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HOMOTOPY GROUPS OF SMALL CATEGORIES
AND DERIVED FUNCTORS

by Marek GOLASI0144SKI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFTRENTIELLE
CATÉGORIQUES

Vol . XXVIII-2(1987)

RESUME. Dans cette Note on montre que les groupes d’homo-

topie pn(C) d’une cat6gorie pointée C peuvent 6tre réalisés

comme foncteurs d6riv6s du groupe fondamental. On examine aussi

le cas relatif.

INTRODUCTION.

In [15], Thomason showed that all homotopy types could be

represented by categories, more precisely that the homotopy category
of small categories is equivalent to that of CW-spaces. Other

algebraic models for homotopy types are known, for instance simpli-
cial groups model all connected pointed homotopy types. The import-
ance of the homotopy types of small categories is, however, due more
to the fact that in many situations, and especially in algebraic K-
theory, a homotopy type, comes most naturally in the form of a small

category. Many authors have passed from a small category to its

nerve and thus to its classifying space, but this is known not to be

necessary and as the category encodes the information more directly,
it may even be a hindrance to interpreting the homotopy groups of

the category in terms of the original algebraic and geometric pro-
blem. It should perhaps be mentioned that Grothendieck in [8] essen-

tially expresses tha above opinion and puts Cat, the category of

small categories, into pride of place amongst the possible settings
for algebraic models of homotopy types.

One is therefore led to consider the question of calculating, in

hopefully as direct a way as possible, homotopy invariants of categ-
ories. In particular, if C is a pointed category, it would be useful

to be able to obtain new descriptions of its homotopy groups. In this

Note we give a description of 7(n(C) as the n-lst derived functor of

the fundamental group functor Tri with respect to the class of all
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free categories. Here we are using the language of simplicial derived
functors as developed by Barr-Beck (cf. 121), Tierney-Vogel [16] and

Keune (101.

These homotopy ö.Luup6 al1d. in fact d useable internally defined

homotopy theory for small categories based on cubical methods has

been developed by Evrard [5] and the author 161. This theory
naturally leads to a notion of a fibration of categories [4] and this

is used here to obtain a relative form of the description mentioned
above. This should have applications to relative K-theory and possi-
bly to the more recent developments in the multirelative theory if

applied to Quillen’s Q-construction in [13].

BACKGROUND.

Let C be a small category, Ab the category of .abelian groups
and C-Mod the category of all C-modules (i.e., all functors from C to
Ab). Put H"(C,M) for the rrth cohomology group of C with coefficients
in M. Then there exists an isomorphism

for

(cf. [11], [14] and [17]), where ZC denotes the ringoid of T over the
integers Z [11] and AZ the constant functor determined by Z. In

particular,

H"(C,M) can also be described by n-fold extensions (cf. [7]).

A derivation (cf . [9] and (11) from C to M is a mapping d such
that

a) d(f) E M CC’ ) , for f: C -&#x3E; C’,
b) d(f,g) = d(f) + fd(g), where f and g are composable maps of

C and we have written fd(g) for M(f)(d(g)).

We note that if r assigns to each C E |C| a r(C) E M(C) , then dr

given by dr(f) = r(C’) - f l’ (C), for f: C -&#x3E; C’ is a derivation from

to M. A derivation of this form is called an inner derivation [11].

Denote by Der(C,M) and Int(C,M) the abelian groups of all derivations
and all inner derivations, respectively. There are actually functors
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REMARK [9]. There is a natural isomorphism

This is clear, since derivations are just cocycles and inner

derivations are coboundaries in a suitable cochain complex [17].

Now let ZX denote the free abelian group generated by X. Then

we can define a C-module ZCa|C|ZC(C,-), The augmentation ideal I(C) is

given by the exact sequence

where E is the augmentation C-module map. One can easily see that

I(C)(C) is the free abelian group generated by the set of elements

idc - f, for all maps f: C’ -&#x3E; C. I(C) represents the functor of deriv-
ations from C to M by the following lemma.

LEMMA 1.2. There is a natural isontorphism

given by y(o)(f) = 0(C’) (idc.-f), for 0 E C-Mod(I(C), M) and a map f:

C -&#x3E; C’.

PROOF. We define

the inverse of V by

for

Then

and

It suffices to prove that y(0) is a derivation if g is a C-module map
and 6(d) is a C-module map, if d is a derivation. If 0: I(C) e N is a

C-module map then the following diagram is commutative:
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f or each map f; C’ -) C". Hence

for a map g:C-&#x3E; C’, but

and

Therefore

The second implication is also straightforward.

LEKKA 1.3. If C is a free category on free generators fi.: C i -&#x3E; C’i for

i E I, then each derivation d from C to M is uniqely determined by
the family {d (fii)}iCI of its values on the generators.

PROOF. By definition, the free category C consists of the paths

in the generators. The composition of two paths is obtained by juxt-
aposition. Now a derivation d satisfies the equation

for composable maps f and g. Therefore, d is completely determined by
its values d(fi) E M(C’i) on the free generators fi.

Conversely, given mi E M(C’i) we may set d(fJ.) = mi and define

d(f) by induction on the length of the path f by the formula

if fi and f are composable.

By Lemma 1.2 the derivations d from C to M correspond one-one
to the C-module maps y; I(C) -&#x3E; M. In particular
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Thus the lemma above states that the C-module maps y are determined
in one-one fashion by their values on idc. i - fi E I (C) (C’i). Hence for

each exact diagram of C-modules

there exists a C-module map x: I (C) -&#x3E; M such that 0.X = ç. This means
that I(C) is a projective C-module. One concludes

PROPOSITION 1.4. For a free category C, Hn(C,M) = 0 for n &#x3E; 1.

This sort of result has also been obtained by Mitchell [11]. but
here we give an explicit proof of the above proposition. Using these
methods one can also prove that for a free groupoid C, H"(C,M) = 0,
for n &#x3E; 1.

Now let (ArC)-1C be the fundamental groupoid of a pointed small

category C and M an (ArC)-1 C-module. Then the canonical functor p;
C 4 (ArO’"’’C determines an isomorphism

(i.e., H°((ArC)-1 C, M) = H°(C, M.p)). Similarly

and

Therefore

If C is free, then by Proposition 1.4

for

Of course, the functor p:C-&#x3E; (ArC)-’C induces also isomorphisms of

the following homotopy groups

and
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Therefore, by Quillen’s result [12] the functor p is a weak homotopy
equivalence (i.e., the induced map of the classifying spaces is a

homotopy equivalence). But functors r. vanish on groupoids, for n &#x3E; 1.

Finally, one concludes:

PROPOSITION 1.5. For a free category C, pn(C) = 0 for n &#x3E; 1.

THE MAIN RESULTS.

Put Grph* for the category of pointed graphs. The underlying
graph functor U: Cat* e Grph* has a left adjoint F: Grph* -&#x3E; Cat*, the
free category functor. Following Tierney-Vogel [16] and Keune [10] we

can construct for each pointed small category C a free simplicial
resolution (unique up to homotopy) e: C* -&#x3E; C (i.e., C* is free and

U(C*) -&#x3E; U (C) an aspherical object in Grph*). We refer the reader to

(3) for the basic results on the homotopy theory of simplicial
groups.

LENNA 2.1. For any pointed connected small category C there exists an
isomorphism

.for n &#x3E; 1,

where pn-1 p1, (C.)) is the (n-1)-st homotopy group of the simplicial
group n 1(C*).

PROOF. Let E: C* -i C be a free simplicial resolution of C. Applying
the nerve functor N one obtains a simplicial resolution of the sim-

plicial set NC, NE: NC* -i NC. By Artin-Mazur [1] there exists a

spectral sequence 

But, by Proposition 1.5, pk(Cn) = 0, for k &#x3E; 1 and n &#x3E;, 0. So this

spectral sequence collapses and pn-1(p1(C*)) = pn(C).

Now let LFnp1 be the n-th left-derived functor of p1 with

respect to the class F of all free categories, for n &#x3E; 0 (cf. (10).

Summarizing the above, we obtain:
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THEOREM 2.2. For any pointed connected small categor7 C there exist

an isomorphism
.for n &#x3E; 0.

Let e’: G*C fl C be the free cotriple resolution of C 121, ’then by
the Comparison Theorem 1101 there exists a map of resolutions

Using the methods of Lemma 2.1 we deduce that

for n &#x3E; 1

and finally n, (y) : n, (G*C) -&#x3E; n, (C*) is a weak homotopy equivalence of

simplicial groups. Therefore E’: G*C -&#x3E; C can also be used to calculate

(LFnp1) (C).

Moreover, if f.- 4: e (t, in Gtfl is surjective (i.e., U(i) is surjec-
tive in Grph*) then so is G*f: G*C -&#x3E; G*C’ and we also put f* : C* e C*’

for this simplicial map.
Let Fhf be the homotopy fibre of f (cf. C4D and Fhf.* a simpli-

cial category such that (Fhf*)n = Fnfn, for n h 0 and its simplicial
structure is determined by that of 0. and C*’. Then we obtain the

following commutative diagram

Each functor fn: Cn -i Cn’ is surjective and Cn’ are free, hence there

exists a functor Sn: Cn’ e Cn such that fn.sn = idcn’.

Therefore, 11:1 (fn): n, (Cn) -&#x3E; n, (Cn’) is surjective, for n ; 0 and

wr (f*): n, (C*) e zi (C*’) is a surjection of simplicial groups. Applying
the homotopy long exact sequence for each functor f": Cn e Cn’ we

obtain by Proposition 1.5 short exact sequences



96

and nk(Fnfn) = 0 for k &#x3E; 1 and n h 0. Finally, we have that Ker p1 (f*)
= p1 Fn(f*). But bv [10] the n-th relative left derived functor of p1 

is given by

Hence

Ve note that E": Fnf*-&#x3E; F,,f’ is surjective and from the above that

for and n = 0,1,....

Therefore, using the methods of Lemma 2.1 we obtain an isomorphism

for n &#x3E; 1.

Finally, we have

THEOREM 2.3. If f: C -i C’ is surjective and 0 is connected, then there

exists an iso111orphism

for

In particular, if f.’ C e 4;’ is a fibration (in Evrard’s sense

[4]) and C’ is connected, then f is surjective and pn(Fnf) = pn(Ff)

for n &#x3E; 0 (cf. 141), where Ff is the fibre of f. Summarising, we have

COROLLARY 2.4. If fl’ G: -&#x3E; C’ is a fibration and C’ is connected, then

there exists an isomorpbism

for

and the Keune sequence for f (cf. [10]) is isomorphic to the homotopy
long exact sequence.

I am indebted to T. Porter for suggesting Theorem 2.3 to me and
his invaluable help and advice. I would also like to thank G.J. Ellis

for his helpful discussions. Finally, I am grateful to the University
College of North Wales, Bangor, and specially R. Brown for my one

year financial support where this paper has been finished.



97

REFERENCES.

1, M, ARTIN &#x26; B, MAZUR, On the Van Kampen Theorem, Topology 5 (1966), 179-189,
2, M, BARR &#x26; J, BECK, Homology and standard constructions, Lecture Notes in

Math, 80, Springer (1969), 
3, E, B, CURTIS, Simplicial homotopy theory, Adv, in Math, 6-2 (1971), 107-209,
4, M, EVRARD, Théorie de l’homotopie, Preprint,
5. M, EVRARD, Homotopie des complexes simpliciaux et cubiques, Preprint,
6, M, GOLASINSKI, Homotopies of small categories, Fund, Math, CXIV (1981), 209-

217, 
7, M, GOLASINSKI, n-fold extensions and cohomologies of small categories (to

appear),
8, A, GROTHENDIECK, Pursuing stacks, Preprint,
9, G, HOFF, On the cohomology of categories, Rend, di Mate, VI, 7-2 (1979), 169-

192,
10, F, KEUNE, Derived functors and algebraic K-theory, Lecture Notes in Math,

341, Springer (1973), 166-176,
11. B, MITCHELL, Rings with several objects, Adv, in Math, 8, 1 (1972), 1-161,
12. D, G, QUILLEN, Homotopical algebra, Lecture Notes in Math, 43, Springer

(1967),
13, D, G, QUILLEN, Higher algebraic K-theory, Lecture Notes in Math, 341, Springer

(1973),
14, G,B, SEGAL, Categories and cohomology theories, Topology 13 (1974), 293-312,
15, R, W, THOMASON, Cat as a closed model category, Cahiers Top, et Géom, Diff,

XXI-3 (1980), 305-324,
16. M, TIERNEY &#x26; W, VOGEL, Simplicial resolutions and derived functors, Math, Z,

111 (1969), 1-14,
17, Ch, E, WATTS, A homology theory for small categories, Proc, Conf, on Categor-

ical Algebra, La Jolla 1965, Springer (1966), 331-335,

Institute of Mathematics
Nicholas Copernicus University
ul, Chop ina 12/18
87-100 TORIJN , POLAND


