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IMAGES IN CA TEGORIES AS REFLECTIONS
by Hans EHRBAR and Oswald W YL ER

CAHIERS DE TOPOLOGIE

ET GtOMÉTRIE DIFFÉRENTIELLE
CATTGORIQUES

Vol. XXVIII-2 (1987)

RÉSUMÉ. Cet article, qui repose sur d’anciens travaux non

publies, def init et étudie la notion d’image "globale" d’un

morphisme f dans une cat6gorie C, relativement à une classe M

de morphismes comme 6tant une reflection de f vers jY dans la

cat6gorie des carrés commutatifs de C. Ces images sont compa-
rées à diverses notions d’images "locales" propos6es dans la

littérature, en particulier dans le cas d’images obtenues A

partir de factorisations quotient-image avec une propriete
diagonale. La derni6re section donne un théorème general
d’existence d’images, et quelques exemples.

The present paper is based on joint work by the two authors,
carried out in 1968 and 1969. Due to circumstances beyond the

authors’ control, this work was never published, except as a prelim-
inary technical report [3] and a preprint (4). Urged to do so by
friends and colleagues, the second author has revised the 1969 paper
for publication, adding sorne later results of his own and an import-
ant result of the first author’s thesis [2]. Since contact between the

first author and the mathematical community has been lost for some

time, the present paper was written by the second author, who is

entirely responsible for any errors and omissions which it may
contain.

INTRODUCTION.

Images in a category were first defined by Grothendieck, in a

footnote of his T6hoku paper [6]. This defines the image of a mor-

phism f: A e B in a strictly local and purely categorical manner, as
the smallest subobject of B through which f factors, with a subobject
of B defined as an equivalence class of monomorphisms with codomain
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B. Since monomorphisms and epimorphisms often do not produce the

"correct" subobjects and quotient objects, Mac Lane [14] considered

subobjects and quotient objects axiomatically, as classes of mono-

morphisms and epimorphisms with certain properties. This theory was

generalized by Isbell [9], Sonner [15], Kennison 1121 J and others.

Isbell and Kennison showed that subobjects and quotient objects
determine each other in a category with coimage-image factorizations;
this led to subobject embeddings which need not be monomorphic, and
quotient maps which need not be epimorphic.

The step from local to global subobjects was taken by Jurchescu
and Lascu [10] who defined "strict" monomorphisms and epimorphisms,
and by Kelly [111 J who called these monomorphisms and epimorphisms
"strong", Kelly’s terminology has prevailed. Freyd and Kelly 151

considered "global" coimage-image factorizations in full generality.
Since then, almost all category theorists whose work requires images
or coimages have followed their lead, obtaining global images or

coimages from coimage-image factorizations. One exception is [13]

which rediscovered images and coimages as defined in [4], with some

new properties.
The example of normal subgroups in the category of groups shows

that subobjects and images cannot always be obtained from coimage-
image or quotient map-image factorizations. Other applications
suggested strongly that images need not be always monomorphic, and
coimages not always epimorphic. It also became clear to the authors

of this paper that locally defined images and coimages need not be

sufficiently well behaved to be useful. This led both of us, indep-
endently, to define N-images in a category C globally, as certain

reflections for M in the category C2 of commutative squares over C,
for an arbitrary class af of morphisms of C. Coimages for a class E

of morphisms of C are then defined dually.
The global definition of images as reflections is strictly

stronger than the original local definition. On the other hand, it is

more general than the global definition of images by factorizations

with a diagonal property. Images obtained by factorizations are

images as defined in this paper, but there are a number of examples
of images in our sense, obtained "in nature", which cannot be obtained
from factorizations. Images obtained as reflections, for an "image-
closed" class N of morphisms, have all the nice categorical proper-
ties that one can hope for.

Section 1 of the present paper defines images and coimages in a

category C, relative to arbitrary classes N and E of morphisms of C

which serve as subobject embeddings or quotient maps. Images and

coimages are defined as dual concepts; everything in this paper can



145

be dualized. The nice categorical properties of images in a category
with images are obtained more generally as properties of an "image
closure" MiN, this concept and its properties are due to Ehrbar 121,

We also show that the "local" images used by many authors are in

fact "global" images, as defined in this paper, under very mild

conditions. Answering a question posed by the referee, we express
image closure as a closure for the orthogonality relation defined by
W . Tholen in [17].

Section 2 considers the case of images defined in terms of a

class E of "quotient maps", with N = Ell, the class of E-strong
morphisms. We show that Est is "image-closed"; this class is also

closed under composition. 1-strong images are the images obtained

from quotient map-image factorizations with a diagonal property. The

theory of such factorizations is self-dual; unique (E,M)-factoriza-
tions with E and N closed under compositions, or equivalently with a

diagonal property, provide M-images and E-coimages. We also obtain a

strong converse: if (E,M)-factorizations exist and provide local M-

images and local E-coimages, then E and 3f are closed under compo-
sition, the factorizations are unique, and the local images and

coimages are in fact global,
Section 3 begins with a general existence theorem for images

which is due to Ehrbar [2]. This theorem, previously unpublished,
contains all existence theorems for images and coimages, obtained

later by other authors, as more or less special cases. We also give
some standard examples, a counter-example, and two applications which
provide further examples. One of these applications, normal images
and coimages, obtained from kernels and cokernels, provided the

original motivation for this paper. The other application, perfect
images, was developed by the second author. It provides a categorical
definition and theory of perfect maps which is substantially
different from that of 171 and [16], and much closer to the definition
of perfect maps in topology.

Our list of references is deliberately small, and with one

exception, mentioned above, we have not tried to establish

connections between our theory and recent contributions to the theory
of factorizations. Additional references may be found in the papers
cited above, and the recent papers (171, [1] and [8] can serve as

guides to the recent literature. It would certainly be useful to

provide a unifying overview of the literature on factorizations, but

this would be beyond the scope and aim of the present paper.
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1. IMAGES, COIMAGES AND IMAGE CLOSURE.

1.1. NOTATIONS. Throughout this paper, C will denote a category, and E
and K will be arbitrary classes of morphisms of C. For f: A -&#x3E; B in C.

we put af = ida and j3f = idg, calling af the source and J3f the target
of f.

We denote by C2 the category of morphisms and commutative

squares of C. Objects of C2 are all morphisms of C, and a morphism
(U,V): f e g of C2 is a quadruple (u,v; f,g) of morphisms of C such

that vf - gu in C.

By a reflection for a class A of objects of C, we mean a

reflection for the full subcategory of C with objects in A, i.e., a

morphism r: C -&#x3E; R of C with codomain in A, such that every f: C -i A

with codomain in A factors uniquely in C as f = f’r. We call A

reflective in C if every object of C admits a reflection for A.

Coreflections, and coreflective classes of objects, are defined dually.

For a class If of morphisms of C, we denote by K, the class of

all compositions kx in C with k E K and an isomorphism of C, and
Kl is defined dually. For convenience, we shall put K(f) = K U lfl for

a morphism f of C.

1.2. DEFINITIONS. We define an M-image of a morphism f of C as a

pair (p,j) of morphisms of C such that:
(i) f = jp in C and j E M,

and (ii) whenever vf = mu in C with n E M, then u = tp and vj = mt
in C for a unique morphism t of C.

We say that C has N-images if every morphism of C has an X-image.

Dually, we say that (p,j) is an E-coimage of f in C if (j,p) is

an E image of f in C°o, i.e., if

(i) f = jp in C and p E E,
and (ii) whenever fu = ve in C with e e E, then v = jt and pu = te

in C for a unique morphism t of C.

We say that C has E-coimages if every morphism of C has an E-

coimage.

A local N-image (p,j) of f in C must satisfy (1) in the defini-
tion of an M-image, and (ii) for the special case that v = j3f, and

f = mu. Local E-coinrages are def ined dually.
Examples will be given in Section 3.
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1.3. PROPOSITION. M-images have the following properties.
(1) A pair (p,j) is an N-image of a morphism f of C iff (p, J3f):

f -&#x3E; j is a reflection for af in C2.

(2) If m s H, then (am,m) is an N-image of m.
(3) If f has an M-image (p,j), then a pair (q,h) wj th h E H is

an M-image of f iff b = h.x and p = xq, for a (unique) isomorphism x
of C.

(4) Every M-image is an Mr-image. Conversely, if f has an Xr-

image, then f has an M-image.
t5) An isomorphism u of C has an 1-image (p,j) iff u E Mr, and

then p and j are isomorphisms.

PROOF. We omit the easy proofs of (1)-(4). If u = jp, with p and j

isomorphic and j E M, then (p,j) clearly is an M-image of the isomor-

phism u. Conversely, if an isomorphism u has an Jf-image (p,j), put
t = pu’°’ j. Then tp = p and jt = j ; thus t = a j, and p and j are

isomorphisms.

E-coimages have the dual properties; we note only:
(1*) A pair- (p,j) is an E-coiJ1Jage of a J1JorphisJ1J f of C iff

((1 f,j): p -&#x3E; f is a coreflection for E in O.

1.4. Many authors have defined images as local images. The following
result shows that, in most applications, local images are in fact

images.

PROPOSITION. If every pair- (f,m.) of morpbisms of C with J3f = j3m and
m E M allows a pull back mf’ = f1O’ wi th 111’ E M, then every local M-

image is an N-image,

PROOF. Let (p,j) be a local M-image of f, and consider vf = Juu with

n E 3f. If vm’ = mr.7’ is a pullback with m’ E 3f, then f = m’r and u =

v’r for a unique I", and then r = sp, j - m’s for a unique s. Now it is

easily seen that u = tp and 17 li 111t if f t - v’s ; thus (p,j) is an Jif-

image of f.

1.5. DEFINITIONS. We define the image closure Nil of H in C as the

class of all morphisms rn in C such that every K-image is also a

K(m)-image, for every class K of morphisms of C which contains K.

The coimage closure Ecoim of E is defined dually.
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We note that it suffices to test the defining property of M"

for classes K = M(k) ; but our more general formulation is usually
easier to use.

Following W. Tholen [17], we put (p,j)lm, for morphisms m, p, j
of C such that jp is defined in C, if for every commutative square
mu = vj in C, there is a unique morphism t in C such that u - tp
and vj = nrt. For a class M of C, we denote by M1 the class of all

composable pairs (p,j) such that (p,j)lm for every m in M, and for a
class F of composable pairs of morphisms, we denote by Fl the class
of all m in af such that (p,j)Lm for every (p,j) in F. Then (p,j) is an

Jf-image if (p,j) E Jf and n E M, and (p,j) is an 3f(j)-image if (p,j)
E M and (p,j)lj. If we restrict the domain of L to pairs (p,j) which
are at least {j}-image i.e., for which (p,j)Lj, then it is easily
observed that M1m = (ML)L.

1.6. PROPOSITION. Image closures in C have th e following properties.
(1) M C M1m, and every M-image is an Mlm image.
(2) If X C X7, th en M1m C Jfi jill,

(3) (Mim) im = Mim,

(4) MI is the class of all f in M1m with an N-image.
(5) If C has M-images, then MIDA = Mr,

(6) M contains all z s om orph i sm s of C.
(7) Lf M consists of isomorphisms of C, then MI’ is the class of

all isomorphisms of C.

PROOF. (1) and (2) follow immediately from the definitions, and (3)

follows from the last observation preceding the proposition.
If m E Mr and M C K, then m E Kr. Thus a K-image is a K(m)-

image, and m c 3fim, with an M-image by 1.3 , Conversely, if f in Jf’"

has an N-image (p,j), then (p,j) and Caf,.f) are M-images of f. But

then p is an isomorphism of C by 1.3, and f = jp is in Mr.

(5) follows immediately from (4), and (6) from the definitions.

If IC is the class of all isomorphisms of C, then clearly K C 3f’"

for every 9. On the other hand, every morphism f of C has a K-image
(f, Bf) ; thus K = Kr by (5). As Kr = K, (7) follows.

1.7. PROPOSITION. If hg is defined in C, with hg and h in M’a, th en

g E 9". In particular, X), C MJa.

PROOF. If (p,k) is a K- image of f, with Jf C K, and if vf = gu, then
hvk = hgt and tp = u for a unique t since hg E X". Then also vkp =
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gtp, hence vk - gt since (P,k) is a K(h)-image. Thus (p,k) is a K(g)-
image, and g E Mim.

For the second part, put g = ym and h = x-1, with 111 c M and x

an isomorphism of C.

1.8. PROPOSITIOH’. If mf’ = fm’ is a pullback square in C with m E Mim,
then m’ E Mim.

PROOF. Let (p, j) be a K- image of g, with 3f C K, and let m’u = vg. Then

f’u - sp and ms= fr.lj for a unique s, and ,f’t - s and m’t = vj for a

unique t. It follows easily that tp = u, and that t’p - u and 1O’t’ =

vj iff t’ = t. Thus (p,j) is a Kc’m’)--image, and m’ E Mim.

1.9. We consider diagrams D and Di in C with the same scheme, and
with limit cones u; L -4 D and v: L, -) D1 in C. For a natural

transformation u: D - D, , there is then a unique morphism m of C, the
limit of p, with vm = yu.

The most important example of this is a product TTf1: TTAi - TTBY

of morphisms, for diagrams with a discrete scheme. Another important
example is an intersection of subobjects, obtained in the case that

D1 is a constant diagram, and the components of p are in M.

PROPOSITION. If diagrams D and D, in C with the same scheme have

limits L and L, in C, and if u: D -4 D1 is a natural transformation

with all components in Mt then the limit m: L - L, of p is in X-11.

PROOF. Let 11l.t be the components of p, and uf and v. the projections
of the two limits, so that miui = vtm for all I. If a morphism f has
a K- image t p, j) with K C K, and if yf = mx, then we need a unique t

such that tp = x and mt = yf. This t is uniquely determined by
morphisms t, = u, t, which must satisfy

and

These equations determine t, uniquely if m., E Ma; thus m E Mim if

every component of p is in X".

1.10. If C has M-images, then af is reflective in C2, On the other

hand, {idt} is reflective in Ci’ if C has a terminal object T, but C

does not have {idr}-images if C is not trivial, The following result
answers the question which this example raises.
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PROPOSITION. C has N-images iff N is reflective in C2 , and Mr

contains Mr and all identity morphisms of C.

PROOF. The conditions are necessary by 1.3 (1), 1.6 and 1.7.

Assume now that (p,q): f - j is a reflection for M, hence also
for M-1, in C2. If Bf c Hr. then there is (u, v): j- J3f such that

in G?, with u - vj and vq = j3f in C. Then

in C2, and qv =Bj follows if Bj follows if Bj c Mr. Now v and q are

inverse isomorphisms, with vj in M-1. If vj = h-x with x isomorphic and
k E X, then

is a reflection for 3f in C2 , and (xp,k) is an X-image of f by 1.3 (1) .

2. COIMAGE-IMAGE FACTORISATIONS.

2.1. DEFINITIONS. We recall that a morphism u of C is called E-strong
if for every commutative square uf = ge with e E E, there is a unique
morphism t in C such that f = te and g = ut. Dually, we say that v
is M-costrong in C if v is X-strong in CoP. We denote Est the class

of all E-strong morphisms of C, and by Mcost the class of all M-

costrong morphisms.

2.2. PROPOSITION. N C Ell iff E C Xeo.t.

This follows immediately from the definitions.

Thus "strong" and "costrong" define a contravariant Galois

correspondence for classes of morphisms of C, with the usual proper-
ties of such a correspondence.

2.3. Our next result connects E-strong morphisms with images.

PROPOSITION. Ell has the following properties.
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(1) A morphism u of C is E-strong iff (au,u) is an E(au)-

coimage of u.
(2) All isomorphisms of C are E-strong, and E nE8t is the class

of all isomorphisms in E.
(3) If f = Jp wjth p e E and ,f E Ell-, then (p,j) is an E-coimage

and an Est-image of f.
(4) Est its closed under composition.
(5) (E8t..) J- = Eat. - (ECOi_)8t..

PROOF. (1) ) and (3) ) follow immediately from the definitions, and (2) )

and (4) are well known.

If u c (Est) i. and e E E, then the E"L-image (e, Be) is also an

Est(u)-image; it follows that u is E-strong. Using the duals of this,
and of 1,6, we have

for a class M of morphisms; thus (Ecoim) st = E-t.

2.4. DEFINITIONS. We say that C has (E,M)-factorizations if every

morphism f of C factors f = jp with p E EA and j c Kr. We can assume

p E E or j E M, but not both unless E = E-1 or M = J’f. We say that two

factorizations f = jp and f = j’p’ are equivalent if p’ = xp and j =
j’x for an isomorphism x of C, and we say that (E,M)-factorizations
are unique if two (E,M)-factorizations of a morphism f of C always
are equivalent.

We mean by afaf C M’’ that a composition uv with u and v in M is

always in MI, and EE C El is defined dually.

2.5. THEOREM. The following are logically equivalent.
(’1 ) C has (E,M)-factorizations, (E,M)-factorizations are unique,

EE C EA, and MM C Mr,

(2) C has (E,M)-factorizations, and af C Ell.

(3) C has (E,M)-factorizations, and E C Mcost,

(4) C has E- images, and every M-image is an E-1-colmage.
(5) C has E-coimages, and every h’-coimage is an Hr-image.
(6) C has N-images, XX C Hr, and E.4 = Mcost.

(7) C has E-coimages, EE C E-1, and H = HI.

(8) C has (E,M)-factorizations; if f = jp is a (E,M)-factoriza-
tion, then (p,j) is always a local Mr-image and a local E-coimage of
f.

We say that (E,K)-factorizations are coimage- image factoriza-
tions if these conditions for E and M are satisfied.
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PROOF. See e.g. [5] for the implication (1) =&#x3E; (2).

If (2) holds, then every f in C factors f = jp with j E M and

p e FB with (p,j) an Jf-image and an E-1-coimage since af C Eat =

(E)st. By 1.3 (3) and its dual . it follows that every M-image of is

an El-coimagej thus (4) holds.

Assume now (4), with all isomorphisms in 7f’’ by 1.6. If e E Mcost,
then (e, Be) is an Mr-image, hence an El-coimage, and e f El. Conv-

ersely, if e E FB with M-image (p, j), then j is isomorphic since

(e,Be) and (p,j) are E’-coimages . Thus c’e, j3e) is an Mr-image, and

e E Mcost, 

Now if (p,j) is an M-image of vu, with u and v in M, then p c E-1

and j = 17s, sp = u, for a unique morphism s. Since (au,u) is an E

coimage, tp = au and ut = s for a morphism t. But then

and

and pt = j3p follows, Thus p is isomorphic, and vu in Xr,

If (6) holds and f - pj is an (E,M)-factorization, then (p,j) is

an 3fr-image and an E-coimage since E= Mcost, If (p,j) is an M-image
of f and (q,h) an N-image of p, then j - jh t, tp = q for a morphism t

as jh is in afr. As htp = p, it follows that h t - j3h. Now h th - h and

thq - q, so that th - ah, and h is an isomorphism. But then p is 7f-

costrong, and f = jp is an (E,M)-factorization, so that (8) ) holds.

If (8) is valid, then (E,M)-factorizations are unique. If an iso-

morphism has an (E,.H)-factorization u = jp, then jt = j and tp = p,
hence t = J3p, for t - pu-’j. Thus p and j are isomorphic, and M
contains all isomorphisms. Now XJf C M, is obtained as in the proof
of (4) =&#x3E; (6), and EE C E-1 by the dual argument . Thus (1) holds.

(1) and (8) are self--dual, and (2) through (7) dual in pairs,
with (2) &#x3E; (3) by 2 .2 , We obtain (3) = (5) = (7) = (8) by arguments
dual to those above; this completes the proof.

3. EXAMPLES AND COMPLEMENTS.

3.1. In order to formulate a solution set condition for the existence

of M-images in C, we construct for every morphism f of C a category
FactM(f) of M- factorizations of f as follows.

Objects of FactM(f) are all pairs (g,m) of morphisms of C such

that f = ig in C and m E Mr, A morphism ..v:: (g,m)- (g’,m’) of Fact,, (f)
is a morphism of C such that

in with id () am = &#x3E;Bg.
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Composition in Factm (f) is composition in C.

A local N-image of f is an initial object of the category
Factm(f) just constructed, and (f, Bf) is a terminal object of Factm (f)
if Bf is in Hr.

We define a functor H: FactM (f) - C by putting H (g,m)= C if am
= C, and Hx = x for a morphism x of FactM (f). Putting h (g,m) = m

defines a cone h:H -AB if J3f = ids .

3.2. THEOREM. If C Is complete and has small hom sets, then C has M-

images iff M satisfies the following conditions.
(1) Mr js closed under intersections of small cones (see 1.9).

(2) JV is closed under pullbacks by m orph i sms of C.
(3) For every morphism f of C, there is a set S of objects of

FactM(f) such that every object of FactM (f) is the codomain of at

least one morphism of Fact ,(f) with d om a j n in S.

This theorem is due, in a somewhat different form, to Ehrbar

121. The theorem and its dual include all known existence theorems

for images or coimages, and for coimage-image factorization if the

condition FF C yr, or EE C E-1 for the dual, is added.

The solution set condition (3) is always satisfied if C is jy-

wellpowered. We also note that Mr contains all isomorphisms if (1) is

satisfied; idA is an intersection of the empty cone of morphisms in M
with codomain A, for every object A of C.

PROOF. Conditions (1) and (2) are necessary by 1.8 and 1.9, and (3) 

is necessary since an al-irnage of f is an initial object of FactM (f).
Now let f: A -4 B, and let S be the full subcategory of Factm(f)

with S as its set of objects, adding (f,id6) to S if necessary to make

S connected. We denote the objects of S by 0’ = (g.., 111..). The category S
is small; we denote by Hs and hs the restrictions of H and h to S.

The functor Hs and the cone hs have limits J and j in C, with j:
J -4 B in Mr by (1). We can and shall take j to be in N. The projec-
tions pr of the limit of Hs satisfy j = mrpo, and po= xA for each

x: p - 0’ in S. The morphisms bQ of C define a natural transformation

AA - H s; thus g« = pq, for all o, in S, for a unique q in C, with p, :

(q,j)- (gr,mr) in FactH(f) for every 0’. We claim that (q,j) is the

desired M-image of f.
By our construction, there is a morphism (q, j)- (g,m) in

FactM(f) for every object (g,m) of FactM(f). If x and y are two such

morphisms, let e be an equalizer of x and y and C. The morphisms j
and m are the components of a cone with the pair of morphisms x and



154

y as domain. The intersection of this cone is je ; thus je is in Xr by
(1). Since xq = g = yq, there is q’ in C with eq’ = q, hence with e:

(q’, je) - (q,j) in Fact" (f). There is r: (gp ,mp) - (q’,je) in FactM(f) f or

some p e S, and then pv.er: p -4 0’ in S, hence prerpp= pr for all

0’ c S. But then erpp= Bj, and x = y follows. Thus (q,j) is a local M-
image of f ; this is an af-irnage by condition (2) and 1.4.

3.3. EXAXPLES. In every category C, we obtain coimage-image factor-

izations by taking either Mr = C, with E-1 all isomorphisms of C, or

El = C, with 7f’’ all isomorphisms of C.

In set-based algebraic categories, we obtain the traditional

coimage-image factorization by taking El to be the class of all

surjective homomorphisms, and N the class of all subalgebra inclu-

sions.

In the category of topological spaces, the category of Hausdorff

spaces, and in other topological categories such as uniform spaces or

convergence spaces, there are several useful (and well known) factor-

izations, as follows.
(1) &#x3E; E all bijective maps, M all coarse maps,
(2) Dually, E all fine maps, K all bijective maps.
(3) E all quotient maps, N all injective maps.
(4) Dually,, E all surjective maps, M all embeddings.
(5) E all dense maps, af all closed embeddings.

3.4. EXAMPLE. We give an example of unique factorizations which are
not coimage-image factorizations. This example also shows the neces-

sity of some of the conditions in 2.5; all conditions in 2.5 can be

"nailed down" by such examples.
Let C = {0 ,1,2) , ordered by 0 ;  1 ;  2, considered as a category

with morphisms x - y for x  y. Let E consist of 0 --4 2, and all

identity morphisms x A x, and let N consist of all morphisms except
0 - 2.

Every morphism f has exactly one (E,H)-factorization f= jp, and
then (p,j) is a local E-coimage of f. However, the local E-coimage
(1 -) 1, 1 4 2) is not an E-coimage of 1 e 2.

C has Jf-images, but the M-image (0 - 1, 1 - 2) of 0 fl 2 is not

the E-coimage (0 -4 2, 2 - 2) of 0 - 2.

We note that E is closed under composition; M is not. Mcost.

consists of all identity morphisms, and (Mcost) st. = C. On the other

side, Est consists of the identity morphisms and of 0 - 1, and

(Ell) cost is E with 1 - 2 added ,
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3.5. PERFECT IXAGES. We consider a reflective class A of objects of C,
with reflections n: X - RX. Reflections define a functor R on C,

given by Rf.rx = ryf for f: X - Y in C. We recall that f: X - Y in C

is called (strongly) A-perfect if ryf = Rf.rx is a pullback square in

C, and uniquely A-extendible if for every u: X - A in C with A E A

there is a unique v: Y - A in C such that u = vf. Clearly, f is

uniquely A-extendible iff Rf is an isomorphism of C.

In our discussion of perfect images, we let E be the class of

all uniquely A-extendible morphisms, H the class of all morphisms
with domain and codomain in A, and M the class of all A-perfect mor-
phisms. Then E and M contain all isomorphisms of C and are closed

under composition in C. Moreover, E contains all reflections for A,
and H C N. Thus every morphism of C with codomain in A has an

(E,M)-factorization .

LEMMA. If (p,j) is a K-image with H C K, then p E E.

PROPOSITION. With E, H and M as above, the following statements are

logically equivalent for a morpbism f of C which factors f = jp in C.

(1) p E E and jE M.
(2) (p,j) is an N-image of 
(3) There is in C a commutative diagrams

with a pullback sq uare on the right and q a reflection for A .

(4) (p,j) is an E-coiJ1Jage of f, and J c af.

Moreover, E = Hcost.= Mcost, and Eat:: Hi. = Mim,

PROOF. Assume that f is X 0 Zj Y .

For the Lemma, we have Rf in H ; thus there is a morphism q for
which the diagram of (3) is commutative. Then q = arz for a morphism
z in H, with z. Rp.rx= qp = rx, hence z. Rp = idRx . We have

and

hence Rp.q = rz as Rj e H. Now

hence

Thus Rp and z are inverse isomorphisms, and p E E follows.
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If (1) holds, and vf = mu with .m: A - B, then Rm.s = rbvj for
s = Ru. (Rp) rz ; thus there is t such that rA t= s and m t - v, f. Then

and

hence tp - u. If also mt’ - vj and t’p = u, then sp = Ru.rx = rA tp,
hence rat’ = s since p E E. But then t’ - t, and (2) holds.

If (2) is valid, then p e E by the Lemma, and the diagram in (3) 

commutes for q - (Rp)-1rz ; this is a reflection for A. Now rvj=
Rj, rz and rz , idz = Rp. q are pullback squares; thus the composite square
ryj = Rf.q is a pullback square.

If (3) holds, then q = zn for an isomorphism z, with z. Rp.rx=
qp = rk. Thus z. Rp = idRX, and p e E. Composing the pullback square
q .idz - zn with the pullback square in (3), we get rv j - Rj.rz as a

pullback square. Thus j E X, and (1) holds.

Now (1) = (2). We get E = Jf«st by applying this and the dual of
2.3 (1) to pairs (p, Bp), and (1) = (4) follows immediately. Since

Jf C H’" by 1.8, and H C N, we have Hcost = Mcost by the dual of 2.3.

Finally, H" C K:i. C Est" by 2.1 and 2.3. Conversely, if (p,j) is a

K-image with H C K, then p E E by the lemma; it follows that (p,j) is
a K(m)-image if m e Est. Thus Es C H", completing the proof.

3.6. DISCUSSION AND EXAXPLES. Herrlich and Strecker intensively stu-
died (Q,Qst)-factorizations for Q the class of A-extendible epimor-
phisms of C ; see [7] and [16] J for accounts of their work and further

references. Their class Qst of A-perfect morphisms can be much larger
than our class H. The results of 3.5 above, in particular the cons-

truction of A-perfect images in 3.5 (3), are new.

By 3.5, C has A-perfect images iff every pullback of a reflec-

tion Tv for A by a morphism Rf is a reflection for A. This is the

case if C is the category of completely regular Hausdorff spaces or

the category of completely regular topological spaces (without T2),
and A the class of compact Hausdorff spaces or of realcompact Haus-
dorff spaces. 3.5 also works if C = TOP, and A the class of sober

spaces. The first example motivates the name "perfect", and the last

example provides morphisms f with a coimage-image factorization f=

jp such that p is not epimorphic in C, and j not monomorphic.
The dual of 3.5 applies to coreflective classes A in a top-

ological category C over sets. In this situation, coreflections for A
are bijective maps rx: RX - X, with RX having the final structure for
all morphisms f: A - X in C with A in A, It follows that a pushout of
a corefletion rx by a map Rf, with af = idx, is always a coreflection.
Thus every morphism of C has an A-coperfect coimage.
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3.7. NORMAL IMAGES. We consider a pointed category C, with a zero

morphism OAB : A - B for every pair of objects A and B. An equalizer
of f: A - B and of OAB is then called a kernel of f, and a cokernel of

f is defined dually. An irnage for the class of all kernels is called

a normal image. and a coimage for the class of cokernels is a normal

coi11Jage. We denote by ker f a "canonical" kernel of f in C if C

has kernels, and dually by coker f a cokernel of f.

THEOREM. If C its a pointed category with kernels and cokernels, then

every 111orphis1l1 f of C has a normal image (p,k) and a normal coimage.
(q,j), with

k = ker coker f and q = coker ker f.

In this situation, f = kuq with (u,k) a normal image of j and (q,u) a

normal coimage of p.

PROOF. Let 0 denote an arbitrary zero morphism in C. If g - coker f,
then gf = 0 ; thus f factors f = kp for k = ker g. If vf = mw for xn

= ker s, then svk - 0; thus sv - v’g for a morphism v’. Now svk = 0,
hence vk - mt for a morphism t. As m is monomorphic, t is unique,
and tp = w. Thus (P,k) is a normal image of f. Dually, f has a normal

coimage (q, j), with q = coker ker f.

Since k is mono, fy = 0 iff px= 0, and so f and p have the

same kernels. Thus p has a normal coimage (q,u), with ku = j since q
is epi. Dually, (u,k) is a normal image of j.

3.8. EXAMPLES. We note that our present definition of normal images
and normal coimages is somewhat more restrictive than that of [18].

The two definitions are equivalent if every morphism of C has a

kernel and a cokernel, and normal images and coimages as defined in

[18] are always images and coimages as defined in this paper.
Our examples refer to concrete pointed categories with finite

limits and colimits, and with an underlying set functor which pre-
serves finite limits. In this situation, there is a zero object Z with
a singleton as underlying set. This object can be regarded as a

subobject and a quotient object of every object, and ker f is an

embedding f -(Z) - A for f: A - B in C. If cokernels in C are sur-

jective, it follows easily that a composition of cokernels is always a
cokernel. Cokernels are surjective in all our examples.

For pointed sets, every injective morphism is a kernel. A

surjective morphism f: A - B is a cokernel if it sends a subset of A

to the base point of B and is bijective outside of that subset.
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For groups, an injective homomorphism f; A - B iff f - (A) is a

normal subgroup of B; thus a composition of kernels is not always a
kernel. Every surjective group homomorphism is a cokernel.

For meet semilattices, an in.iective homomorphism f: A 4 B is a

kernel iff f+(A) is a filter in B. Not every surjective homomorphism
is a cokernel. For example if g is a filter in a meet semilattice A,
but not all of A, then the characteristic function of o is a surjec-
tive homomorphism A -) {0,1}, but in general not a cokernel. The

composition of two kernels for meet sernilattices is again a kernel.

Groups and meet semilattices define full subcategories of the

category of monoids, and the embeddings preserve kernels and

cokernels. Thus for monoids, the composition of kernels is not always
a kernel, and not every surjective homomorphism is a cokernel.
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