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INTEGRABILITY OBSTRUCTIONS FOR EXTENSIONS
OF LIE ALGEBROIDS

by Kirill MACKENZIE

CAHIERS DE TOPOLOGIE
ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

Vol. XXVIII-1(1987)

RÉSUMÉ . L’auteur a d6montr6 dans une autre publication [10] J

que, pour qu’un alg6broide de Lie transitif sur une base

simplement connexe soit integrable, il faut et il suffit qu’une
certaine obstruction cohomologique A l’intégrabilité soit, en un

certain sens, discr6te. Dans le present article, on examine le

probleme de l’intégrabilité pour les extensions des algébroides
de Lie transitifs, et on demontre que ce probl6me équivaut au

problème d’intégrabilité pour un certain alg6brolde de Lie

associe. La d6marche cruciale est de d6montrer qu’une extension
de fibres principaux (ou de groupoides de Lie) équivaut à un

seul groupoide ’transverse’ equip6 d’un groupe d’operateurs.

This paper gives necessary and sufficient conditions for the

integrability of an extension of transitive Lie algebroids of the

form

where K is a Lie algebra bundle and Q ’an a-connected Lie groupoid.
The method used is to show that the integrability of (1) is equi-
valent to the integrability of a certain inverse image Lie algebroid,
whose base is the universal cover of the total space of the principal
bundle corresponding to Q, and then to apply the integrability
results of 1101. In particular we recover a result of Almeida and

Molino 121 in which the integrability problem for transitive Lie

algebroids on multiply connected base spaces was reconducted to that
for simply-connected bases.

The key to the equivalence between the integrability of (1) and

that of the inverse image Lie algebroid is a concept which we have
called "PBG-groupoid", and its infinitesimal version, "PBG-Lie alge-
broid". A PBG-groupoid is a Lie groupoid T whose base is the total

space of a principal bundle P (B, G) and on which G acts by Lie

groupoid automorphisms. It is shown in gsl,2 that PBG-groupoids on
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P(B, G) are naturally equivalent to principal bundle extensions of

P(B, G). An important technical step in this process is Theorem 2.2

which establishes that the (almost) purely algebraic conditions by
which the PBG-groupoid structure on a Lie groupoid T is defined gr-

sufficient to make T itself into a principal bundle with respect to

the action of G. It seems certain that this equivalence between PBG-
groupoids and extensions will be central to a future cohomological
classsification of extensions of principal bundles.

Extensions such as (1) arise as infinitesimal linearizations of

extensions of principal bundles or Lie groupoids. As one always
expects of a linearization, their theory is more tractable than that

of the extensions which they approximate; the extension theory and

cohomology theory of transitive Lie algebroids exist and one can, for
example, classify extensions of the form

where Q corresponds to a principal bundle P(B, G) and V is a G-

vector space, by equivariant de Rham cohomology H2 (P, V)6 ([Joj, IV

§2). There is also a spectral sequence for the cohomology of AQ, with
arbitrary coefficients, which can be used to analyze the geometric
properties of extensions of AQ ([10], IV §5). The integrability
criteria given here provide a method by which such results on ext-

ensions of Lie algebroids can be forced to yield information on ext-
ensions of Lie groupoids, or of principal bundles. The consequences
of this point of view will be developed further elsewhere.

The first two sections of the paper present the equivalence
between PBG-groupoids on P(B, G), and extensions of P(B, G) or its

associated groupoid PxP/G. We have included slightly more than is

strictly necessary for the results of §4, having in mind later

applications elsewhere. Section 3 deals, more briefly, with the

relevant corresponding results for Lie algebroids. The integrability
criteria themselves are in Section 4.

1. EXTENSIONS AND THE I R TRANSVERSE

GROUPOIDS.

Throughout the paper, except ,for one passing reference to

analytic manifolds, we work with real C°° paracompact manifolds with
at most countably many components.
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Given a principal bundle P(B, G, p), denote by PxG//G the Lie

group bundle associated to P(B, G) by the conjugation action of G on

itself; thus elements of PxG//G are equivalence classes u, g&#x3E;, u E P,

g E G, with

for any

This contrasts with the notation for a produced principal bundle: if

: G 4 H is a Lie group morphism then the produced principal bundle
is denoted by PxH/G (B, H). Here the elements are classes  u, h&#x3E;
where u e P, h E H and

for any

The action of H on PxH/G is

Lastly, the Lie groupoid associated to P(B, G) is denoted PxP/G; here

the elements are u2, u1&#x3E; where u2, u, E P and

for any

The canonical map is Compare [10].

For background on Lie groupoids we refer throughout to [10].

However for a Lie groupoid H on B we denote the inner group bundle

UxEB H xx by IS2; not by GQ as in [10].

DEFINITIONS 1.1. (i) An extension of principal bundles is a sequence

in which n denotes both a surjective submersion Q -&#x3E;-&#x3E; P and a sur-

jective Lie group, morphism H -&#x3E;-&#x3E; G (necessarily a submersion), such
that n(idE3, n) is a morpahism of principal bundles; i denotes an

injective Lie group morphism N -&#x3E;-&#x3E; H, and where N -&#x3E;-&#x3E; H -&#x3E;-&#x3E; G is an

extension of Lie groups.

(ii) An eytension of Lie groupoids is a sequence



32

in which is a base-preserving morphism of Lie groupoids and a sur-
jective submersion, X is a Lie group bundle and i is a base-preserv-
ing groupoid morphism and an injective immersion; lastly the sequence
is exact. ll

Assume given (1). One can now construct an extension of Lie

groupoids

Here QxQ/H and PxP/G are the associated Lie groupoids and QxN//H is

the Lie group bundle associated to Q(B, H) through the action of H on
N by (the restrictions of) inner automorphisms. The map i- is  v, n&#x3E;

l-&#x3E;  vn, v&#x3E; and the map n- is v2, v1 &#x3E; l-&#x3E; n (v2) , n (v1) &#x3E; . It is easy to

verify that (3) is an extension of Lie groupoids.

Assume given (2). Then for any chosen b e B,

is clearly an extension of principal bundles. The constructions

(1) =&#x3E; (3), (2) =&#x3E; (4) are easily seen to be mutually inverse, modulo

the usual attention to base-points.

DEFINITION 1.2. (1) Consider two principal bundle extensions of

P(B, G) by N:

An equivalence of principal bundle extensions is an isomorphism

such that and

(ii) Consider two Lie groupoid extensions of Q by M:
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An equivalence of Lie groupoid extensions is an isomorphism o: O -&#x3E;O’
such that o o i = i’ and n’ o = 1t. //

It is not immediately clear that these two concepts of equi-
valence do correspond; for the proof, see [11], §4.

In what follows we will work mainly with principal bundle ext-
ensions, since this case both requires more attention, and is the

more established language. Now that the preparatory remarks have

been made, our purpose is to show that principal bundle extensions

are themselves equivalent to Lie groupoids together with an addi-

tional structure.

Consider, then, the extension of principal bundles (1). Observe

that Q P, N, n) is a principal bundle; we call it the transverse

bundle. Here N acts on Q via its embedding in H, but in practice we
write simply vn for vi (n).

Denote by T the associated groupoid QxQ/N on P. We call T the

transverse groupoid of (1). One may note that Q(P, N) is a reduction

of the inverse image principal bundle pQ(P, H), and T accordingly is

a reduction of the inverse image Lie groupoid ¡f(QxQ/H) (see the des-

cription of the groupoid case which is given at the end of the

section).

PROPOSITION 1.3. IT = QxN//N is naturally isomorpbic to p* (QxN//H)
under v, n&#x3E;N l-&#x3E; n (v), v, n)H).

PROOF. Here the superscripts N and H indicate the group with respect
to which the orbit is taken. We verify the surjectivity; the rest is

similar. Take

Then p (u) = q (v) so there exists g E G such that n (’va - ug. Choose h
in H with n (h) = g. Then

and

thus vh-1, hnh--1&#x3E;N is mapped to (u, v, n&#x3E;H). ll

Thus the groupoid T can now be presented in the following form,
which we shall regard as canonical:



34

Here the injection is

where the element h e H is chosen so that n (v) = u n (h). The submer-

sion is the anchor

of T.

We now define a right action of G on T by

where

That this formula gives a well-defined action is easy to check.

PROPOSITION 1.4. This action interacts with the algebraic structure of
T in the following wa ys :

where p, p’ E T, g E G, u E P and a"(p’) = B- (03BC) .

PROOF. Here a", j3" denote the source and target projections of T. For

(iii), let p - v2, v1&#x3E; ; then ul can be written in the form v3, v2&#x3E; .

low

where n (h) = g, and

The other parts are similar.

PROPOSITION 1.5. The action of G on T i s free and principal with

respect to the map

PROOF. Suppose that v2, v1&#x3E;Ng = v2, v1&#x3E;N. Then v2h,vb&#x3E;N = v2,v2&#x3E;N,
where n (h) = g, so there exists n E N such that v2b = v2n and
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v,b = vin. Since the action of H on Q is free, it follows that h =

n EN and so g = n (h)= 1. Thus the action of G on T is free.

Suppose that v2, v1&#x3E;N and v’2, v’1&#x3E;N have v2, v1&#x3E;H = v2, v1&#x3E;H.

Then v’2 = vzb, v’, = v1h for some h e H and so v’2, v’1&#x3E;=

(vz, v1&#x3E;Ng where g= n (h). The converse is obvious. //

Thus T(QxQ/H, G, #) is a principal bundle.
From 1.4 (i) it follows that IT is stable under G. We now

compute the action of G on IT in terms applicable to (5).

PROPOSITION 1.6. (i) Regarding IT as QxN//N , the action of G becomes

where

(ii) Regarding IT as p*(QxN//H), as in 1.3, the action of G becomes

PROOF. (i) Given v, n &#x3E;N, the corresponding element of IT C QxQ/N is

vn, n&#x3E;. The action of g on this gives vnb, vh), where 1r (h) = g. Re-

writing this as vbb--1nh, vh), it is seen to correspond to vh,
h--1 nh&#x3E;N .

(ii) Given (u, v, n&#x3E;H), the corresponding element of QxN//N is

vj-1, jnj-1&#x3E;N , where E H is such that n (v) = un (j). By (i), the

action of g on this gives vj-1b, h-1 jnj-1h&#x3E;N, where n (h) = g. By
1.3, the corresponding element of p*(QxN//H) is

Now 7r(vJ--1b) = ug and since j-’h E H, the second component reduces
to v, n&#x3E;H. ll

Thus the action of G on PI(QxN//H) induced from T is the natural

action of G which exists on any inverse image bundle across p: P fl B.

The sequence (5) is now G-equivariant, with the actions of G on the

first and last terms being given solely by the action of G on P.

In the abelian case there is a further simplification.

PROPOSITION l.?. Let N in (1) be an a beI ian Lie group A . Then IT =

QxA/ /A is naturally isomorphic to the trivial Lie group bundle PxA

under v, a) H (x (v), a), and this isomorphism transports the action
of G on IT to (u, a)g = (ug, g-1a).

PROOOF. The action of G on A is that induced by the extension
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Represent (u, s) c PxA by v, a&#x3E; c QxA//A where n (v) = u. Then v, a&#x3E;g
- vh, h tilll, where n (h)- g. Now n (vh)- ug and g-1ah=g-1a. //

We briefly describe the construction of the transverse groupoid
from an extension of Lie groupoids (2). First choose b E B and write

P = Hb, G = Qbb, p = .
Construct the inverse image Lie groupoid p*O on P (see, for

example, [10], I 2 .11) . Elements of p* O have the form (ur,k,u1) were

and

Here a’, j3’ are the source and target projections of O. Define

by

and denote d-1(1) by T. It is easy to verify that T is a reduction of

p*O. If (2) is in fact of the form (3), then T = d-i (1) is isomorphic
to QxQ/N under

The inner group bundle IT of T = d-1 (1 is evidently

and it is now immed iate that IT = p*M .

PROPOSITION 1.8. The action of G on T = d--1(1) which corresponds to
the action of G on QxQ/N defined above (1.4) is

PROOF. Assume that (2) is of the form (3). Given v2, v1 &#x3E;N E QxQ/N and

g E G, one has v2, v, &#x3E;Ng = v2h, v1h&#x3E;N where n (h) = g. The corresp-

onding element of d-1 (1) is (n(v2h, v2h, v, h&#x3E;H, n(v1 h)) and this

equals (n(v2)g, v2, v1&#x3E;H, n (VI )g). //

The properties of 1.4 are now immediate. So too is the fact that

the action of G on IT = p*M is the natural action on an inverse image
bundle.
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RBJtARK. The inverse image groupoid p* O is naturally isomorphic to

Tx"’G, the semi-direct product of T with G as given in Brown [4] g2.

Here TxG has the source and target projections a’(03BC, g) = a- (03BC) g,
B^(03BC, g) = B- (03BC) and composit ion

and p-0 fl Tx-G is

Now suppose given two Lie groupoid extensions (2) and (2’),

equivalent under o:O -&#x3E; O’ as in 1.2 (ii). Then the obvious induced

map o-: T -4 T’ is an equivalence of groupoids

and is G-equivariant. This behaviour is formalized in 2.6.

2. PBG-GROUPOIDS,

1.5 suggests that it is possible to recover the original ext-

ensions from their transverse groupoid. We first abstract the proper-
ties of transverse groupoids into the concept of PBG-groupoid.
Throughout this section we work with a fixed principal bundle

P (B, G, p).

DEFINITION 2.1. A PBG-groupoid on P (B, G) is a Lie groupoid T on base
P together with a right action of G on the manifold T such that:

(i) a": T -4 P and j3": T -&#x3E; P are G-equivariant;
(ii) e": P -&#x3E; T is G-equivariant;
(iii) (p’p)g = (03BC’g) (03BCg) for (03BC’, p) E T-T and g E G;
(iv) (pg) - I 03BC-1 g for 03BC E T, g E G. //

Thus a PBG-groupoid is a Lie groupoid object in the category of
principal bundles. Actions of groups on groupoids, and indeed of

groupoids on groupoids, were defined in Brown [4h Concerning
terminology, the expression "PBG-groupoid" is intended to suggest
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that T is both a G-groupoid and a principal bundle. Perhaps a port-
manteau word such as "grundleoid" would be better.

THEOREX 2.2. Let T be a PBG-goupoid on P (B, G) . Then the action of G

on T is free and the quotient manjfold T/G exists.

PROOF. That G acts freely on T follows easily from (i). By the

criterion of Godement (see, for example, (63, 16.10.3) it suffices to

show that

is a closed submanifold of TxT. Firstly consider the map

This is a surjective submersion, being a rearrangement of the square
of the anchor of T, So o-1((PxpP)x(PxpP)) is a closed submanifold of

Txl; call it R. Clearly F C R.

Next define

where 6: PxpP -&#x3E; G is the division map 6 Cug, u) = g. From the fact

that 6 is a surjective submersion, it follows that y is also, and

hence y--1 (Åe) is a closed submanifold of R; call it S. Clearly F C S.
Lastly define

where g - 8 B-03BC’, B-03BC = 8 (a-03BC’ , a-03BC) , Then X*-’ (P) = r, where P

denotes the set of unities {u- I u E P) C T. So it suffices to prove

that X is a surjective submersion. Now X is the composition of the

map S -&#x3E; C C TxT, (p’, p) l-&#x3E; (p’, 03BCg), where g is as above, and

and the map C a IT, (03BC’ p) 1--i 03BC’03BC-1. Now S -&#x3E; C is clearly a diffeo-

morphism and C a IT is easily seen to be a submersion by working
locally: using a section-atlas for T with respect to an open cover

lUil of P, the map C a IT is
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where n, n are elements of some vertex-group N of T. //

This result seems somewhat surprising. If all the data are real-

analytic a simpler argument suffices, since in this case it suffices

to verify that r is a closed subset of TxT and that

is a homeomorphism onto r ((121, 2.9.10). Returning to the smooth

case, other properties of the action of G on P lift automatically to

the action of G on T:

PROPOSITION 2.3. Let T be a PBG-groupoid on P(B, G).
(1) If PxG -&#x3E; P is properly discontinuous, then TxG -&#x3E; T is also pro-

perl y discontinuous.
(ii) If PxG -&#x3E; P is proper, then TxG -&#x3E;) T its also proper.

PROOF. We prove (i); the proof of (ii) is similar. Let {01: U1 f -4 Tux}

be a section-atlas for T with respect to some reference-point u* E P
and open cover {U1} of P. Without loss of generality, we can assume

that

for all indexes i.

Now, given any element po of T, there is an open neighborhood U of 03BCo
which is diffeomorphic to U,xNxU,, where N = T u.-u-. If we now have

03BC c Ug n U for some g E G, and some element E T, then a-03BC E

(U .i) 8’ n U1 and so g = 1. //

From 2.2 it follows that T(T/G, G) is a principal bundle. We

denote elements of T/G by 03BC&#x3E; and the projection T a T/G by #.

PROPOSITION 2.4. T/G has a natural Lie groupoid structure with base

B, in such a way that #: T a T/G is a morphism of Lie groupoids over
p: P -&#x3E; B.

PROOF. Since a-, B-: T e P are G-equivariant they induce maps a’, B’:
T/G -i B; since a-, B-, # and p are all surjective submersions, it

follows that a’, j3’ are also.
Take P1, p2 E T and suppose that a’ (03BC,&#x3E; = B’(03BC2&#x3E;). Then there

exists E G such that a- (03BCl) = B- (03BC2)g and so it is meaningful to

define
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It is straightforward to verify that this is a well-defined operation
T/G * T/G -&#x3E; T/G, and that it makes T/G a groupoid on B. Note that the

unities of T/G are X-= u-&#x3E; where x E B and u E P has p (u) = x.

Also, 03BC&#x3E;-1 = 03BC-1&#x3E;. The proof that the multiplication is smooth

T/G * T/G -&#x3E; T/G follows as in 1101, II 1.12. //

Note that there is no subgroupoid of T with respect to which

T/G is a quotient groupoid.

Now consider the anchor [B-, a-]: T -&#x3E; PxP of T. It also is equi-
variant and so induces a map n: T/G fl PxP/G; as with a’ and j3’, it

follows that n is a smooth submersion. It is clear that is a group-
oid morphism over B, and that its kernel is IT/G. Thus we have proved
the following:

PROPOSITION 2.5. If T is a PBG-groupoid on P(B, G) , then

is an extension of Lie groupoids over B. ll

The corresponding extension of principal bundles is

where b E B. Choose u, E P with p (u*) = b. Then

is a diffeomorphism (see 3.3). The preimage of T/G|bo under this map
is U9x6Tu*g, and this acquires a group structure from T/G|bo. Namely,
given X E Tu*u*g, X’ E T.,"*g’, the multiplication of k&#x3E; with X’&#x3E; gives
k(k’g-1)&#x3E; or, equivalently, (kg’)k’&#x3E;. Now (kg)k’ e Tu,"8°°’ and it can

be checked directly that this operation (X, X’) H (kg)k’ makes

Ug*GTu*ug into a group isomorphic to T/Gibb.
Lastly, Tu*u*-&#x3E; IT/Glbb, kl-&#x3E;  X) is clearly an isomorphism of Lie

groups. Thus the principal bundle extension corresponding to T can be
presented as
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DEFINITION 2.6. Let T and T’ be two PBG-groupoids on P(B, G). Then a

morpblan of PBG-groupoids T -&#x3E; T’ is a morphism of Lie groupoids over
P which is G-equivariant.

If I -&#x3E;---&#x3E; T -&#x3E;---&#x3E; PxP and I -&#x3E;---&#x3E; T’ --&#x3E;-&#x3E; PxP are two PBG-groupoids
on PCB, G) with the same inner group bundle I, then T and T’ are

equivalent PBG-groupoids if there exists an isomorphism o: T fl T’ of

PBG-groupoids such that

commutes. //

It is clear from 2.5 that two equivalent PBG-groupoids

and

induce equivalent extensions of Lie groupoids. Conversely, the content
of (6) at the end of 81 is that equivalent Lie groupoid extensions
have PBG-groupoids which are equivalent. In summary then, there is

the f ol low ing :

THEQREM 2.7. Let M be a Lie group on B. Then there is a bijective

correspondence between the set of equivalence classes of Lie groupoid
extensions

and the set of equivalence classes of PBG-groupoids

In [11]. §4, it was shown that the concept of coupling allows
one to establish a bijective correspondence between equivalence
classes of principal bundle extensions and equivalence classes of Lie
groupoid extensions. Thus 2.7 may also be stated in terms of prin-
cipal bundle extensions. We do not need the concept of coupling in §4

and so we omit the precise details.



42

EXAMPLE 2.8. Assume that P is connected. There is a natural action of .

G on the fundamental Lie groupoid TT CP) of P (for which see, for ex-

ample, [10]. I 1,8, II 1.14), namely c&#x3E; g = RgoC&#x3E;. where c: [0, 1] l -4 P

is any path in P and Rg: P - P is the right-translation within the
principal bundle. It is immediate that II (P) is then a PBG-groupoid on
PCB, G).

A comparison with l101, II §6, shows that TT CP) /G is precisely
the monodromy Lie groupoid MS2 of Q = PxP/G. Using MQ = TT(P)/G as the
definition, it is easy to see that n: MO -&#x3E; Q is 6tale, by a dimension
count, using the facts that TT CP) -&#x3E;-&#x3E; PxP is 6tale, and that G acts

freely on both TT (P) and PxP. Further, one can easily show that the

anchor TT (P) -&#x3E;-&#x3E; PxP admits a G-equivariant local right-inverse
morphism, by adapting the proof of [10], II 6.8, and it then follows

immediately that n: MS2 -&#x3E;-&#x3E; Q admitzs a local right-inverse morphism
([10], II 6.11). //

It may perhaps be emphasized that the concept of PBG-groupoid
is a genuinely groupoid concept, although it arises in the analysis
of extensions of principal bundles. There is no natural formulation

of the PBG-groupoid concept entirely in terms of principal bundles.

The geometric interest of the transverse bundle was noted by
the author some time ago ([9], pp. 146-8), but the approach referred
to was cumbersome and details were not given. The introduction of the

group action on the transverse groupoid was suggested by Kumjian’s
concept of G-groupoid ([8], §2), but despite the evident similarity
between the two concepts, it is not clear that there is any general
connection between them. Actions of groups on fundamental groupoids
were treated by Higgins and Taylor [7], who were primarily concerned
with the relationship between the homotopy properties of a G-space
and those of its orbit-space. Their map q, (op. cit. §2 (*)), in the

context of our Example 2.8, is the map U(P)/G -&#x3E;-&#x3E; 1KB) obtained by
lifting the anchor of TT(P)/G across the anchor of TT CB&#x3E; ; it is a sur-

jective submersion. As was mentioned already, actions of groups on

groupoids go back at least to Brown 141.

REXARK. Consider an extension of Lie groups N -&#x3E;-&#x3E; H --&#x3E;-&#x3E; G. The

transverse groupoid T = HxH/N over (the manifold) G is naturally
isomorphic to the action groupoid HxG with respect to the left action
of H on (the manifold) G via n. The isomorphism is
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(see, for example, [10]. II 1.12) and the groupoid structure uri H xG i8

defined iff

Under this identification, the action of G on T is carried to

and T becomes NXG -&#x3E;-&#x3E; HXG-&#x3E; GxG.

This construction was given (in the setting of discrete groups)
by Brown and Danesh--Naruie 151, 34. Conversely, they associate to the
action of any group on any (discrete transitive) groupoid, an

extension of groups; applied to the action of G on any PBG-groupoid T
this yields N -&#x3E;--&#x3E; H -&#x3E;-&#x3E; G. //

3. PBG-LIE ALGEBROIDS,

Throughout this section we work with a single principal bundle
P(B, G, p). Let T be a PBG-groupoid on P(B, G). Denote by Rg: P -i P

and Rg--: T e T the right translations by g E G. Then Definition 2.1

states that Ri- is an automorphism of the Lie groupoid T over Rg.
Denote the induced automorphism of the Lie algebroid AT by (Rg-)*
(see, for example, [10], III §4). Then the (Rg--)* make AT into a PBG-

Lie algebroid in the sense of the following

DEFINITION 3.1. A PBG-Lie 81gebroid on P(B, G) is a transitive Lie

algebroid A on base P together with a right action (X, g) l-&#x3E; Xg =
Rg"(X) of G on A such that each R,,": A 4 A is a vector bundle auto-

morphism of A over Rg: P e P, and a Lie algebroid automorphism. //

As in [10]. we also denote by R,," the map FA e FA defined by

Then the conditions in 3.1 entail the following ([10], III §4) 

(i) the diagram
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commutes for all g E G where q’" is the anchor of A; and

for and

PROPOSITION 3.2. Le t A be a PBG-Lie algebroid on P B, G) for wh i ch

the quotient manifold A/G exists. Then there is a natural structure of
transi ti ve Lie algebroid on A/G with base B, and A/G is an extensions

of the Lie algebroid of H = PxP/G by L/G.

PROOF. Observe firstly that the vector bundle structure on A quo-
tients to A/G, once it is assumed that the quotient manifold exists.
Thus #: A -&#x3E;-&#x3E; A/G, X H X&#x3E; , is a pullback of vector bundles over p: P
-&#x3E; B. Next, since q": A--H TP is G-equivariant, it quotients to a map
x: A/G 4 TP/G, which is a surjective submersion since q" and both the
projections are. Now let q: AQ = TP/G---le TB denote the anchor of AQ,
and define q’ - q o n: A/G -i-i TB.

For the bracket on r(A/G), notice first that T tA/G) can be nat-

urally identified with the module T’eA of G-invariant sections of A, by
the same argument as in [10], A 2.4. Now f eA is closed under the

bracket on rA, by (ii) above, and so the rA bracket, restricted to

r"A, can be transferred to r(A/G).
We verify that

for X, Y c r A/G) and f E C(B), the ring of smooth functions on B. Let
X- , etc., denote the element of r6A corresponding to X , etc. Then

and it evidently suffices to verify that

Now

and

where (nX)- is the element of reTP corresponding to nX E r TP/G )

(see, for example, [10], A §3). But the element of r’OTP corresponding
to nX is manifestly q-(X).
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This completes the proof that A/G is a transitive Lie algebroid
on B. That the kernel of A/G -&#x3E;-&#x3E; TP/G is L/G is clear. //

For the definition of an extension of Lie algebroids see [10],
IV 3.4. It follows incidentally from 3.2 that the adjoint bundle of

A/G is an extension of LQ = Pxg/G by L/G.

The proof of 3.2 generalizes the construction of TP/G given in

1103, A §§2, 3. It is fairly evident that #: A-&#x3E;-&#x3E; A/G is entitled to

be regarded as a morphism of Lie algebroids; for the actual defini-

tion of a morphism of Lie algebroids over varying bases see (1).

One may prove that the quotient manifold A/G does exist in

several important cases: Firstly, note that the action of G on A is

always free, for the same reason as in §2. Hence if G acts properly
on A then the quotient exists. (See, for example, [3], III §1.5.)

Further, this is so whenever G acts properly on P, by the same argu-
ment as for 2.3 (using merely vector bundle charts for A, not the Lie

algebroid structure). Alternatively, if G acts properly discontinuous-
ly on P, then, by the same reasoning, it acts properly discontinuously
on A. For discrete groups acting freely on smooth manifolds, proper
discontinuity is equivalent to propriety, and so the quotient exists
in this case also. Lastly, the quotient will also exist if A admits

equivariant charts in the sense of [10] A §2.
This ensures the existence of the quotient whenever G is

compact or discrete. It seems fairly certain that the quotient does
not always exist, but this does not affect the arguments in §4.

PROPOSITION 3.3. Let T be a PEG-groupoid on P(B, G). Then the quotient
manifold AT/G exists and is naturally isomorphic to A(T/G).

PROOF. This is routine once one has established that the map #*:
AT -4 A(T/G) induced by #: T --&#x3E;-&#x3E; T/G is a surjective submersion. This
point, however, may need some explanation.

Denote T/G by 0. The projection #: T --&#x3E; O is a surjective sub-
mersion and a Lie groupoid morphism over p: P e B. The construction
of #* : AT -&#x3E; A O is given in, for example, [10], III §4 and [1]. It
suffices to prove that

is surjective and this is
Consider the diagram
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The existence of the dotted map follows from the arrangement of
the other data. A standard diagram-chase shows that to prove that

T(#u)u- is surjective, it is sufficient to show that the dotted map is

surjective. But

ker and ker

and it is easy to see that the relevant map is that induced by a-,
and is u-g l-&#x3E; ug. Thus the result. //

A slight extension of this argument shows that #u: Tu -&#x3E; T/GI pu is
a surjective submersion; since it is certainly bijective it follows

that it is a diffeomorphism. This fact will be used later.
Clearly AT/G e A(T/G) is now an isomorphism of transitive Lie

algebroids over B.

The following result is crucial for the main result of §4.

TREOREN 3.4 . Let T be an a-simply connected Lie groupoid on a

simply-connected base P, which is the total space of a principal
bundle P(B, G). Suppose that for all g E G there is given a Lie

algebroid automorpbism Rg-: AT -&#x3E; AT over R,,: P -&#x3E; P, which defines the

structure of a PBG-Lje algebroid on AT. Then there is a natural

structure of a PBG-groupoid on T for wh i ch (Rg-)* = R,,- for all g E G .

PROOF. First consider Rg-: FAT -&#x3E; FAT for a particular g. As with any

morphism of Lie algebroids over a diffeomorphism, Rv" may be consi-
dered to be a morphism over P from AT to the inverse image Lie alge-
broid R,* (AT). Here Rg*(AT) is the inverse image vector bundle

with anchor
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and bracket

for X, Y E rR/AT)), where the bracket on the RHS is the bracket on

FAT.

Denote this map AT -&#x3E; R,*(AT) by Rg. Explicitly,

where : 

Since RQ is a base-preserving isomorphism from AT to R/:(AT) =
A(Rg*T), and since T and Rg*T are a-simply connected, there is a

(unique) isomorphism of Lie groupoids T 4 Rg* T, which we denote by
Rg^, such that (Rg^ )* Rgv (see, for example, [10], III §6). Now Rg-
defines a map Rg: T -&#x3E; T by the requirement that

It is straightforward to check that Rg-"i T -&#x3E; T is an isomorphism of

Lie groupoids over, R,,: P e P, and that (Rg-)* = R,,-.
It now remains to prove that TxG e T, (p, g) l-&#x3E; Rg- (03BC) is

smooth, and this is covered by the following lemma. //

LEMMA 3.5. Let T be an a-simply connected Lie groupoid on a simply-
connected base P which is the total space of a principal bundle

P (B, G). For each g e G let R,--: T e T be a Lie groupoids automorphisms
over R,,: P -&#x3E; P. Then if the induced map ATxG -&#x3E; AT, (X, g) le (Rg )*(X)
its smooth, it follows that TxG e T, (03BC, T) le Rg- (p) is smooth.

PROOF. It suffices to work locally. Assume therefore that T is a

trivial Lie groupoid PxNxP where we can assume that N is connected,
in view of the connectivity assumptions on T and P. (However, P,
after localization, is no longer assumed to be simply-connected.) Fix
uo E P.

Now each Rg-: PxNxP 4 PxNxP has the form

where 0 o: P -&#x3E; N has 0o (uo) = 1 and fo: N e N is an automorphism of

Lie groups. It suffices to prove that the maps 8: PxG -&#x3E; N, (u, g) I
8 D (u) and f: NXG e N, (n, g) l-&#x3E; f,7(n) are smooth.

Now
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where wo = D (0o) is the right Darboux derivative of 0o.: P -i N, and

o o = Ad(6c) o (fo)* (see, for example, [10], III 3.21). By assumption,

where X E T (P)u and N is the Lie algebra of N, is smooth. It follows

’hat 0 is smooth, ultimately from the result that a linear first-

order system of equations, whose right-hand sides depend smoothly on

auxiliary parameters, has solutions which depend smoothly on these

parameters, providing that the initial conditions vary smoothly. Now
f can be regarded as a map G -&#x3E; Aut (N) and the corresponding map
G e Aut (N) = Aut(N") ? Aut(N) is g l-&#x3E; f9, and hence f, is smooth. //

The assumption in 3.4 and 3.5 that P is simply-connected is

introduced only to ensure that N in the proof of 3.5 is connected, so

that Aut(N) will be a subgroup of Aut (N). There is presumably a

result to the effect that for any a-simply connected Lie groupoid T,

any Lie group of Lie algebroid automorphisms of AT acts smoothly on
T in the manner of 3.4. However we do not wish to develop here the

apparatus necessary for such a result.

4. THE INTEGRABILITY CRITERIA.

First of all, consider an extension of transitive Lie algebroids

in which Q is an a-connected Lie groupoid on a (connected) base B

and K is a Lie algebra bundle on B (see, for example, 1101, IV 3.4).

We call (1) integrable if there is a Lie groupoid 0 on B such that A$
= A’, and a Lie groupoid morphism TT: O e Q over B, necessarily a

surjective submersion ([10] III 3.14 and III 1.31), such that TLt: = 7r.

It then follows that X = ker IT is a Lie group bundle on B with

M* = K and that

is an extension of Lie groupoids which differentiates to (1).

Choose b E B and write P = S2b, G = Q.b, p = $3ö. We will construct
an inverse image Lie algebroid p*K --&#x3E;-&#x3E; PAI --&#x3E;-&#x3E; TP on base P and with
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the structure of a PBG-Lie algebroid. Here p*A’ and PIK are inverse

image vector bundles, namely

and likewise for pK.
Recall that rp’A’) = C(P) ®cB&#x3E;, rA’, by a standard result on

pullback vector bundles. Here ø @ X’ corresponds to ø X’ o p). Define

a map q-: A’ e TP by q-(u, X’) = T(Ru) (nX’) or, on the section-level,

by

To see that q-: A’ 4 TP is a surjective submersion, recall (1101 III

3.3) that TP = pAQ under the map Xu H Cu, T Ru-,) (X)) . With this

identification, qM corresponds to p* (n): pA’ A p*AH, and this is a

surjective submersion since n is.

Now define a bracket on r (p*A’) by

for X’, Y’ E rA’ and o, y E C(P). Here n (X’)-&#x3E; denotes the right-
invariant vector field on P corresponding to n (X’ ) e rAH = r(TP/G). It

is routine to check that this is well-defined with respect to 0, ext-

ends by linearity, and makes pA’ into a transitive Lie algebroid on P
with adjoint bundle p’Kl, the inverse image Lie algebra bundle.

Now define an action of G on p*A’ by

the standard action of G on an inverse image bundle across p. One

checks easily that q- o Ry" - T(Rg) o q- f or g c G. To verify that the
induced map R,,"; r(p*A’) e r (p*A’) preserves the bracket, note first

that Rg*(Ø ® X’) = (ø o Rg- r ) ® X’; and secondly that

by the right invariance of n(X’)-&#x3E; The bracket-preservation equation
now follows easily. We thus have the following result.

PROPOSITION 4.1. 9 X -&#x3E;-&#x3E; p*A’ 1 I- )) TP, as constructed above, is a

PBG-Lie algebroids on P. II



50

Of course in this case the quotient manifold pA’/G always
exists, and p*A’/G is naturally isomorphic to A’. The following pro-
cedural result is worth recording because it is not the case that T =

PROPOSITION 4.2. Let M -&#x3E;-&#x3E; O --&#x3E;-&#x3E; Q be an extensions of Lie groupoids
and 1 e t T be the transverse PEG-groupoid. Then AT z pAØ.

PROOF. In the notation of §1, it has to be proved that TQ/N =

p* (TQ/H) . For X&#x3E;N c TQ/N with X E T(Q)v, define

It is easy to see that ø is an isomorphism of vector bundles TQ/N -&#x3E;
p*(TQ/H); compare the proof of 1.3. The proof that preserves the Lie

algebroid structures is routine, //

The following result is the key to the integrability results.

THEOREN 4.3. Continue the above notation. If H is a-simply connected,
then the extension (1) is integrable iff the Lie algebroid pA’ is

integrable.

PROOF. Suppose (1) is integrable and gives (2). Then the transverse

groupoid T of (2) has AT = p*AO, by 4.2, and so p’A’ = p*AO is

integrable.
Conversely, suppose that p*A’ = AT for some Lie groupoid T on P.

By taking the monodromy groupoid MT, if necessary, we can assume

that T is a-simply connected. So, by 3.4, T is a PBG-groupoid. Let O
= T/G, and let M = IT/G. Then

the last having been noted beneath 4.1. Now Q) is a-simply connected
(by the remark following 3.3) and so AO= A’ --nae AQ integrates to TT :

O -&#x3E; H. Since Q is a-connected, it follows that TT is surjective and a
submersion (see, for example, [10] III 3.14, 1.31) . //

Taken together with 1103 V 1.2) this gives the following.

THEOREN 4.4. An extension of Lie algebroids K -&#x3E;--&#x3E; A’ --&#x3E;-&#x3E; AS2 in which

H is a-simply connected is integrable iff the integrability obstruc-
tion e E H2 (P ZN-) of p*A’ lies in H2 (P, D) for some discrete subgroup
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D of ZN". (Here N" is the simply-connected Lie group corresponding to
the fibre-type of K and ZN" is its centre.) //

We also recover the following generalization, due to Almeida and
Molino [2], §111.4, of the basic result on the integrability of Lie

algebroids over simply-connected bases CC 10J V 1.2).

PROPOSITION 4.4. Let L -&#x3E;-&#x3E; A-&#x3E;-&#x3E; TB be a transitive Lie algebroid on
a connected base B. Let p: B" -&#x3E; B be the universal covering of B.
Then A is integrable iff the integrability obstruction e E H2 (B- ,ZN-)
of P"A lies in H2 (B-, D) for some discrete subgroup D of ZN". (Here

I"" is the simply-connected Lie group corresponding to the fibre-type
of L.)

PROOF. Regard TB as ATT(B), the Lie algebroid of the fundamental

groupoid of B. Then, since TT(B) is a-simply connected, we can apply
4.3. It only remains to show that the existence of an integrated
extension

is equivalent to the integrability of A. Given ([), we certainly have

Ao z A and since TT (B) -&#x3E;-&#x3E; BxB differentiates to the identity TB -&#x3E; TB,
the composite O -&#x3E;-&#x3E; 1KB) -&#x3E;-&#x3E; BxB differentiates to q: A ee TB. Con-

versely, if A is integrable to 0, which can be assumed to be a-simply
connected, then q : AO-&#x3E;-&#x3E; ATT (B ) integrates to TT: O -&#x3E; TT(B), which must
be surjective and a submersion by the same argument as before, and
so gives an extension ker 1T -&#x3E;-&#x3E; ø -&#x3E;-&#x3E; TT (B) . // 

Putting these two cases together, we have the following encom-

passing result.

THEOREM 4.5. Let K -&#x3E;-&#x3E; A’ -&#x3E;-&#x3E; A H be an extension of Lie algebroid
wi th S? an a-connected Lie groupoid. The extension is integrable to an
extension of Lie groupoids M -&#x3E;-&#x3E; O --H H iff the integrability
obstruction e E H2 (P- . ZN-) of the inverse image Lie algebroid
p*K -&#x3E;-&#x3E; p* A’ --&#x3E;-&#x3E; TP", wh ere P- is the universal cover of th e a-fibre

type of S2, lies in H2 (P-, D) for some discrete subgroup D of ZN-. //

REMARK. Given an extension M -&#x3E;-&#x3E; O-&#x3E;-&#x3E; Q of Lie groupoids with Q and
0 a-connected, one can of course lift the composite MØ-&#x3E;-&#x3E; O-&#x3E; Q to

MO-&#x3E;-&#x3E; MQ and obtain an extension of MQ. Conversely, an extension

M - O -&#x3E;-&#x3E; MQ induces an extension of Q by taking the composite
O-&#x3E;-&#x3E; M H-&#x3E;-&#x3E; Q and its kernel.
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From this description it is possible to see how the kernels of

extensions of Q and extensions of MQ may be related. This argument
however is not a replacement for the proof of 4.4. //

REFERENCES.

1, R, ALMEIDA &#x26; A, KUMPERA Structure produit dans la catégorie des algébroides
de Lie, An, Acad, Brasil, Cienc, 53 (1981), 247-250,

2, R, ALMEIDA &#x26; P, MOLINO, Suites d’Atiyah, feuilletages et quantification
géométrique, Sem, Geom, Diff, Montpellier (1984-85), 39-59,

3, N, BOURBAKI, Lie groups and Lie algebras, Part I, Chapters 1-3, Addison-
Wesley, Reading, Mass, 1975,

4, R, BROWN, Groupoids as coefficients, Proc, London Math, Soc, (3) 25 (1972),
413-426,

5, R, BROWN &#x26; G, DANESH-NARUIE, The fundamental groupoid as a topological
groupoid, Proc, Edinburgh Math, Soc, (II) 19 (3) (1975), 237-244.

6. J, DIEUDONNE, Treatise on Analysis, Vol, III, translated by I,G, Macdonald,
Academic Press, New York, 1972, 

7, P,J, HIGGINS &#x26; J, TAYLOR, The fundamental groupoid and the homotopy crossed
complex of an orbit space, Lecture Notes in Math, 962, Springer (1982), 115-
122,

8, A, KUMJIAN, On C*-diagonals, Preprint, University of New South Wales, 1984,
iii+37 pp,

9, K, MACKENZIE, Cohomology of locally trivial groupoids and Lie algebroids,
Ph,D, Thesis, Monash University, 1979,

10, K, MACKENZIE, Lie groupoids and Lie algebroids in Differential Geometry,London Math, Soc, Lecture Notes Ser, 124, C,U,P, (to appear), 
11. K, MACKENZIE, Classification of principal bundles and Lie groupoids with

presribed gauge group bundle, Preprint 36 pp,
12, V.S. VARADARAJAN, Lie groups, Lie algebras and their representationsPrentice-Hall, New Jersey, 1974, 
Department of Mathematics
University of Melbourne
PARKYILLE, Vic 3052, AUSTRALIA

(Current address:
University of Durham
Department of Mathematical Sciences,
South Road
DURHAM, DHI 3LE - U, K,)


