a quotient of the free (abstract) algebra FX (= FTI) , i.e.,
Markov’s axiom (A) will not be fulfilled in general; if however the

free topological algebra Gl is considered (i.e., if no separation
axioms are involved), (A) will be satisfied automatically.

(3.3) COROLLARY. In the situation of (3.1) the following are

equivalent for an object X E ob X :
(i) Xx is an isomorphism.

(ii) The source T(X|V)* is a monosource.

(III) YTx lifts to an X-morphism.

While this immediate consequence of (3.1) is crucial with

respect to Markov’s axiom (A) the following simple consequences will
serve to discuss (T).
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(3.4) COROLLARY. In the situation of (3.1) the following are

equivalent for an object X e ob X :

(i) nx is an (extremal) monomorphism.
(i i) The source (X4-V) is an (extremal) monosource.

(iii) There exists some Co E ob C such that th e source

(X,X(X,VCo)) its an (extremal) monosource.

(3.5) COROLLARY. In tie situation of (3.1) the following are

equivalent for an object X E ob X : 

(i) 1tx is a T-initial 1JJorphism.
(ii) The source (X|V) is a T-injtjal source.

(iii) There exists some Co E ob C such that th.e source

(X,X(X,VCo)) is T-initial.

4. THE FREE UNIFORM ALGEBRA OVER I.

In order to show that Markov’s axiom (A) is satisfied for every

T2H-space X, Swierczkowski in [19] constructs explicitly a Tychonoff
algebra topology on FX;

In this section we will give a description of the uniformity
which is behind his construction, restricting ourselves however to

the special case of the unit interval (or any metric space) , to

which the general case can be reduced by a simple categorical arg-
ument (see Section 5). This uniformity can in fact be obtained by a

single pseudometric in the sense of Bourbaki as is shown by Taylor
1201, but for the following reasons we don’t refer to his work:

firstly our result is slightly stronger (uniform continuity of the

operations instead of just continuity), secondly we feel our approach
is quite natural, and finally we would like to have this explicit
description at hand for further investigations.

Notational convention:

(4.1) Construction of a uniformity on FI.
Given e c R. we denote by L the following subset of FIXFI:
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Since any set

will belong to the natural uniformity of lr and since we are looking
for a uniformity being as fine as possible and making all the fr&#x3E; in

P uniformly continuous, we have to look for a uniformity containing
all the D.’s. Unfortunately the 5«’s behave badly with respect to

composition of relations; hence to obtain a (base of a) uniformity
containing all these sets we define

From the obvious facts that the diagonal A is contained in every Dr
and that the sets 5« are symmetric one concludes easily:

(1) A C D. for each e &#x3E; 0.

(2) D. = D,-’ for each e &#x3E; 0.

Moreover from the very definition of the Dc ’. we conclude

Hence the family of all D. is a base for some uniformity on FI, which
will be denoted by UI.

4.2. PROPOSITION. All operations from PCFI) are uniformly continuous
with respect to UI .

PROOF. Given f = f(r) E P we only have to prove that

belongs to the product uniformity of (FI, UI) r. Choose an element

out of this product uniformity such that Ei=1r Ei  e. It is enough to
prove ttcw C f2-1 [Dc]. In fact, given some (c1,...,c2r) E UE*, for each

i E {1,...,r} we have some
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such that

With n = Ei=1r ni the rrary operation h with

belongs to P and meets the following conditions with

where

Hence we have

and therefore

(4.3) E-links. In order to prove some inportant additional properties
of the uniform algebra (FI,UI) just constructed we need some auxiliary
notions and results which are due to E19). Given a, b E FI and E E R+,
a system 

with fi(ni) E P of arity nt will be called an E-link of a and b (of

length m) provided

This notion arises naturally from the definition of Dc, since

(a,b) E D. iff there exists an E-link of a and b. E (a,b) will be

shortly called a link of a and b if it is an E-link of a and b for

some E.

With any link E = E (a,b) there is associated a relation Rt on I

by

where nk: Ini -&#x3E; I is the k-th projection (i.e., elements u, v e I are

related by Rx iff u and v are the k-th coordinate of xi and y,

respectively for some k and some i). The equivalence relation on I
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generated by Rz will be denoted by px. In this context the following
two lemmata were proved by Swierczkowski.

(4.3.1) LEXXA ([19], L. 9). Let E be a link of a and b of length m,

and t; I a I be a map with

Then

(4.3.2) LERU ([19], L.10). Let E be an E-link of a and b. Then the

following implication for x,y E I holds:

(4.4) PROPOSITION. The insertion of generators map Y: 1 -&#x3E; (FltU1) is, a
uniform embedding,.

PROOF. Considering y as an injection it is enough to prove that the

natural uniformity of I is the relative uniformity of (FI, UI), i.e.,
that all the sets DEn(IxI) form a base of the uniformity of I. This

will follow from the equality

where the inclusion "0" is trivial since id,, E P. Assume finally that
(a,b) E DEO(IxI). According to (4.3.2) we only have to prove (a,b) E pz
for the 6-link E(a,b) which exists because (a,b) E Dc.

Assuming the contrary we could find a map t: I 1 I with

(recall that pE is an equivalence relation and that S. C {a}). By
(4.3.1) we conclude

while by the definition of E (a, b) we have

and therefore



248

since FI is free over I and hence t extends to a homomorphism. We

end up with the contradiction b = tb = a.

(4.5) PROPOSITION. nE&#x3E;oDE = A, hence UI is a separated uniformity.

PROOF. We only have to prove that for each pair of distinct elements

a, b 6 FI there exists some &#x3E; 0 such that (a,b) V DE. To do so choose
e such that

Then the assumption (a,b) E D, shows for the corresponding E-link E

of a and b that no two distinct elements of S.(jSj, are pz-equivalent
by (4.3.2). Hence there exists some t:I A I with

From this we get by (4.3.1)

while the equality b = fn(nm)(xm1,...,xmnn) yields

by the final remark of (1.2). We obtain the contradiction a = b.

We summarize the results of this section as follows, where 1
either denotes the unit interval with its natural uniformity or with
its natural topology:

(4.6) THEOREM. Let FI denote the free algebra over the unit interval I

in any nontrivial fini tary quasi variety, Then there exists a separat-
ed uniformity UI on FI such that (F I, UI ) becomes a uniform algebra
(i.e., all operations of F I are uniformly continuous with respect to

Ur ) and contains I c’via insertion of generators) as a uniform

subspace,

(4.7) REMARK. By inspecting the proof of (4.6) we see that we have

only used the metric properties of 1. Hence (4.6) holds for an

arbitrary metric space instead of I.
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(4.8) PROPOSTION.

(i) The free uniform algebra and the free separated uniform

algebra over I coincide. They are of the form (F I, Uf) - where U, is a

uniformity on F I not coarser than UI - and contain (via insertion of

generators’ 1 as a uniform subspace.
(ii) If r(Uf) denotes the uniform topology of Uf, then (FI, r(Uf))

is the free algebra over I in the full subcategory of all T,ychonof.f
algebras (resp. completely regular algebras) consisting of those

algebras whose operations are uniformly continuous in some uniform-

ization. (FI,T(U,» ) contains I as a (closed) subspace.
(iii) The free Tych ono.ff algebra over I is of the form (FI, rf);

its topology rf is not coarser than T (Uf), (FI,rf) contains .1 as a

(closed) subspace.
(iv) The free topological algebra, the free Hausdorff algebra

and the free functionally Hausdorff algebra over 1 coincide. They are
of the .form (FI,r) where T r is a topology not coarser than 1’" and

contain L as a closed subspace.
(v) If M. = (X,d) is a metric space, then the free (separated

uniform algebra over M is of the form (FM, U), where U is not coarser

than the uniformity Elm constructed analogously as Ux.

PROOF. (i) Immediate from (4.6), the corollaries of (3.1) and the fact

that Unifo is closed with respect to refinement of uniform structures.
(ii) follows from (i) by turning over to the uniform topology.
(iii) The fact that the free Tychonoff algebra over 1 is algebraically
FI follows by means of (3.3), since idn belongs to the source T(I.V)*
because of (ii). The rest is obvious.

(iv) The final statement follows in the same way as (iii). The

algebras in question coincide, since the topology of the free

topological algebra refines the topology of the free functionally
Hausdorff algebra.
(v) f ol lows in the same way as (i).

(4.9) PROBLEM. Is UI even the "free uniformity" Uf ?

, FREE SEPARATED ALGEBRAS OVER CERTAIN
CLASSES OF SPACES.

(5.1) BASIC SITUATION. We consider the situation of (3.2) and assume
in addition that there is given a factorization structure (E,N) on X
(in the sense of [7]) and a subcategory Y of X. By r we denote the
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E-reflective hull of Y. Recall that X E ob r iff there exists a

source in al

if X has products and is H-cowellpowered, X E ob T iff X is an M-

subobject of an X-product of Y-objects (see [7, 8]).

These data are subject to the following conditions:

(I) X,r is an isomorphism for each Y E ob Y.

(II) xv e M for each Y e ob Y.

(III) Given X c ob r and finitely many elements in TX, then

there exists some X-morphism m: X A Y with Y e ob Y such that Tm

distinguishes all these elements.

Observe that (III) is a strengthening of the condition that af

consists of monosources only, and is satisfied automatically if 3f

consists of monosources only and Y is closed with respect to finite

products: for given distinct x1, ... ,xn e TX, there exist X-morphisms

by definition of Y’ and our assumption on M. The morphism m: X 4 IT YtJ
induced by the 11JJJ then has the desired property.

(5.2) THEOREN. Under the hypotheses of (5.1) the following hold :
(i) Xx is an iso11Jorphism for each X E ob Y^.

(ii) 1tx E Jf for each X E ob Y^.

PROOF. (i) According to (3.3) we only have to prove that the source
T(XIV)* is a monosource for X E ob Y". Since U is faithful it suffices

to show that

is a monosource. Hence consider two different elements a,b E UFTX.

Since U is finitary there exists a finite set Z C TX such that a,b e
UFZ. Denote by i: Z A TX the inclusion and choose m: X -4 Y according
to (III) such that- Tm distinguishes the elements of Z. The commuta-

tive diagram on the following page illustrates the situation, where

the left vertical arrow T moi is an injective map.
Since UF preserves injectivity of maps (see [12], p. 66), we conclude
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since Xy is an isomorphism by assumption and

we conclude that U(T(X¡V)*) is a monosource .

(ii) Given X E ob Y’’ there exists a source (X,111i: X i Y1) IEI E N. The

commutative diagram

shows that nX c 3f, since

(5.3) EXAMPLES OF BAS IC SITUATIONS.

(5.3.1) Consider T: Topz A S’et Ci.e,, X - Topo) and let Y be the full

subcategory of Top2 with I as a single object. Take the (quotient,
monosource)-factorization structure Ci.e., the regular factorization

structure in the sense of [5]). Then Y’ is the category of function-

ally Hausdorff spaces and condition (III) is satisfied (cp. 1.1),
while (1) and (II) hold by (4.8).

(5.3.2) Replace in (5.3.1) the regular factorization structure by the

(surjective, initial monosource)-factorization structure (i.e., the T-
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regular factorization structure in the sense of [15]). Then Y’ = Tych,
ard (I), (II), (III) are satisfied by the same arguments as above.

(5.3.3) Replace in (5.3.1) the regular factorization structure by the
(dense, closed embedding sources)-factorization structure (i.e., the

(epi, extremal monosource)-factorization structure). Then Y^ = Comp2,
and (I), (II), (III) hold again as above.

(5.3.4) Consider T: 7ych A Set (i.e., X = Tych) and take Y and (E,M)
as in (5.3.2); then r = Tych and (I), (II), (III) are satisfied.

(5.3.5) Consider T: Top2M -i Set (i.e., X = Top2,.) and take Y and (E,M)
as in (5.3.1). Then r = Top2M and (I), (II), (III) are satisfied.

(5.3.6) Consider T: Unifo 1 Set (i.e., X - Unifo) and let Y be the full

subcategory Met. Take the T-regular (i.e., the (surjective, initial

monosource)-) factorization structure. Then 31 = Unifo by a famous

result of Weil (see (10], 6.16), and conditions (I) and (II) are again
satisfied by (4.8). (Ill) follows from the final observation of (5.1).
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