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THE SHIFT FUNCTOR AND THE COMPREHENSIVE FACTORIZA TION
FOR INTERNAL GROUPOIDS

by Dominique BOURN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVIII-3 (1987)

RÉSUMÉ. On d6montre que la cat6gorie Grd E des groupoides
internes A une cat6gorie exacte A gauche E est triplable sur la

cat6gorie Spl E don-t les objets sont les épimorphismes scind6s
et les morphismes sont les transformations entre epimorphisms
scind6s. Trois applications sont donndes: un rel6vement d’ad-

jonction au niveau des groupoïdes. une caract6risation des

catégories exactes au sens de Barr et la construction dans

Grd E, lorsque E est exacte, de la decomposition d’un foncteur
en compos6 de fibration discrdte et de foncteur final.

Here is the first of two papers, continuation of [2] and intro-

duction to some preliminary results necessary for a general cohomo-

logy theory for an exact category E (summarized in 131) using inter-
nal n-groupoids as a non-abelian equivalent to chain complexes.
Indeed when E is abelian, there is an equivalence between the

category n-Grd E of internal n-groupoids and the category C"(E) of

chain complexes of length n 141. It turns out that, with this

realization, the higher cohomology groups are classes of principal
group actions exactly as it is the case at level 1.

This pair of papers could have been called as well: Internal n-

groupoids vs simplicial objects. Indeed Duskin [7] and Glenn [10]

have previously developed a realization of cohomology classes in an

exact category E in terms of simplicial objects, more precisely
special kind of complexes, called hypergroupoids. For such objects,
there is an hypercomposition law, only possible on peculiar collec-

tions of n faces, submitted to hyperunitarity and hyperassociativity
axioms.

So, on one hand we have the category Simpl E of simplicial ob-
jects in E, with good exactness properties (since E is exact), but

with a working class of objects (the hypergroupoids) which is rather
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complicated. On the other hand, we have the category n-Grd E of int-

ernal lr-groupoids with rather simple objects but not yet positively
investigated right exactness properties. This is the aim of these two

papers to begin the investigation of such properties.
Part 1 of this paper is devoted to a rather unexpected (for me

at least) result. It is well known that the category Simpl E is mon-

adic above the category SpSimpl E of split augmented simplicial
objects 161. When E is left exact, the category Grd E, as a subcat-
egory of Simpl E, appears to be monadic above the category Spl E
whose objects are the the split epimorphisms (with a given splitting)
and morphisms the coherent squares between such split epimorphisms
(or equivalently, the category Idem E whose objects are the idem-

potent morphisms in E and the morphisms the transformations of

idempotents).
In Part 2, three applications, necessary for the construction of

the cohomology groups, are given. The first one is an adjoint lifting
theorem for groupoids. The second one is a characterization of exact

categories: Let us denote by q (the quotient functor) the left adjoint
to dis: E e Rel E whenever it exists. A category E is exact when the

functor q exists and has the two following left exactness properties:
(i) it is a fibration up to equivalence, (ii) it preserves the pull-
backs in which one edge is an internal discrete fibration. Moreover

the functor q can be extended to a functor no: Grd E fl E which is

again a fibration up to equivalence. The third one is the construction
in Grd E of the associated discrete fibration of any internal

functor. Precisely, any functor can be factorized, in a way unique up
to isomorphism, into the composite of a discrete fibration and a

final functor. It is what is called, according to Street and Walters
[13Jt the comprehensive factorization of this internal functor.

PART 1 , THE SH I FT FUNCTOR FOR GROUPOIDS

Let E be a left exact category.

1, Internal categories

Let us recall that an internal category in E is a diagram Xi in E:

such that m2X, is the pullback of do along di. It must satisfy the

usual axioms of unitarity and associativity, briefly those of a
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truncated simplicial object as far as level 3, when completed by the

pullback m3X, of do along d2. The internal functors are just the

natural transformations between such diagrams. We shall denote by
Cat E the category of internal categories in E. It is left exact.

There is an obvious functor ( )o: Cat E 1 E associating Xo to X, . It

has a fully faithful right adjoint Gr and a fully faithful left ad-

joint dis [2]. We shall denote by no(X1) the coequalizer of do and d1;

mX1 ----&#x3E;Xo whenever it exists. It is a potential left adjoint to dis.
A definition as short as this one cannot avoid the notion of

simplicial objects. So let us denote by Simpl E the category of simp-
licial objects in E (see for instance [6]) and, as usual, by Ner the
left exact embedding:

which associates to X, the following simplicial object

obtained by adding to the diagram Xt completed by m3X, its iterated

simplicial kernels mnX1, n ? 4, this object of E representing the

internal object of "composable sequences of n arrows".
According to Illusie [11], let us denote by Dec X, the following

internal category:

It is then clear that the (split) coequalizer of do and di is do:

mX1 -&#x3E; Xo and that, consequently, no (Dec Xi) = Xo.

Actually this functor Dec is nothing but the value on Cat E of

the shift functor Aec defined in Simpl E [8, 11] which shifts Xo and

the higher degeneracy (di) and face Cst) operators. In fact, the two
functors Ner. Dec and Aec. Ner commute up to a natural isomorphism.
The functor Aec being left exact, the same is true for Dec.

The functor Aec on Simpl E is endowed with a cotriple structure
generated by the following adjunction (see [6] for instance):
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where SpSinipl E is the category of split augmented simplicial
objects with a given splitting. The functor 6ec is defined, for any

simplicial object S, as the split augmented complex obtained by
shifting the higher face operators, and the functor + by shifting the
augmentation and the splitting of the simplicial object. Furthermore

the functor 6ec is precisely monadic Cfi), that is to say that Simpl E
is the category of algebras of the triple 0 generated on SpSirnpl E
by this adjunction.

The functor Ner being an embedding, there is again a cotriple on
Cat E we shall denote in the following way:

The image of EX, by Ner being a coequalizer in Simpl E is again a

coequalizer in Cat E. We shall call this diagram the canonical pre-
sentation of Xi. Actually EX, is componentwise a split coequalizer as
it is the case in Simpl E and thus any pullback of this diagram
along a morphism of Cat E is again a coequalizer. On the other hand,
the right hand part of the canonical presentation is an internal

category in Cat E we shall denote by DECX1.

, Internal groupoids.

Now, following a remark of Illusie [11], an internal category X,

will be said to be an internal groupoid when, moreover, the following
square (a1) is a pullback in E:

Let us denote by Grd E the full subcategory of Cat E whose objects
are the internal groupoids. A groupoid will be said to be an equi-
valence relation when [do, d1]: mX, -4 XoxXo is a monomorphism in E, or

equivalently when the unique internal functor X1 -i GrXo is a mono-

morphism in Grd E. At last, for each object X in E, let us recall

that disX is the equivalence relation associated to id: X 1 X and GrX

the equivalence relation associated to the final map: X 1 1.



201

LEMA 1. An internal category X1 is a groupoid iff the following
square (B) Is a pullback in Cat E :

PROOF. The square (a1) is the image of the square (B) by the functor
( )o. Then if (B) is a pullback, so is (a1). Conversely (B) is a

pullback iff its image by ( )o (the objects level) and by m (the

morphisms level) are pullbacks. Let us consider now the two following
diagrams

The vertical composites of the two diagrams are equal. The squares
(1) and (2) are pullbacks since X, is an internal category. Now the

square (ai) is a pullback since X, is a groupoid and thus the square
(ai ’) is a pullback. But (B)o = (ai) and m(J3) = (a1’), and thus (B) is

a pullback.

COROLLARY. When X, is a groupoid, the following category DEC X, is an

equivalence relation in Cat E .

PROOF. The functor Dec being left exact, the square Dec (B) is a pull-
back, that means exactly DEC X, is a groupoid. Moreover the square
(B) being a pullback, DEC X1 is the equivalence relation associated to
EX1.
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The invertibility. In the category Set of sets, a groupoid is usually
defined as a category in which every morphism is invertible. It is

clear that it implies that the square (a) is a pullback and the

converse is not difficult to check. Now, by the Yoneda embedding, the
two definitions coincide again in any left exact category. The first
one is more economical in an internal context. Nevertheless let us

sketch, here, how this property of invertibility emerges in the

internal case.

DEC X, being the equivalence relation associated to eX1, there is
a twisting isomorphism rXi: Dec2X1 -4 Dec2X, , whence an isomorphism

which represents the passage to the inverse.

LEXXA 2. An internal category X1 is a groupoid iff th e following
square (ao) is a pull back:

PROOF. The two following squares are globally equal:

Now (1) being a pullback, the same is true for (ao). Conversely, if

(ao) is a pullback, the dual X,"P of X, is a groupoid and (a1) is a

pullback.

COROLLARY. If X, is a groupoid, DecX, is an equivalence relation.

PROOF. Since (ao) is a pullback, DecX, is the equivalence relation

associated to clo. 0

REMARK. Thus, by its canonical presentation, a groupoid is a quotient
of an equivalence relation on equivalence relations. 
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3. The category Grd E is monadic above the cat-

egory Spl E.

Following the previous corollary, when X, is a groupoid the

whole structure of dec(NerX,) is uniquely determined by the following
split epimorphism: 

since the higher components of dec (NerX,) are obtained by iterated

pullbacks.
So let us denote by Spl E the category whose objects are the

split epimorphisms with a given splitting and whose morphisms are

the commutative squares between such data. Let us denote by

the functor associating to X, the previous split epimorphism.
We have also a functor

associating to a split epimorphism the nerve of its associated equi-
valence relation, augmented by itself. It is clearly an embedding
since it has a left adjoint left inverse forgetting the higher levels
of a split augmented simplicial object.

Now let us consider the following commutative up to isomorphism
square (*): 

There is also a functor

which associates to a split epimorphism its associated equivalence
relation and which consequently is such that +. n and Ner. r commute up
to isomorphism.

THEOREX 1. The functor r is a left adjoint to the functor d.
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PROOF. The pair (d,r) commutes with the pair (6ec,+) by means of the
functors Ner and n, up to isomorphisms. Now Ner and n being fully
faithful, the natural transformations

of the adjunction (6ec,+) determine natural transformations:

with the same equations. ·

The aim, now, is to show that d is monadic. Unfortunately the
Beck’s criterion is not very easy to handle in this context. Another

way will be used, perhaps a bit indirect, but much more enlightening,
by Lemma 3, the combinatorial geometry underlying to this question.

Let us denote by T the triple generated on Spl E by (d,r). Now

(d,r) and (6ec,+) commuting up to isomorphism, there is a natural

isomorphism 6): n.T ==&#x3E; O.n.

THEOREX 2. The square (4) its a 2-pull back and the functor d is

monadic..

PROOF. A 2-pullback (or an isocomma category) is a square like (.)

with an inner isomorphism, satisfying the universal property for such

squares. Let us consider the following diagram:

where P is the vertex of the 2-pullback. Now D being fully faithful,
the same is true for k. Let g: Grd E e P be the unique factorization.
There is a functor h’ : Spl E -&#x3E; P , defined for every object X in Spl E
by

since
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is an isomorphism. It is an adjoint to h for the same reasons as in

Theorem 1, since n and k are fully faithful. The Beck precise triple--
ability condition being stable under 2-pullbacks (see (61), the

functor h is precisely monadic. Moreover it is clear that the triple
generated by (h,h’) is T and consequently is the same as the triple
generated by (d,r).

Now, we have k.g = Ner. The functor k being faithful and the

functor Ner being fully faithful and monomorphic on objects, the same
holds for g. To show that g is an isomorphism, we must now prove
that it is epimorphic on objects. That means that each algebra on T
determines a groupoid. The category E being left exact, it is suffi-

cient, thanks to the Yoneda embedding, to prove it in Set. That is

the aim of the following lemma.

LEMMA 3. In Set, any algebra on T determines a groupoid.

PROOF. Let x = (do,So) be a split epimorphism. The triple T is des-

cribed by the following diagram, where

An algebra for T is a morphism a: TX 4 X such that

It is given, here, by a pair (b1,b2), 61: X1 1 XO, b2: X2 1 X1, determin-

ing a morphism in Spl E , i.e. satisfying:

The axiom 1 becomes
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The axiom 2 becomes

Now (do,so) being a split epimorphism and axiom 1.1 being satisfied,
we have a graph:

a-

The morphism 62 determines an operation on pairs of arrows with the
same domain. Let us denote it, for short, by 6. This operation is such
that axioms 0.1 and 2.1 hold, that means:

It is then possible to describe this operation by the following
diagram

Let us review the three other axioms, representing the image of an

object of Xo by so by the symbol ’=’.

The stronger axiom 2.2 is represented by the following diagram:

Let us set, by now,
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Result 1.

Proof.

Corollary.

The composition law of two arrvws. Whenever do (y) = b1 (x), let us set

7-x = S (x-1,y).

Result 2.

Proof . Let us suppose that y = 6 (x, t). Then

Conversely

Tbe invertibility axiom:

Proof. By Result 2, the first equality is equivalent to y 
-1 =

b(y,sodo(y)), which is true. The second equality is obtained from the

first one by Result 1.

The unitarity axiom: x.Sodo (x) = x and Bodo (x) = x.

Proof. The first equality is equivalent to b(sodo (x),x) = x, which is

axiom 1.2, and the second to b (x,x) = sob1 (x), which is axiom 0.2.

The associativity axicm: z. (y.x) = Cz.y).x.

Proof. By Result 2, we must prove that b (y.x, (z.y).x)) = z. Now
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Ve have therefore constructed a groupoid whose image by g is the

algebra a..

As a consequence, we obtain two important corollaries.

COROLLARY 1. A simplicial object S is jsosaarphic to the nerve of an

internal groupoid iff AecS is isomorphic to the nerve of the equival-
ence relation associated to do: S, -&#x3E; So .

PROOF. We saw it is true for a groupoid. Conversely if AecS is

isomorphic to the nerve of the equivalence relation associated to do:

S, -4 So then becS --&#x3E; r(do,So). That the square (.) is a 2-pullback
implies that S is isomorphic to the nerve of a groupoid. ·

COROLLARY 2: I1Jtr1.ns1c char-acterization of groupoids among simplicial
objects. A simplicial object S is isomorphic to the nerve of a

groupoid iff the following square (y) is a pullback tn Simpl E :

PROOF. If S is the nerve of a groupoid, it is true by Lemma 1 and the

fact that the functor ( )o is exact. Conversely if (i) is a pullback,
the following simplicial object in Simpl E is, try Corollary 1 and Aec
being exact, isomorphic to the nerve of an equivalence relation

(namely that associated to eS):

Consequently, its projection by ( )o is isomorphic to the nerve of an

equivalence relation (namely that associated to d1):

Thus by Corollary 1, the dual of S is a groupoid and consequently S
is a groupoid..
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REMARK. This monadicity theorem tells us that the notion of internal

groupoid is strongly algebraic, much more than the notion of internal

category. Perhaps it is why this notion occurs in so many different

branches of Mathematics, in Differential Geometry as well as in

Homological Algebra for instance.

PART II, APPLICATIONS

1 , Extensions to groupoids a f an adjunction.

The monadicity theorem will be very useful to extend an adjunc-
tion

to the level of groupoids. Let us suppose E ’ and E are left exact.

The functor U being left exact, it determines a commutative square:

Moreover this diagram commutes, up to isomorphism, with the functors
Gr. Now the problem is: does the functor Grd U admit a left adjoint?
We know that we have again an adjunction:

furthermore the following diagram commutes:

Now by the Adjoint Lifting Theorem (see [12]), the functor d being
monadic, the functor Grd U has a left adjoint as soon as Grd E’ has

coequalizers of reflexive pairs. This is the case for instance when E
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is exact, E’ = Ab (E) the category of internal abelian groups in E , 
and F is the free abelian group functor. It does exist when E is a

topos with a natural number object.

2. Aspects of internal discrete fibrations and
f inal functors.

2.1. Discrete fibrations.

The two next parts dealing with the notion of discrete fibra-

tions, let us gather here some brief recalls.
Let fi: X, -&#x3E; Y, be a morphism in Cat E and let us consider the

following square (8 I), i = 0,1:

If this square is a pullback, when f = 0, fi is called a discrete

cofibration, when I = 1, f1 is ca l led a discrete fibration. The

discrete (co)fibrations are stable under composition and pullback.
Moreover if g1 . f1 and gx are discrete (co)fibrations, f, is a discrete

(co)fibration.

EXIXPLES AND PROPERTIES. 1. EX, : DecX, e X, is a discrete cofibration.

2. fi: X, e Y, is a discrete f ibration if f the following square
(o) is a pullback in Cat E:

Consequently the discrete fibrations are preserved by the functor

Dec.

3. Let fi: X, e Y, be a discrete Cco) f ibration. If Y, is a group-
oid, then X, is a groupoid. If Y, is an equivalence relation, then X,
is an equivalence relation.

4. If X, and Y, are two groupoids, f is a discrete fibration iff

f, is a discrete cofibration.
5. An internal category X, is called discrete if all the maps of

the diagram X, are invertible. A discrete category is a groupoid. Now
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let fi: X, e Y, be a functor and Y, a discrete groupoid. Then f1 is a

discrete fibration iff X, is discrete.

2 .2 . Initial functors.

If E is a class of morphisms in a category V , then E+ (see [5, 
14]) is the class of morphisms b in V satisfying the following
property (diagonality condition): for any commutative square

when f is in E, there is a unique dotted arrow making the two

triangles commutative. This class is stable under composition. If, 
furthermore, the morphisms k.h and b are in ET, then the morphism k
is in E+. When a morphism is in E and in E+, it is clearly an

isomorphism. Let us denote by Df the class of discrete fibrations and
let us call final a morphism in (Df)"’.

3. A characterisation af exact categories.

A second application of the result of Part I is a character-

isation of the exact categories. For that we shall need the following
notion.

3 .1. The fibred reflexion.

Let us consider the following general situation

where d is fully faithful and q is a left adjoint of d. The difference

with what is called a basic situation in (21 is that no more left

exact properties for V’, V , q are required. Let us recall that a mor-
phism f: X e X’ in V is called q-cartesian when the following square
is a pullback:
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A q--cartesian morphism is cartesian in the usual sense if q were a

fibration. The q-cartesian morphisms are stable under composition. If

the morphisms q,.f and g are q-cartesian, so is the morphism f. At

last, a morphism d(h): dU -&#x3E; dV is always q-cartesian.
A morphism f is said q-invertible when its image by q is

invertible. If any two of the three morphisms f, g, g.f are q-invert-
ible, the third one is q-invertible.

Let us denote by q-C and q-I the two previous classes of

morphisms. Then (q-C)’t’ is q- I . Furthermore if, in a square of mor-

phisms, a parallel pair is in q-C and the other one in q- I, then this

square is a pullback.

DEFINITION 1. A functor q: V e V’ is called a fibred reflexion when

it has a fully faithful right adjoint d and when furthermore the

pullback of any q-invertible morphism along a q-cartesian morphism
does exist, the parallel pairs in this square being in the same

classes.

PEOPOSIT IOH 1. In the general situation, q is a fibred reflexion iff

it is a fibration up to equivalence.

PROOF. Let q be a fibred reflexion and k: U 4 qX a morphism in V’,
then the higher edge of the following square is clearly a q-cartesian
morphism whose image is the morphism k up to isomorphism:

Conversely, let f: Y e Y’ be a q-cartesian morphism (what means also

cartesian according to the fibration q) and g: X’ -&#x3E; Y’ be a q-
invertible morphism. Now let us consider the cartesian morphism
f associated to X’ and (dg)-1.df: dY -&#x3E; dX’; it determines a square:
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where g’ is q-invertible, and consequently this square is a pullback..

COROLLARY. The fibred refl exi on s are stable under composition.

PROPOSITION 2. If q its a fibred reflexion, then any morphism h a s a

unique decomposition fc.fi, up to isomorphism, with f, q-invertible.
and fc q-cartesian.

PROOF. The unicity is given by the property (q-C)"l’ = q-I. The decomp-
osition is given by the following diagram where the square (*) is a

pullback:

PROPOSITION 3. Let q be a fibred reflexion. Then the q-cartesian mor-

phis11ls are stable under pullbacks, whenever they exist, and such

pullbacks are preserved by q.

PROOF. Let us consider the following pullback where f is q-cartesian:

The diagonality condition yields a morphism h’: Z -&#x3E; X such that:

Now the square being a pullback, there is a morphism backward

To prove that f’i and j are mutually inverse is pure diagram chasing.
If now we consider the following commutative square:
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the q-cartesian morphism n associated to Y’ and m: U 4 qY’
determines a square k.m = f.n’ in V whose universal factorization

through X’ gives us, by means of its image by q, the universal

factorization U 4 qX’..

3.2. The characterization.

Let us recall that a category E is exact in the sense of Barr

Ell J when the following three axioms are satisfied:

EX1. Every morphism has an associated equivalence relation

whose quotient does exist.
EX2. The pullback of any regular epimorphism (i.e., quotient of
its associated relation) along any morphism does exist and is a
regular epimorphism.
EX3. Every equivalence relation is effective (i.e., associated to
some morphism).

The axioms EX1 and EX3 imply that the functor dis: E 4 Rel E has a

left adjoint q (the quotient of the equivalence relation).

LEMMA 4. When E its Barr-exact, the q-cartesian morphisms are the

discrete fibrations.

PROOF. Let fi: R, 4 R’, be a q-cartesian morphism and let us consider

the following diagram:

The morphism f, is q-cartesian iff the squares (1) and (2)+(1) are

pullbacks. Then (2) is a pullback and fi is a discrete fibration. The

converse is a consequence of [1], Example page 73.
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LBMA 5. The q-invertible morphisms, viewed as morphisms in Cat E, 
are final.

PROOF. Let us consider the f ollowing square with h* g-- invertible and
fi: X, -&#x3E; X’1 a discrete f ibration in Cat E :

Let f 11 be the pullback of fi along k’1. Then f’1 is a discrete fibra-

tion and R’, being in Rel E, the same is true for Z, . Then f ; is q-
cartesian. It is uniquely split by the diagonality condition in Rel E

and it determines a splitting of the square in Cat E satisfying the
diagonality condition in Cat E.

THEOREM 3. A category E is exact In the sense of Barr iff the two

following conditions are satisfied:
A1. Every morphism has an associated equivalence relation.
A2. The functor dis: E -&#x3E; Rel E has a left adjoint q which is a

fibred reflexion.

A3. The functor q preserves the pullbacks in which one edge is
a discrete fibration.

PROOF. Let us suppose that E is an exact category. The axiom EX1

contains hl, Now EXI and EX3 imply that the functor dis has a left

adjoint q. Given an equivalence relation R1 and a morphism h: X -&#x3E; qR1 
the axiom EX2 means exactly that the following pullback does exist
in Rel E, with X q-invertible:

Then h is q-cartesian above and q is a fibred ref lexion (A2). now

by Lemma 4 the tr-cartesian morphisms are the discrete f ibrations and
by Proposition 3 the functor q preserves the pullbacks in which one

edge is a discrete fibration.
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Conversely let us suppose Al, A2 and A3 satisfied. The axiom Al
and the existence of q imply EX1. That the functor q is a fibred re-

flexion implies EX2. We must now prove EX3. Let us consider the can-
onical presentation of an equivalence Ri:

R, being a groupoid, the discrete cofibration. ER, is also a dtscrete

fibration. On the other hand, this is a pullback. Then by A3, its

image by q is a pullback: 

and R, is effective

Remark. It may be asked whether A1 and A2 are sufficient or not.

3 .3 . The functor Ro for groupoids.
Let E be a left exact category, 1le will now prove that, when-

ever E is moreover Barr-exact, the functor q can be extended to a

functor no : Grd E 4 E left adjoint of the functor dis: E 4 Crci E- and

that, furthermore, no is a fibred reflexion.
Let us recall from 121, that if E- is Barr-exact then the fibra-

tion ( )o: Grd E e E is Barr-exact, that is : each fibre is Burr-exact

and each change of base functor is Barr-exact. Now leet 14 be an

internal groupoid. The final, object in the fibre over Xo is Gr Xo and

the f inal map in the f ibre is: X, 4 Gr Xo. It can be factorized in the

Barr-exact f ibre above Xo into a composite of a monomorphism and an
epimorphiszn:

where Supp X, is called the ( )o-support of Xta Consequently Supp X,
is an equivalence relation and it determines a functor

left adjoint to the inclusion 1: ReI E 4 Grd E.

PROPOSITION 4. The functor Supp: Grd E -&#x3E; Rel E is a fibred reflexion.

PROOF. It is suff icient to prove that, in the following pullback in

Grd E which always exists since E is left exact, y is Supp-invert-
ible as soon as R, is an equivalence relation:
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low YX1 being ( )o-invertible, the same is true for Y. The morphism
XXI being a regular epimorphism in the fibre above Xo, V is a ( )o-

invertible regular epimorphism since the fibration ( )o is Barr-exact.

Consequently R, being an equivalence relation, it is isomorphic to

Supp Y, and Y is thus Supp- invertible.

COROLLARY, The functor dis: E -i Grd E has a left adjoint which is a
fi bred refl exi on.

PROOF. This functor dis can be decomposed:

which both have left ad joints which are f ibred ref lexions. Their

composite no is therefore a left adjoint to dis and -1i -fibred

reflexion.

The xo-cartesian morphisms. A no-cartesian morphism is then 11 Supp-
cartesian morphism f, such that Suppf1 is g-cartes ian . It is there-

fore a morphism such that the following square is a pullback and

Suppf a discrete fibration: 

Consequently f, is certainly a discrete fibration. But 11 discrete

fibration is not in general no-cartesian. Indeed if X, is a groupoid,
the discrete fibration EX, is no-cartesian iff X, is an equivalence
relation.

Now fi is no-cartesian iff f1 and Suppf are discrete fibrations.
Indeed, if fi and Suppfi are discrete f ibrations, the morphisms 1X,
and YY, being ( )o-invertible the previous square is necessarily a

pullback.
When E = Set, a no-cartesian functor is a discrete fibration fi:

Xi -oJ Y, such that any map in X, whose image by f, is an endomap in
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T, is itself an endomap. Equivalently the no-cartesian functors are

the functors such that any connected component of X, is isomorphic
to its image by fi.

4. The comprehensive factorization in Grd E.

Let E be a left exact and Barr-exact category.
The aim of this section is to show that any f unctor fi: X1 -&#x3E; Yi

in Grd E can be factorized (necessarily in a way unique up to iso-
morphism) into a composite of a discrete fibration and a final

functor.

4.1. Tbe regular epic discrete fibration in Cat E .

DEFINITION 2. A discrete f ibration f, : X, e Y, in Cat E is said to

be regular epic when fo : Xo -&#x3E; Yo is a regular epimorphism in E .

It is clear then that me’, : nXi e mY, is a regular epimorphism in
E and consequently that f, is a regular epimorphism in Cat E , pre-
served by the functor Ner. Now given an equivalence relation R, in

Cat E:

with p1 a discrete fibration. Then any structural map of R, is a

discrete fibration.

PROPOSITION 5. Such an equivalence relation R1 in Cat E has a quo--
tient pi: X, 4 Q, which is a regular epic discrete fibration. Such

quotients are stable under pullback. If furthermore 81: - X, -&#x3E; K, is a

discrete fibration coequalizing po and p , the unique factorization g1:
Q, A K, 1s a discrete fibration. When X , and S, are groupoids, then

Q, its a groupoid.

FMOP. Let us denote by Ro, mR, and m2R, the images of R, in E by
the functors ( )o, lr and m2. We obtain the following diagram in

Rel E , which is an internal category in Rel E:
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where so and 6, are induced by the do and the d, . Now the fact that

pi is a discrete fibratian is equivalent to the fact that 6, is a

discrete fibration and thus a q-cartesian morphism. The image by q
of the previous diagram is therefore an internal category in E since,
6, being q-cartesian, the functor q preserves the pullbacks along 61.

It is then the componentwise quotient of Ri. The morphism p, : X, -&#x3E; Qi
is determined by the left hand part of the following diagram:

Now Si, being a discrete fibration, is q-cartesian and therefore the
square (*) is a pullback and pi is a discrete fibration. Clearly such

quotients are stable under pullbacks. Given a discrete fibration 8x:
X, -i K, coequalizing pb and p1, the unique factorization g, : Q1 -&#x3E; K,

determines the following diagram:

The whole square (1)+(2) is a pullback since g1 is a discrete
fibration. Now take the pullback of d, along i7o:

There is a unique o making (4) a pullback and consequently w a regul-
ar epimorphism. Furthermore pb and p being discrete fibrations, the
equivalence relation associated to o is mR, and consequently q (mR1)
is isomorphic to Z, the square (1) is a pullback and 8’ is a discrete

fibration. It is clear that when X, and Si are groupoids, then Q, is

a groupo id ..
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Let X, be an internal category and let us denote by Fib/Xi the

category of discrete fibrations with codomain 11 and whose morphisms
are the commutative triangles.

COROLLARY. If E js Barr-exact, then Fib/X1 Is Barr-exact.

4.2. The comprehensive factorizations.

THEOREN 4. Given f1: X1 -&#x3E; Y1 a morphism in Grd E there is a unique,
up to isoJDorphis1Il, factorizations 11 = g1.h1 with g1 a d iscrete fibra-

tion and hi a final functor.

PROOF. Let us consider the following diagram:

where o1n,r1n is the decomposition of Decn(f1) in a 9-cartesian and a
q-- invertible morphism . Indeed DecnX1 and Decltf1 lie in Rel E. Therefore
(Lemmas 4 and 5) o1n is a discrete f ibration and nn 1&#x26; final. Wow
each pi: Ui " 9 U, "-’ is a discrete fibration as closing a square whose
other edges are discrete fibrations:

On the other hand, the following diagram is the equivalence relation
associated to p, : U12 A U1:

Indeed, it is a q-cartesian diagram above the following equivalence
relation associated to di: saX, A Xo:
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Consequently the simplicial object determined by the U, 1-1 is the nerve

of an internal groupoid in Grd E.

LEXXk 6. The coequalizer of po and p does exist in Grd E .

PROOF. Let us denote by V, the vertex of the pullback of £y, .0’, along
itself. Now eY 1 .0’1 coequalizing pb and p, the unique factorization vi:

U12 -&#x3E; V, is a discrete fibration since all the other maps involved in

the universal property are discrete fibrations. Then the associated

equivalence relation of

is the same as the one associated to v1. Therefore all its structural

maps are discrete fibrations and it is consequently possible to get
its quotient o1: U12 --&#x3E; W, which is a discrete fibration. Now the

factorizations of pe and p are again discrete fibrations:

The pair (no,n1) is underlying to an equivalence relation (see Corol-

lary of Proposition 4) of which it is possible to exhibit the quo-
tient p, : U, -- Z, . It is therefore the coequalizer of po and p. Now

£y, .0’1 being a discrete fibration and coequalizing no and n1, it admits

a factorization gn : Z1 -&#x3E; Y, which is a discrete fibration..

Let us now consider the following diagram:
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Ve have just shown that, 8x is a discrete fibration. Let us denote by
h1 the factorization of the 1’1 ’s through the coequalizers eX, and P1.

LEMMA 7. The morphism h1 is final.

PROOF. Let us consider the following squares where ki is a discrete

fibration:

The morphism r1 being final, there is a unique splitting X1: U1 -&#x3E; C,

of the composite square. Let us show that X1.po = X1.p1. Now ki being a
discrete fibration and T,2 being f inal, this last equality is equi-
valent to the following two ones:

which are obviously satisfied. Whence a unique w1: Z, A C, such that

.p, = x,. It is pure diagram chasing to prove that this w1 is the

unique splitting of the square k1.o1 = ,/1 .h1.
Thus we have the required factorization of fi. Its unicity is a

consequence of the diagonality condition..

COROLLARY. Given an internal groupoid Y1 the inclusion

has a left adjoint.

PROOF. Given a functor 11: X, e Y, , the associated discrete fibration

is the g1 of the previous factorization, the universal property being
given by the diagonality condition. 0

Let us end this Section by the following remark:

PROPOSITION 6. In Grd E , the final functors are stable under pull-
back along discrete fibrations.
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PROOF. The result is true in Rel E (Theorem 3). Now let us consider

the following pullback in Grd E, with 8x a discrete fibration and h i

a final functor:

Therefore the following square which is its image by Dec is a pull-
back, where the two horizontal arrows are the required factorizations
of Dec (h1) and Dec (h’1):

By the diagonality condition we have an arrow 111: U1(h1) -&#x3E; U, Ch ; 

making the two squares commutative. Moreover these two squares are

certainly pullbacks since in Rel E the pullback of a final functor

along a discrete fibration is final: indeed, taking the pullback of

Dec (g1) along r, (h’1) would produce another factorization for Dec ().
Consequently the following composite square (*) is a pullback:

Moreover there is an analogous u12; U12(h1) 1 U12(h’1), making the ana-
logous square a pullback:

Consequently the two following squares are pullbacks as closing
squares of pullbacks:
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Now h’1 being final, EY’1,o1(h’1) is the coequalizer of the two lower

maps. Now the square (f) being a pullback, EY1.o1 (h1) is again the

coequalizer of the two upper maps and hi is final.

5. A last remark.

In Grd E we have two factorization systems: the (no-invertible,
xo-cartesian) system and the (final, discrete fibration) system. We

saw that 1(o-C C Df. Consequently, if we denote by F the class of the
final morphisms, we get:

From the characterization of the no-cartesian morphisms, we saw that
these two systems are different. However let us point out that they
are produced from the same situation by two general constructions

which consequently appear to be different.
The initial situation is the following one:

where the functor )o is considered as a left adjoint of dis. Indeed,
in this peculiar situation, oddly the functor ( )o is at the same time

a right adjoint of dis. It is therefore left exact and thus a fibred

reflexion. Now let us consider the following commutative square:
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The functor no is just the extension to the category of algebras of

the functor ( )o: Spl E -&#x3E; E as in the Adjoint lifting Theorem situa-
tion 1121. This is our first general construction.

The second one arises from the following considerations: Let V
be a category with a class E of morphisms, endowed with a 1:"1’-1:

factorization system. Now let (T,k,u) be a triple on V such that

T(E) C E. We define the class EA in the category Alg T of algebras of
T by saying that f is in EA when U(D is in E, where U: Alg T A V is

the forgetful f unctor (with a left adjoint F). Theref ore U (EA) C E . As

a consequence of the adjunction we have F (L.1’) C (EA)+. Now let us

briefly describe how to lift the 1:’1--1: factorization system in V to a

Za’°-Za factorization system in Alg T. Let f: CX,a) A (Y,B) be a

morphism of algebras. Let us denote in the following way the factor-
izations of U(f) and U(T(f) in V:

The morphisms a and B (in V ) yield a morphism y: Z, 4 Zo. Moreover

T(ko) being in E, we have also a morphism 6: Z1 4 TZo. Whence two

morphisms in Alg T:

It is exactly the situation we have got from: V = Spl E , T the triple
generated by the pair Cd,r), Alg T = Grd E, E = ( )o-C the class of

( )o-cartesian morphisms in Spl E and EA = Fd the class of discrete
fibrations in Grd E.

Indeed in the previous construction of the comprehensive factor-
ization, the object U, is clearly of the form (TZo,uZo) and U12 of the

form (TZ1,uZ1). Let us say, without detail, that the pair (po,p1) cor-

responds to the pair (uZo.Tb,Ty). Therefore, if it is possible, as in

the comprehensive factorization situation to exhibit a coequalizer of
the following upper pair in Alg T, in such a way that U(k) lies in E:

then there is a EA-E factorization system in Alg T.
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Consequently, our result in Grd E clearly illustrate the not too
obvious fact that, in general, the extension to the algebras of the

factorization system associated to a fibred reflexion is not the

factorization system associated to the extension to algebras of the

given fibred reflexion.
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