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FINITE OBJECTS AND EXTENSIONAL RELA TIONS
BY Osvaldo ACUNA-ORTEGA

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATTGORIQUES

Vol. XXVIII-3 (1987)

RÉSUMÉ. Dans cet article, on caracterise les cardinaux

finis dans un topos arbitraire au moyen des relations

extensionnelles (Corollaire 11 du Theoreme 10). On y démontre

aussi que l’objet N des nombres naturels est bien ordonn6 dans
le sens suivant:

(Carollaire 4 du Théorème 3).

This paper presents a characterization of the finite cardinals

in any topos by means of extensional relations. In the process we

prove that N the natural numbers object is well ordered in the fol-

lowing sense:

In the boolean case this was proved in [5].

If E is an arbitrary topos, Y E IEI, K(Y) is the smallest

subobject of S?Y that contains

and is closed under binary unions. K*(Y) is the smallest subob,ject of
QY that contains {.}Y: Y 1 S2Y and is closed under binary unions.

OBSERVATIONS.

(i) K+ (Y) = {W E K (Y) |ExEY X E W}.
tii) K+(Y) C K (Y) -- 1 is a coproduct diagram: K(Y) = K+(Y)+1.
(iii) If Y is decidable
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the1. K (Y) is decidable. K (Y) is a boolean subring of 2Y, and moreover
K (Y) is an ideal of 2Y .

The first is obvious, the second is Proposition 3.8 in [11, and

the third is the union of Corollary 3.7 and Corollary 3.9 of [1],

DEFINITION. Let E be an arbitrary topos, Y e IE I, : C YxY a partial
order. If  =  n ( -Dv), then:

(a) (Y,0 is extensional if r: Y -&#x3E; S2Y is monic, where

(b) (Y ,) is strongly inductive if:

(c) (Y,() is strongly transitive if it is extensional and

strongly inductive.

(d) If Xi is a variable of type S2" and x is a variable of type
Y, then "x minimal X, " denotes the formula

analogously define "x maximal X, ".

(e) L(Y) and Lop(Y) denote

and

minimal X1)}

maximal X1)}

respectively.

(f) "Xi is l.or." denotes the formula:

LEMMA 1. Let E be an arbitrary topos, (Y, ) a partially ordered

object, Y decidable. Then K (Y) C L(Y)nLop(Y).

PROOF. It suffices to prove that L(Y) is closed under binary unions
and contains
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(i) It is clear that ro : 1 -&#x3E; QV factorizes through L(Y).
(ii) {.}y: Y -&#x3E; QY factorizes through L (Y) : 

Therefore

(Y is decidable: 1= {x} E 2Y) =&#x3E; {x} E L(Y)).
(iii) L(Y) is closed under binary unions:

On the other hand:

Then we have
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x minimal a nb A y minimal b nI n w minimal ls e a nI I s ;  y)
w minimal I.

Therefore:

Then:

We have proved that K(Y) C L(Y). Replacing  by

and applying the previous argument we have

COROLLARY 2. If E i s an arbitrary topos, Y E IEI I decidable,  C Y,,,Y a

partial order. Then:
(a) If (Y,) is linearly ordered then there exist f,g: K+(Y) -&#x3E; Y

such tha t :

(b) If r: Y -&#x3E; S2Y is such tha t

and r factors through K(’Y) then:

wh ere

PROOF. (a) It follows immediately from Lemma 1,
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THEOREM 3. If E is an arbitrary topos, Y E IEI decidable,  C Y-Y a

linear order and .ff r: Y -&#x3E; QY factors through K (Y). Then there exists

f: (2y)+ -&#x3E; Y such that

Proof. Immediate from Corollary 2.

COROLLARY 4. If E is an arbi trary topos and X E |E| I is a finite

cardinal or the natural numbers object and  C XxX is the canonical

order. Then there exists f: (2x)+ -&#x3E; X such that:

PROOF. Obvious.

Corollary 4 shows that the natural numbers object is well

ordered in the classical sense when E is boolean, this result was

proved in 151.

PROPOSITION 5. Let E be an arbi trary topos, Y E IEI, , K-finite,
decidable and  C YxY a partial order. Then:

PROOF.

COROLLARY 6. Let E be boolean, Y E IElt K-finite and  C YxY a partial
order. Then (Y, ) is strongl y inductive.

PROOF. Apply Proposition 5.
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PROPOSITION 7. Let X be decidable.  C XxX a partial order. II r:

X -&#x3E; itx factors through K (X ) and (X,) is extensional then

PROOF. Consider

Therefore

On the other hand

By symmetry we obtain that

Then:
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Resuming all the preceding arguments we have:

LEMMA 8. Let X be decidable  C XxX a partial order. If r: X .9 QX

factors through K(X) and (X, ) is strongly transitive then:

PROOF. If

we want to prove that S = X :

Therefore:

Since (X, ) is strongly inductive we have that S = X.
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THEOREM 9. Let X be decidable.,  C XxX a partial order. It r: X &#x3E; QX

factors through K(X) and (X, ) is strongly transitive, then (X, ) is

linearly ordered.

PROOF.

The converse is also true. Since complemented non-empty
subobjects of X have a minimum, (X,) is extensional. Let Z be the

imagw of

since 1 = pr, I Z is a finite cardinal in E/X by Corollary 9 of [3], 1

is strongly inductive. It is easy to prove that if 1 is strongly ind-
uctive so is X.

Let Ekfd be the full subcategory of K-finite decidable objects of
E , This category is a boolean topos, see 141.

THEOREM 10. Let X be K-finite decidable and  C XxX a partial order.

If r; X -&#x3E; QX factors through K(X) then the following propositions are
equi valent:

(a) (X, ) is linearly ordered in E.
(b) (X, ) is extensional in E.

(c) (X,() is strongly transitive in E.

PROOF. (c) =&#x3E; (a): Theorem 9.

(a) =&#x3E; (c): X is a finite cardinal and by Corollary 9 of 13) we

have that (X, ) is strongly inductive. Since (X,) has a successor

function (Proposition 2 of 131), then it is extensional .

(b) =&#x3E; (a): by Proposition 1 of [2] we know that (X,) is

linearly ordered in E iff it is linearly ordered in Ekfd. On the other

hand applying Proposition 5 to (X,) in EkEd we have that (X,) is

strongly inductive in Ekfd and by Theorem 9, (X,) is linearly ordered
since K(X) = 2x and (X,) is extensional in Ek f d.

(a) =&#x3E; (b): already proved.

In [2] we defined X to be a finite cardinal when K is K-finite,
decidable and linearly ordered.
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COROLLARY 11. Let X be a K-finite decidable object of E . The

following propositions are equivalent:
(a) X is a finite cardinal.

c’b) T’here exists  C XxX a partial order such that (X,) is

extensional in E and r: X 1 QX factors through K(X).
(c) There eyists  C XxX a partial order such that (X,) is

strongly transitive and r: X i Qx factors through K(X).

REFERENCES.

1, 0, ACUNA-ORTEGA, Finiteness in Topoi, Dissertation, Wesleyan Univ,, Middle-

town, Conn,, May 1977,
2, 0, ACUÑA-ORTEGA , Cardinales finitos en un Topos arbitrario, Mate, Costarri-

Cense, J, Asoc , Mate, Costar, , 1-1 (1984),
3, 0, ACUÑA-ORTEGA, An exact coexact characterization of the finite cardinals, J,

Pure &#x26; Appl, Algebra (to appear ) , 
4, 0, ACUÑA-ORTEGA &#x26; F, E, J, LINTON, Finiteness and decidability I, Lecture Notes

in Math, 753, Springer (1985), 80-100,
5, M, I, SOLS, Bon ordre dans des nombres naturels d’un topos booléen, C,R,A,S

Paris 281 1 (1975), 601-603,

Escuola de Matematica

Universidad de Costa Rica

Ciudad Universitaria "Rodrigo Facio"
COSTA RICA, AMERICA CENTRAL


