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CORRIGENDUM AND ADDENDA TO THE PAPER
"CONVENIENT VECTOR SPACES EMBED..."

by A. KOCK and G.E. REYES

CAHIERS DE TOPOLOGIE
ET GÉOMÉTRIE DIFFERENTIELLE

CAT-OGORIQUES

Vol. XXVIII-2 (1987)

RESUME, Dans cet article, la construction du plongement de
la catégorie E. des "bons" espaces vectoriels dans le topos des
"Cahiers" faite dans 1’article indiqu6 dans le titre est corrig6e,
et le principal r6sultat de cet article est am6lior6 en montrant

que ce plongement préserve toute la structure cart6sienne ferm6e

de la cat6gorie E.

The main assertion of W, namely that convenient vector spaces
embed nicely into the Cahiers topos, is correct and follows indeed

from the "Weil prolongations" developed in that paper. However, the

attempted shortcut which the author of [*] made, in describing a site
of definition for the Cahiers topos as a semi-direct product faW
arising out of Weil prolongation, is an error. The site thus cons-

tructed has the right objects, but too few maps.
It is possible to put in the missing maps in the spirit of the

semidirect product construction (a "twisted" semidirect product). But
since this is quite unelegant, we prefer to give the embedding cons-
truction in terms of a more standard description of the site of def-
inition for the Cahiers topos, namely by describing as certain

category D- of C- rings.
Besides correcting the embedding construction of [*], we improve

its main result by proving that the embedding preserves all expon-
entials Y’ of convenient vector spaces (where [*] only dealt with the
case where X is finite dimensional).

As site of definition for the Cahiers topos, we take the (dual

of) the full subcategory Q of the category of C- rings of form

C°°(R*)@W, where k E It and W is a Weil algebra. Thus there is a

faithful functor, bijective on objects

sending (Rk,W) to C°°(Rk)@ooW.
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The main construction in [*] is that of Weil prolongation of a
convenient vector space, which takes form of an action of ï. on F-
(= category of convenient vector spaces and their smooth, not neces-
sarily linear, maps), i.e., a functor

cf. [*] Theorem 3.1.

We shall extend the action (2) to an action by E J W,

In fact, we shall ultimately have, for C = CC°°(Rk)@°°W,

note that em (Rk,X) is convenient if X is, so C°°(Rk,X)@W makes sense as
a convenient vector space.

The right hand of (4) is functorial in X E F, but not a priori
functorial in the Invariable C°°(Rk)@°°W ; so we shall give a more

intrinsic description of XOC. If V = Cm(R A) / I, we have C = C°°(Rk+1)/I*,
where I* is the ideal in C°°)(Rk+1) generated by I C C°°(R1) C Cm (Rk+1).

We put

(notation of If) §2).

This is well defined as a vector space, and for trivial reasons

functorial in C (a fact that does not depend on the special nature of
the ideal I* that defines C). Also, it is functorial in the X-variable

with respect to smooth linear maps. We shall make (5) functorial (as

a set, to start with) in the X-variable with respect to arbitrary
smooth maps.

For this, we shall need the following considerations. In [**],
Theorem 2.11, we proved that for I = mr C C-(R-1) (= ideal of func-

tions that vanish to order r at 0 E Rl), and for Y convenient, the

following conditions on g: Rl e Y are equivalent:

(ii) g can be written g(s) = E ki (s). hi (5),
with hi: RI e R in I, and ki ; RA e Y smooth.
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These conditions in turn are equivalent to

for all

where A is the set of multi-indices in X variables of degrees  r.

(The equivalence of (iii) with (i) and (ii) follows from [**], Theorem

2.12, say.)

We prove, for any Weil ideal I 3 ml’, and any convenient vector

space X:

PROPOSITION 1. Let f: Rk+l -&#x3E; X . Then

PROOF. For the special case I = mr, this is almost immediate from the

above: if f" E I(C°°(Rk,X)), we have, by (i) 4 (ii), that

so

with h, e 1,

with hi E I,

and this immediately implies f E 1* (X). Conversely, if f E I*(X), one

clearly has f(t,-) e I(X) for any t E Rk, so

for any and

so Daf^(0) = 0 in C-(R",X), whence by (iii) =&#x3E; (i), fr E !(Cm(Rk,X».

The general case I J mr is derived from the special case by
some finite matrix calculations, replacing (iii) by some other system
of linear equations in the Taylor coefiicients Dag(0) : consider the

exact sequence of finite dimensional vector spaces

we identify it with an exact sequence of form
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by identifying f c C"I(R-1) (mod mr) with the A-tuple Lx, where f. =

(1/|a|!)Daf(0), and by picking a base for 11m" consisting of polynom-
ials of degree  r :

The aia’S form the entries of the matrix a in (6). The matrix c is

constructed in some arbitrary way to make (6) exact. For an f: R’ e R

to belong to I, it is by the exactness necessary and sufficient that
the Taylor coefficients 1;, satisfy the linear equations

for all

More generally, if f: Rl e Y, and f E I(Y), then (ill’) holds; for it

suffices to test with y’s in Y’, and (çof)a = y(fa). (The converse

implication also holds.) The exactness of (6) is preserved by tensor-
ing with any vector space Y. This means that if (ya)aEA is an A-tuple
of vectors in Y, and E ya, Cai, = 0 for all it then there exists a B-

tuple (Zi) iEB of vectors with

for all

and conversely.
Now consider f: Rk+l -&#x3E; X. If fr satisfies (*), we know that the

A-tuple fra e C°° (Rk,X) satisfies ZaeA fa Ca,f = 0 for all j, and so there
exists a B-tuple Z;J. E C°°(Rk, X) with f"’l1l = r:J. Zi, aia. Then, with =

denoting congruence mod mr(C°°(R k, X)),

with hi E I.

By what has been already proved for m", this implies

and the right hand side here is in I*(X). So f E I*(X).

Conversely, if t’ E I* (X), one has f (t,-) E I(X) for all t E Rk, so
the f(t,-)« ’s satisfy

for each and

The Taylor coefficients f^a E C°°(Rk,X) of f" thus satisfy (iii’), and

hence, as in (7) above
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mod

with Ai E I, and this implies f^E I(C°°(Rk,X)).

(Note that, from the very form of the conclusion of Proposition
1, the result will hold, not only when I is a Weil ideal, but also

when I is of the form J* with J a Weil ideal.)

Proposition 1 allows us to sharpen a result (Proposition 2.1) of

If).

COROLLARY 2. Let I be a Veil ideal, and g: X -&#x3E; Y smooth. Let f i f2:

R k *-1 -4 X. If f1=f2 mod I*(X), then gofi z gof; mod I*(Y).

(For a further sharpening, see Proposition 9 below.)

PROOF. By the proposition, f? " == f2’ mod I(C°°(Rk,X)). Since

is smooth, we get by Proposition 2.1 of W J that

mod

The function Rk+A e Y corresponding to g,,oft- is gof, , so by
Proposition 1 again we get

mod I*(Y).

The Corollary 2 implies that the construction (5), as a set,

depends functorially on X Ë E. With the obvious functoriality in C, it

is in fact a bifunctor

By Proposition 1, and by C°°(Rk+l, X) = C°°(Rl, C°°(Rk,X)) we get an

isomorphism
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This isomorphism is natural in X. The right hand side, as a functor
of X E F, takes, however, values in E, by W. The isomorphism thus
provides the left hand side with the structure of a convenient vector

space, functorially in X 6 E. To produce the bifunctor (3) with values

in E, it remains to be seen that if y: C, 4 C2 is a homomorphism in

D, then the induced map X0Ci fl XOC2 is smooth. For this, we need

LENNA 3. Let I C C°° (Rl) be a Veil ideal. The canonical map

is smootb linear, and has a smooth linear section,.

PROOF. It is smooth linear, because "picking Taylor coefficients

depends smoothly on f ". To provide a section, pick a linear section
0’ of C°°(Rl) e W, which amounts to picking a finite set of smooth

functions gj : RA e R (j = 1,..., m, where m = dim W). Then under the

identification XOV = X" (which furnished XOV with a convenient

structure, cf. [*]), a smooth linear section of (9) is provided by

Let I be as in Lemma 3, let I* C cw (Rk+l) be the ideal it gener-
ates, and let C = C°°(Rk+1)/I*, as usual. Then

LEMMA 4. The canonical map

is smooth. linear, and has a smooth linear section.

PROOF. By construction of the convenient structure on XOC, the map n’

participates in a commutative square, with smooth horizontal

isomorphisms,

But the map x is smooth with a smooth section by Lemma 3 (applied
to C°°(Rk,X)). Thus n’ has also these properties.
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PROPOSITION 5. Let y: C1 -&#x3E; C2 be a morphism in D. Then X@y:

XOCI -&#x3E; XOC2 is smooth (and linear).

PROOF. If C°°(Rk+1) -&#x3E; C, and C°°(Rk’+1’) -&#x3E; Cz are presentations, y lifts

to an algebra homomorphism C°°(Rk+1) e C°°(Rk’+l’), which in turn is

induced by a smooth map g : Rk’+l’ -&#x3E; R*+l Thus y sits in a commutative

square

the top map is thus smooth linear. By Lemma 4, n’ has a smooth

linear section, and this displays the bottom map as a composite of

three smooth linear maps.

This proposition was the last missing piece in providing the

construction (5) with the structure of a bifunctor FxD -&#x3E; F. This

bifunctor extends the bifunctor FxW -&#x3E; F ("Weil prolongation") of 1*1

S2; our next task is to extend the "transitivity law", [*], 3.1, that

is to produce an isomorphism

natural in X E F, and C, , C2 e D. For C1, C2 free algebras, i.e. of form

C°°(R*) and C°°(R"), respectively, C,8caC2 = C°°(R). In this case, the

construction of (10) is immediate, since

(naturally in X).
We note that we have, for C = C°°(R*) a free algebra,

(exponential object). We can therefore get an interchange isomorphism

in view of (12), this follows from the isomorphism
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of 1*1 (p. 14, line 1). This is natural in X, as well.
But every object C of Q is of the form C°°(Rn)@W, and so the

existence of an isomorphism (10), natural in X, follows purely
formally from the two special cases: 1) where the Ci’s are Weil

algebras (this case was proved in [*]), and 2) where the C.,,’s are

free (cf. (11); in conjunction with the interchange isomorphism (13).

We shall now prove that the isomorphism (10) constructed is

also natural in C1 and C2 E D. This is almost clear for the case of

free algebras. For algebra homomorphisms C°°(Rn) -&#x3E; C-(R") correspond
bijectively to smooth maps R, -&#x3E; R" ; so by (12), the isomorphism (10)

is just the isomorphism

which is certainly natural in Rm, R" (with respect to smooth maps).
For the general case, we first note that (10) is natural with

respect to the homomorphisms

which present C1 and C2 - simply inspect the construction of (10).

Now the general case can be seen as follows. Let yi : C, e Ci’

(I = 1, 2) be homomorphisms, let F1 -&#x3E; C1, F1’ -&#x3E; C, ’ etc. be the canon-

ical presentations, with the Fi’s free. The homomorphism yi can be

lifted to homomorphisms 0i between the Fi’s. There arises, for the

given X, a commutative box containing the desired naturality square
for (I.., y2) as bottom, and the already available naturality square
for the (01, 02) as top. The sides are commutative, and

is surjective, being of the form

So the bottom is commutative. This proves the naturality of (10).

We let C denote the "real" Cahiers topos (in contrast to the

"faulty" one of [*]), so C,---4 Sets°. The "real" embedding F -&#x3E; C may
now be described by describing the composite
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as the functor J’: F -&#x3E; Sets° which is exponential adjoint to the

action (3), or rather, to the composite

where # is the underlying-set functor.
So, explicitly, if X is a convenient vector space, and W E W,

The fact that the values of J’ are sheaves is proved as in [*],
and since the inclusion C 4 SetsD preserves exponentials and

products, it makes no difference for the statements and proofs we are
going to make whether we consider J’: F. e C or J’: F -&#x3E; Sets°. So we
make the statements for C, the proofs for Sets°.

We can now state and prove Theorem 5.2 of 1*1 in the form in

which it was intended; furthermore, we strengthen it on the issue of

exponentiation:

THEOREM 5.2’. The functor J’: F -&#x3E; C is full and faithful. It preserves
finite products, and it preserves all exponentials.

PROOF. Some of this can be derived from Theorem 5.2 of [*] by means
of the inclusion functor (1), as we shall now indicate. (An alternat-

ive approach is to proceed in analogy with the proofs of [*],) First,
we have

PROPOSITION 6. Let (Rk,W) E faW, and let Y E F. Then

PROOF. An element on the left hand side is by definition a pair
consisting of a smooth map R k 4YOW and a Weil algebra homomorphism
R A W; the latter is unique, so the data is equivalent to an element

of

the isomorphism here because of (14).

From Proposition 6, we get the commutativity of the following
diagram of functors (up to isomorphism), where J is the embedding of
W.
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Since by Theorem 5.2 of 1*1, J is full and faithful, and since ix is

faithful (i being bijective on objects) J’ is full and faithful. Simil-

arly, since J preserves products by loc. cit., and 11 preserves pro-
ducts and reflects isomorphisms, J’ preserves products.

The proof that J’ preserves exponentials depends on

PROPOSITION 7. Let A E Il. Then

wbere A’ is the object in Sets° represented by A.

PROOF. This is a purely formal consequence of the transitivity of the
action 0: let B E p. Then

J’(XOA)(B) = #((X@A)@B) =, #(X@(A@°°B)) = J’(X)(A@°°B) = J’(X)A^(B),

the last isomorphism by a well known calculation of how to exponen-
tiate by a representable object in a presheaf category whose index

category has binary coproducts @°°. This proves the proposition.

We shall also need the following strengthening of formula (14):

PROPOSITION 8. For any X, Y E F and A E D, we have

PROOF. Let A = C°°(Rk)@ooW. Writing C°°(Y, X) for Xy, we then have

This proves the proposition.

Now we consider an arbitrary exponential Xy = C°°(Y,X) in E. For
A E Q arbitrary, we then have
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Thus

and the last assertion of the theorem is proved.

We finish by presenting a generalization of Proposition 2.1 of

141. Recall that C°°(Rn) carries a standard (Frechet-) topology, and

recall (from lKR] say) that closed ideals are exactly the "W-deter-
mined" or "near-point determined" ones.

PROPOSITION 9. Let I C C°°(Rn) be any closed ideal. If fi z f2 mod I

(where fi : Rn -&#x3E; X), then we h a ve

for any smooth g: X 4 Y. (Notation as in [*], §2.)

PROOF. As in [*), it suffices to consider the case Y = R. We must

prove gof1 - gof2 E I C em (Rn). Since the ideal I is near-point deter-
mined, it suffices (by definition of this phrase) to prove that any

algebra homomorphism 0- from C°°(Rn)/I into a Weil algebra W annihil-
ates (gofi - gof2) + I. If V = C°°(Rl)/J, 6" comes about from some cm-

algebra map C°°(Rn) -&#x3E; cm CR.1) , and thus from a smooth map 8 : R l -4 R n.

By Proposition 2.1 in [*]. we have a commutative diagram

Now f, and go to the same in C°°(Rn,X)/I (X), Since 0- is linear, it

follows that 0- (gof1 - gof2) = 0. This proves the proposition.

Note, however, that for a general closed ideal I, we have not

(yet) defined C°°(Rn,X)/I(X) as a convenient vector space, only as a

vector space.
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