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CA TEGORIES OF MODULES IN
SYNTHETIC DIFFERENTIAL GEOMETRY

by David N. YETTER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFERENTIELLE
CAT2GORIQUES

Vol. XXVIII-2 (1987)

RÉSUMÉ. On montre que dans tout mod6le d’une version

faible des axiomes de la Géométrie Diff6rentielle synth6tique, la

sous-cat6gorie pleine de R-mod form6e de tous les modules v6ri-

fiant la forme vectorielle de 1’axiome 1W ou de 1’axiome 1 (ou

d’autres axiomes de force intermédiaire) est une classe de

Serre. Si le topos sous-jacent est de Grothendieck; et dans le

cas de 1’Axiome 1 dans un topos avec NNO, cette sous-catégorie
pleine est ref lexive, et comme cons6quence a une structure mo-
noidale sym6trique. On examine le comportement de ces modules

par rapport aux foncteurs produit fibr6 et on caractérise les

applications lin6aires comme les applications point6es sur un

voisinage infinitésimal de 0.

INTRODUCTION.

Classically, in both differential and algebraic geometry, modules
over "the line", whether R or C, arise with tremendous frequency: as
fibres of various bundles, as elementary examples of manifolds or

affine varieties, as underlying modules for algebras of functions, and
so forth.

One property of such modules, usually overlooked as obvious, is

that when endowed with their usual differentiable structures they are
isomorphic to their own tangent fibre at any of their points, in par-
ticular at 0. It is, however, this very property which is the fullest

justification for the classical name of "vector spaces".

In the context of synthetic differential geometry (SDG), Kock’s

121 "vector form of Axiom 1" may be restated as:

---------------
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"The map X - X.° transpose to the multiplication map XxD -4 X is

an isomorphism, where D is the generic tangent vector and C-) .°

denotes the object of pointed maps (0 serving as the point of X)".
Thus modules satisfying this property may be regarded as

"vector spaces" over the line. In [4] the author studied the pro-

perties of the category of such modules, showing in particular that

they form a reflective, exactly embedded, full abelian subcategory of

the category of R-modules closed under extensions, whenever R

satisfies Axiom 1 and D is tiny (i.e., (-) .° has a right adjoint).

This paper extends the result of the author’s dissertation to

Veil prolongation functors other than the tangent-bundle functor. In

particular it is shown that modules satisfying a "vector form of

Axiom lw" form a Serre class, and in Grothendieck topos models of

SDG, that this full subcategory is reflective.

1 , DEFINITIONS AND MODELS,

Throughout we fix a topos of discourse, E, defined over a

boolean base topos B, and a field object K in B. When it is

necessary to assume that E is a Grothendieck topos, we will tacitly
assume B = Sets.

DEFIHITION 1. A Weil algebra is a finite dimensional commutative K-

algebra W which decomposes as K*I, where K is the subalgebra gener-
ated by 1, and I is a nilpotent ideal (i.e., for some n E N any rrfold

product of elements from I to 0).

DEFINITION 2. For W a family of Weil algebras in B, a commutative

ring R in E is a 4/- line if it satisfies 

L1. For all W e W, the map Ritc:W -i R’sP*clw) is an isomorphism,
where Spec(V) is the object HomR-alg (ROKW,R) in E and this map is the

transpose of the evaluation map.
and

L2. For all V E W, Spec(W) is tiny (i.e., (-)Spec(W) has a right
adjoint).

DEFINITION 3. If R is a 41-line, an R-module X is a 41- vector space it
it satisfies:

V1. For all W E W, the map cxx,w: XOKW -4 XSpec(W), transpose to
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idx .EVROW: (XOKW) x Spec(W) = (XOR (ROKW)) x Spec (W) -- X,

is an isomorphism.
We denote the full subcategory of R-mod whose objects are all

W-vector spaces by G!-v ,s .

Note that Spec (K) = 1, and thus all R-modules are {K}-vector

spaces, while by tradition Spec (K [E]/E2) is denoted D, and thus {D}-

vector spaces are the R-vector spaces of Yetter [3] . The example of
W = {1) may make the use of the name "vector space" seem abuse, but
as this example is also the trivial case of all theorems contained

herein, it may safely be ignored.

Before proceeding to examine the structure of W- v.s, for various

V, it is appropriate to mention some models for alines. If K is any
field in a boolean topos, the generic K-algebra in the classifying
topos for K-algebras is a 41-line for W the class of all Weil

algebras over K. Likewise, the synthetic line in any of the standard

models of SDG (the Dubuc topos, cf. [1]; etc.) is a 4/--line for W the

class of all Veil algebras over R. Further models may be constructed

using the techniques of Yetter [4].

It is also appropriate to provide some separating examples. In

any of the models above, the following are not W-vector spaces: any
R-module which is Spec (W) -discrete (in the sense of Yetter [4]) (e.g.,
the Spec(W)-discrete reflection of any R-module) for any W E W; the
submodule of X generated by the image of all pointed maps W 4 X for
V E W, when X is any R-module; and the free R-module on any object
A, which is not Spec(W)-discrete for all W E G,I. If, however, A is

Spec (W)-discrete for all V E W, then the free R-module on A is a tJ-

vector space. (Verifications are easy and left to the reader.) On the

other hand we will see that there are other examples of W-vector

spaces.

THE STRUCTURE OF W-v.s. C R-mod.

Throughout we now fix the family W of Weil algebras, and a W-
line R.

Rather than examine the inclusion functor directly, we first

consider the functors (- ) OKW and (-) spec(M) considered as endofunctors
on R--mod.
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LEMMA 4. The functors (-)OKW and (-)Spec (W) are both exact.

PROOF. For the first, W is a flat K-module. For the second, let

be an exact sequence in R-mod. Consider the result of applying
(- ) spec (W). Exactness at ASpec (W) and at CSpec(W) are evident since any

exponential functor preserves monics, while by tininess of Spec(W),
its exponential functor preserves epis. Of course, the resulting
sequence is exact at BSpec (W) since

is 0 precisely when o factors through Ker(B) = A.

We are now ready to prove

THEOREM 5. W-v.s. is an exactly embedded abelian subcategory of

R-mod ; moreover it is closed under extensions.

PROOF. After observing that the maps ax,.: XeKW e XSpec(W) are natural

in X, the theorem follows almost immediately from Lemmas 4 and 6.

LEMMA 6. If F and G are two exact endofunctors on an abelian

category A, and 6: F e G js a natural transformation, then the full

subcategory of objects A such that d A is an isomorphism is an exactly
embedded abelian subcategory closed under extensions.

PROOF. An easy exercise in the use of the 5-Lemma.

In order to construct the reflection functor in the case where

E is a Grothendieck topos, it is necessary to introduce an altern-

ative characterization of W- vector spaces. Throughout the following
if A C B is a pair of objects, and X a pointed objects, then X(A,B)

denotes the subobject of XB consisting of all maps which map A to

the point of X. Modules are always pointed by 0.

LEMMA 7. If W is a class of K- Weil algebras closed under quotients,
R a W- line, and A an R-module such that for all W c W.
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A - A(Spec (W/u&#x3E;), Spec (W))

is an isomorphism whenever p E Iw n-’ - {0}, where Iw is the nilpotent
ma.ximal ideal of W snd I." = 0, and the map is the map induced on

kernels in the diagram

then A is a W- vector space.

PROOF. We proceed by induction on dim (W). Let

Thus for A to be a 41-vector space is equivalent to being a Wk-

vector space for all k e N. We proceed by induction on k.

For k = 1, any W E W, is isomorphic to K, and thus

Spec(W) = 1, so any R-module is a W1 -vector space.
Now suppose we have shown that A is a Wk-vector space.

Let V e Wk+1 - Wk and p E IWn-1 - {0}, where Iw " - 0. Consider the

diagram

The right hand vertical is an isomorphism by our induction

hypothesis, the left hand is an isomorphism by hypothesis, and thus
by the 5-Lemma the middle vertical is too.

Thus, A is a 41,,.,-vector space, and by induction a W-vector

space.

We are now ready to prove

THEDREll 8. If E is a Grothendieck topos, W a family of Weil

algebra, closed under quotients, then W-v.s. is a reflective

subcategory of R-mod.

PROOF. Replace W with a set of representatives for the isomorphism
classes of Weil algebras represented in W. Let G be a set of
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generators for E, and V be a regular cardinal strictly greater than

supGEG,WEW (lSub(WxG)l). Given any R-module A, we define a x-indexed

family of R-modules as follows: let Ao = A; for successor ordinals,
let A«+1 be the colimit of the diagram consisting of a single copy of
A« and a copy of each Aa (Spec (W/u&#x3E;, Spec (W))’s with the maps induced on

kernels as in the proof of Lemma 7; for limit ordinals, let Ax be the

colimit of the A.’s with a  X and the evident inclusions.

We claim that Ax is the V-vector space reflection of A. It is

obvious how to extend the above construction to maps between R-

modules.

To verify the claim, note first that if A were a G,I-vector space,
then all the objects in the construction above are isomorphic to A by
the maps used in defining the various colimits, and thus A = AV.

Now by Lemma 7 to show that Ax is a V-vector space, it

suffices to show, for all (V,p) as in Lemma 7, that the induced map
At - AV(Spec(W/u&#x3E;), Spec (W)) is an isomorphism. Now note that Ax is the

colimit of a large diagram including all the Aa’s and all the

Aa (Spec (W/u&#x3E;), Spec (W), ’s. Noting that the A.’s and Aa (Spec (W/u&#x3E;), Spec (W))’s (for

our particular choice of (W,u)) both form cofinal sub-diagrams, it

suffices to show that the given map is the colimit of the maps

for

The only difficulty with this is in showing that AV(Spec (W/u&#x3E;, Spec (W)) is

the colimit of the Aa (Spec (W/u&#x3E;), Spec (W))’s. Let

be a map from one of the generators. Let 0: GxSpec(W) - A’t be its

exponential transpose (note that OlGxSpec (W/u&#x3E;) is identically 0). Now

by the tininess of Spec (W), there are maps Y: IIG i -- G for some

coproduct of generators, and a map

for some

such that

where ia is the canonical map from Aa to Av. If we knew that

o’l(LIGi) x Spec (W/u&#x3E;) were identically 0, we would be done by taking its

exponential transpose. However this is not necessarily the case.
Now for any ordinal J1 with a  B  V, let #OB denote the map

O’ X a,B, where Xa, J is the map from A« to Ax. Then
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form a non-decreasing family of subobjects of GixSpec(W/u&#x3E;) indexed

by the ordinal interval [a,V)’ Let Ki = UK,,,o. First note that Ki must
be all of (GixSpec(W/u&#x3E;)) since otherwise the exponential transpose
of (YXid Spec (W)O would not factor through Av(Spec (W)/u&#x3E;, Spec (W)), Now let

Note that IFti l  Y, since Fi is in 1-1 correspondence with a subset of

Sub (G ixSpec (W/u&#x3E;)) . Moreover the cardinality of any ordinal interval
[B,B’] for B and B‘ in Fi i is less than Y, and thus Xi = supFi(B)  ’i,
so K.i = Ki,Bi. Now since lGl  V, X = sup Xi  1. Thus if O: LIGi
- ABSpec(W) is the exponential transpose of OB: LIGiSpec(W/u&#x3E;) - Ax, O
factors through AB(Spec (W)/u&#x3E;), Spec (W)), and thus is a local lift for O.
Thus AV(Spec (W)/u&#x3E;), Spec (W)) is the colimit of the diagram of the

Aa (Spec(W)/u&#x3E;,Spec (W))’s 

It appears impossible to avoid this use of the axiom of choice

in the metalanguage unless one can impose some sort of smallness

restriction on the QSpec (W), In one case, however, a completely internal
construction for the reflection functor can be given. This is the

case of 4/ = {K,K[E]/E2}, in a topos with natural numbers object, which
was considered in Yetter (4]:

TREOREN 9. If E has a natural numbers object and W = {K,K[E]/E2} 
then W-v.s. is a reflective subcategory of R-mod.

PROOF. Observe that by Lemma 7, an R-module is a 41-vector space iff

the map A - A(1,0) transpose to multiplication is an isomorphism.
Using the usual means of internalizing arguments involving the

natural numbers, one can carry out the obvious inductive construction:

where the maps are transposes to the restrictions of multiplication
to D.

The critical stages in the internalized version are the cons-

truction of smash products indexed by internal finite cardinals, the
use of the generic cardinal to construct an internal version of the

colimit above, and demonstration that the resulting object and the

object of pointed maps from D to it are isomorphic because the latter
arises as the colimit of a cofinal subdiagram of the diagram defining
the former.
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We now examine W--v.s. in the context of the closed symmetric
monoidal structure on R-mod.

THEOREM 10. The in ternal hom-functor Home-mod (- ,-) rectricted to

W-v,s., is a W-v.s. valued bifunctor whenever W is a class of K- Weil

algebras closed under quotients. If, moreover, W- v.s. is a reflective

subcategory of R-mod with reflection functor V, then the bifunctors

HQmR-aod (- ,-) and V(-8a-) provide a closed symmetric monoidal

structure on W-v.s.

PROOF. The second statement follows easily from the first and the

universal properties of the functors involved. For the first

statement, note that there is an isomorphism between

and

whenever (V,p) is as in the statement of Lemma 7. (Both may be can-

onically identified with the subobject of BAXSPEC(W) consisting of maps
with are fibre-wise linear in A and identically 0 on AxSpec (W/u&#x3E;).
This identification moreover identifies the two evident maps to

HomR-mod (A,B) , thus since B is a W-vector space, this map is an

isomorphism and thus by Lemma 7 HomR-.Od (A,B) is a W-vector space.

3. MISCELLANEOUS RESULTS,

We conclude with several results concerning 4/-vector spaces,
one of which describes their behaviour under pullback functors (the

preservation of 41-lines by slicing is a consequence of Freyd’s Theo-
rem (see Yetter [3] or [4D on the preservation of tininess and of

the fact that AB is logical for any B.) The others deal with the

"local character" of maps between them. Taken together these results
suggest that 41-vector spaces could serve as model objects for the

description of "finite and infinite dimensional manifolds" in the

topos (these terms are used lososely since no obvious notion of

dimension for W-vector spaces presents itself).

Throughout the remainder of the paper we will assume that W is
closed under quotients, and thus the characterization of W-vector

spaces given in Lemma 7 holds.
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THEOREM 11. If X 4 B is a W-vector spaces in E /B for B a well-sup-
ported object in E , then Tte (X - B), the object of global sections, is

an R-vector space in E.

PROOF. The R-module structure is obvious, being the restriction of

the RB-module to "constant scalars". To see that the geometric
condition is satisfied, consider the following sequence of natural

bijections:

maps

commutative squares

commutative squares

maps

maps

in E /B by Lemma 7,

inE.*

We also have

THEDREN 12. If A and B are 41-vector spaces, K[E]/E2 E W, then

and

where DX&#x3E; denotes the union of the images of all pointed maps from
D to X cfor any pointed object X a and the isomorphism is induced by
restriction to DB&#x3E;. (Note any pointed map from DB&#x3E; to A must

factor through DA&#x3E;.) 
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PROOF. By considering the isomorphisms between A and A (1 ,0) and

between B and B(1 ,0) it is clear that any linear map A - B can be

recovered from its restriction to DA&#x3E;, and thus that the restriction

map is monic.

It thus suffices to show that any (internal) map O: DA&#x3E; - DB&#x3E;

has a linear extension via (-)(1,0), For multiplicativity, note that

the identification of A with DA&#x3E;(1,O) and of R with R(1,O) r DC1,O)

identify scalar multiplication with composition, and thus

multiplicativity of O(1,0) follows from the associativity of comp-
osition.

For additivity, we use generalized elements: Let a, a E A, then

the isomorphism A « DA&#x3E;(1,0) identifies these with a’, ar : D - A

given by

Let F: D-1 -) A be B(d,d).da + 6*cy, Thus AF = a + a". Now FO: D2 - B is

of the form

t or some b, B,V E B. And thus

and
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