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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS. II.
APPLICA TION TO INVARIANCE UNDER A LIE GROUP

by Joseph JOHNSON

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

CATEGORIQUES

Vol. XXVII-4 (1986)

RÉSUMÉ. Dans la premiere partie de cet article (publi6e
dans le Volume XXVII-3 des "Cahiers", la theorie du Calcul Diffé-

rentiel sur les variétés différentiables a ete generalisee (sans

1’affaiblir) en utilisant des fonctions localement définies Cm

(ou anal.ytiques réelles, ou analytiques complexes) de 1, 2, 3, ...

variables comme op6rateurs, et en introduisant des relations de

commutativit6 appropri6es et des axiomes qui permettent de

recoller les informations locales en une information globale. On
a montr6 que les principales propriétés de llalg6bre commutative
sont encore valables dans ce cadre, en particulier la possibi-
lit6 d’ajouter des indéterminées et de r6soudre des systèmes
d’6quations; de plus, on peut prendre des limites et colimites

aussi générales (mais petites) que 1’on veut.
Dans la seconde partie, cette theorie est appliqu6e pour généra-
liser les théorèmes de Lie aux espaces de dimension arbitraire

(même infinie) et sans restriction sur la nature des singula-
rites qui peuvent intervenir. 

INTRODUCTION.

In the introduction to Part I of this paper (cf. [13], preceding
issue of "Cahiers") the subject matter of this concluding statement

was briefly explained. Here, for the reader’s cozivenience, a second

summary of these concluding pages of the paper is given.
The basic notion used here is that of a "universe group", an

object U of K with a given factorization of (U, ): h’ -a sets through
the category of groups (cf. §12). We then define what it means for a

universe group U to "act" on C E K. Then if c c C and U acts on C, we
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define what it means for c to be "invariant" (cf. Definition following
(12.0.2)) and "locally invariant" (cf. Definition following (12.5)).

The essence of what is proved in the paper can now be stated,

confining ourselves, for simplicity, to the case where U = AG, G a Lie

group. Our first main result is (12.6), which shows the relationship
between the notions "invariant" and "locally invariant". Next, we have
1) of (13.1), which says that c is locally invariant if and only if c

is "infinitesimally invariant". Finally, we have 2) of (13.1) which

says that the Lie bracket of the Lie algebra a of G is compatible
with the Lie bracket of derivations associated to elements of .

12. ACTIONS CIF A GROUP UNIVERSE ON A

UNIVERSE,

In these final sections we shall work almost exclusively with K.

"Universe" will mean "object of K ", and all limits and colimits of

universes will be taken in K except when stated otherwise. The theory
will be valid for all senses of the word "admissible", even though we

may refer for motivation to the differentiable case. (For the

complex-analytic theory, "Lie group"" will mean complex-analytic Lie

group.)

A universe group consists of a universe U, a functor

F: K -) groups and an isomorphism (U), k = IF I (where I I denotes

underlying set). It will usually be convenient to simply say that "U

is a universe group". For instance, if S is any set, Ao(S) is a

universe group, since it represents the functor

as

is a group under + . If U is a universe group, we have a natural

transformation (U,)x(U,) -&#x3E; (U, ) given by the multiplication, hence
y: U -i U11U. Also we have lu: U -4 Ao such that for each V E K,

sends the unique element of (Ao, V) to the identity element of the

group (U, V). We also have r : U -&#x3E; U such that (r, V) is the map of

(U, V) into itself that sends each g E (U, V) to g-1. Conversely, if
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are given a prlori so as to satisfy *&#x3E; 

then it is routine to show U has a unique structure of universe group
that returns p, lu, r in the manner that was just indicated.

In what follows, G will denote a fixed (admissible) Lie group, e

the identity of G. Then multiplication gives us

(cf. (7.9)). We also have e ": Ae e Ao (e ’(f) = f (e)) and r : AG e Ae ,
given by the inverse map of G. The required identities hold, so Ae is

a universe group.

Let U be a universe group, C a universe, I : C e UHC. We shall
say that ? is an action of U on C - even though "co-action" would be
more standard terminology - provided the identities "*’

hold. Of course if G acts on the manifold X so that

Ax is canonically acted upon by Ae. If f E Ax , g E G, x e X, we have

One always has the canonical map CtCUC whatever U and C. It is

an action of U on C that we shall refer to as the trivial action of U

on C. We shall denote it by a or tI.1,c. If ? is any action of U on C,
c E C will be called an invariant of ? if yc = uc. The main purpose
of these final sections is to prove (12.6) and (13.1). The reader

should note (12.9) which shows how one can put an admissible struc-
ture on the orbit space of a group action.

1*1 The reader should draw the appropriate copulative diagrams,
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It helps to develop some notation that is oriented toward a

more geometric point of view. Let C c K be given. If U E K, define

SuC = (C, U) (so that SC = BAoC). If x E SuC, define c’(x) = Y(c) for
all c e C. This definition extends one of our previous uses of ""’’’.

Let U be a universe group that acts on C. For any V e K, we can def-
ine a "multiplication"

by if

If G acts on the manifold X, g E G, x E X, then g-x^ = (gx)^ since if

c E Ax ,

If g, h c SvU, define

by

Of course if g, h E G, g ^h^ = (gh) ^ . If As acts on C, g E G, x E SvC,
we shall define

where

Ve shall use this notation to reformulate (12.0.1) and (12.0.2) (cf.

(12.1)).

In what follows, U will denote a universe group that acts on a

universe C. In some instances it will be necessary for U ta be more

specifically Ae itself. For the time being it will generally be

considered that the presence of G within a given paragraph will

suffice to indicate when that is so. In all instances C remains a

general object of K, and it is mainly this generality of C that

justifies the often meticulous attention to detail that follows.
The identification AOUC = C, though natural, seems to generate

confusion and must be resisted for purposes of exposition. When

x e lkV and the context selects an element h of (W,Z)k in some un-

ambiguous way, we shall let Xz = Aox. For instance, if W = Ao

(x E SV) , the meaning of Xz is clear since #(Ao, Z) = 1.

Let e = lu.

LEMMA (12.1). Le t V E K.

if

if

Indeed,
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Also

COROLLARY (12.1.1). (gh)x = g(hx) if g, h r G, x E C. Also

If g E ScU and c e C, define cg = Cg, C Y c E C. We note that if x

is in SvC, then xg = xog E SvU, so (xg)x E SvC is defined.

LEMMA (12.2).

Indeed,

We shall often write the identity of (12.2) as

In particular, when Then we obtain

since

LEXXA (12.3). if Also

Let . Then

Also

Given define for Then

in (C,C). We have



94

Lemma (12.4) below will allow us to "move around" on SU and SC.

We need some preliminary definitions. If g e SU, let À9: U -) U be

defined by k0 - (U, gu &#x3E; u. A proof entirely analogous to that of (12.3)

yields

if

We shall consider X. for g e SU as defining

and write ÀgllC also as Àg. Similarly we have

For the following lemma, one needs to refer to the remark pre--

ceding (6.8).

LEMMA

We get 2 from

and 3 from

For 1 we have

If f E Cgx, define fg E Cx if g E SU by fg = (pg)xf. Similarly, if

g, b E SU, u e Uhg, define gu = (kg)hu e Ug.

COROLLARY Let

Th en :
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The following will turn out to be an important application of

(12.4). Recall o = CtAellC s the trivial action of As on C.

LEMMA (12.5). Let c E C , x E X , g E G . The following are equivalent:

By using successively 1, 3 of (12.4.1) on AaIIC and 2 of (12.4) 

we get 

Similarly we get

Therefore clearly 2 =&#x3E; 1, and conversely, since kg-i and pg are isomor-

phisms.
If c E C and YC)(e,x)= (uc)(e,x) for every x E X, we shall say

that c is locally invariant. Obviously c invariant (yc = tic) implies
c is locally invariant. In the case of an action of G on a manifold,
c locally invariant means c has a constant value on U n dom c for

every orbit U C X of the action of G on X. If c is locally invariant,
if G is connected and if furthermore for each orbit 0,

then c is invariant. Thus, for connected G, we can say that locally
invariant with "invariant domain" implies invariant. We now see that

this is true in general,

THEOREX (12.6). Let c E C be locally invariant wi th Oc invariant, and

assume that G is connected. Then c is invariant.

From (12.5) and local invariance, (Yc)(g,x) = (o(cg))(g,x) for all

g E G, x E X. Therefore

Since Y(0c) = tt (0c), (g^, x) (o (yc)) = x (Oc) g e G. Thus (yc) (g,x) not a

phantom means cx not a phantom. Let us identify GxX with S(AeIIC) for

the moment. Then given x E X, we have
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Let us now use the general result (12.6.1) below with U = Ag, w = Ic.
We obtain yc = oc’ for some c’ £ C. Then

so ?c = oc, Thus we only need to show the following.

LEXXA (12.6.1). Let U, C E K wi th M = SU connected. Let w E

UILC, and assume that w satisfies the following conditions: 
1) m E X n wlU*UC = w (n,)IUmuC where w (m, ) = (m ,C) w,
2) (mx) E dom w^ =&#x3E; Mx{x} C dom w’’, In E M, x E SC.

Th en w e im m, c.

This lemma is vacuous when M is, so we shall assume M * 0.

Let lno c M and define c = w(no, ). We shall see that w = txc, where

a = ou , c .

Let X = SC, x e X. For f e UUC, let fx = flUILCx. Assume that

(12.6.1) is valid when C is local. Let

and

If III EM,

Also dom (w.,)^ = M or it is empty, so 1 and 2 of (12.6.1:Y hold for

wx. The special case of (12.6.1) where C is local implies that wX E

im Gx, so

This being so for all E X, we shall have w = uc.
We can now assume that C is local in completing the proof of

(12.6.1). From 2, Ow = 0 or Ow = 0uic, and so we can assume Ow = 0.

We need to show that w = uc, i.e., that w. = (öc)/m for every m c M.

Let

Clearly (by 1) and the definition of c), mo E Z, and Z is open. To

prove (12.6.1), we only need to show that Z is closed,
Let z E cl Z. We have wz = (ö (w (z, ))]z. Take p E OU such that

and
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(which is possible since Ow = 0 =&#x3E; wr # Øz). Choose 1D E Z such that

p 
A 

(m) = 0 . Then

As o,,,: C e Um TTC is an injection, we see that w (z, ) = c. Therefore

so z E Z and Z is closed.

Let La = (Ag)c (= the localization of Ae at e), and define Y. 
C -&#x3E; L«VC to be (e-*UC)Y. Let p,: L -1 LIIL be defined by pe = (e-lle-)u 
This defines a "local action" of G on C in the sense of the following
definition.

DEFLYITION (12.7). A morphism y: C -&#x3E; LaIIC is a local action of G on C

iff

and

We shall call ye, as defined above, the local action associated

to y. In (12.6) we have seen that when G is connected, c E C is in--

variant iff besides yec = aL6,cC we have also that

is an invariant set under the action of G. Thus the question of the

invariance of c decomposes into an analogous question about 1e and a

purely set-theoretic one about the action of G on X. In what follows,
we shall only be looking at local actions ?: C -&#x3E; LeIIC. Of course Le is

a universe group.

The Lie algebra "3 of G is commonly defined as the set of left

invariant vector fields on G. We shall find that because we have

generalized left actions of G on a manifold, it will be convenient to

define # to be the set of right invariant vector fields on G with Lie
algebra "bracket" given by [G,Xl = 0x - X8 for 0, X e ’2. Thus
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Since any element 0 of g is uniquely determined by its value 0. at e,
where O.f = (6.f) (e), f E AG, it follows also that yg C Ader Ls. In the

sequel we shall tend to consider that tg C Ader LG .

We shall need to know, in terms convenient for our theory, how
to formulate the idea that a vector field 0 is right invariant. Let

f,E Ag., h E G, with f(h)# 0c. Let g(t) be any differentiable curve in
G such that g (0) = e, g’’ (0) = 0e. Then

Because (’e,h)= h ^(Ce^,As) , this can be written

Using the right invariance of 0, we can calculate this same quantity
as

Thus, for right invariant vector f ields 0 on G, we have the identity

It is easy to see that conversely (12.7.1) implies that 0 is right
invariant.

DEFINITION (12.8). Let U be a universe group. We shall say that

0 E Ader U is right invariant if 8 = (a.,U) (0110),u.

Let T: GxX -&#x3E; X be the multiplication map (g,x) l-&#x3E; gx of

S(AaUC) = GxX into SC = X. Let p: GxX -&#x3E; X be such that p (g,x)
= x. We shall define X/G to be the coequalizer in the category of

sober spaces of the pair (r,p) (cf. §8). Thus if Y is the space of

orbits of X with the quotient topology derived from X-&#x3E;-&#x3E; Y, then X/G
is the soberization of Y. We shall let Inv C denote the set of

invariant elements of C.

The following is a routine consequence of the definitions and

(8.5).

PROPOSITION (12.9). For an7 action of G on C e K :
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2) X/G is homeomorphic to S (Inv C).

The many writings on group actions as well as examples from

the qualitative theory of ordinary differential equations show us how

very perplexing the space X/G can be (cf. [12]). Therein lies the

significance of 1 of (12.9).

13. ACTION OF A LOCAL GROUP UNIVERSE ON A

UNIVERSE.

We continue the conventions of §12. We let L be a group universe

such that L is local. We let y: L -4 LUL be the comultiplication, and
we shall assume that an action ?: C -&#x3E; LILC of L on a universe C is

given. The goal of the remainder of this paper is to demonstrate

Theorem (13.1) below.

Define gL to be the set of all right invariant elements of

Ader L. If 0 = qqL, define

If 0 E g and c c C, define 6c = De (c) E C.

THEOREM (13.1). Let c e C and assume that L = La acts on C. Then:

1) c Is Invariant lff Oc = 0 for all 0 6 gL ;
2) If 0, X IE VJL, then D[e,x] = [De,Dx] 

If 0 E ug and f E LHC, define Of = (0IL0)f, i.e., we just let 0

operate in this instance on the first summand of LUC.

LENNA (13.1.1). Let 0 E g, c c C. Then 0Yc = y0c.

To prove (13.1.1), we shall first need to establish the following
identities:
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To establish these, we notice first that replacement of 0110 and

01LOU0 by LUC and LILLIFC (considered as identity maps) gives us

correct equations

and

Indeed, the first of these is obvious. Write the second as t = r.

Let U E K, g e (L,U) , c E (C,U). Then (g,c) is an arbitrary element of
(LLLC, U) and

Also

So e = r.
It follows that both sides of (13.1.2) are in Ader(LHC) and that

both sides of (13.1.3) are in Ader (Y (e c,C)). Thus to establish these
identities, we only need to show that both sides of the equation in

question agree on L C L1IC and on C C LUC (cf. (9.8)). On C, the two

sides of (13.1.2) are just multiplication by 0. Equality on L amounts
to the identity (eL,L)(0110))u = 0, which is so because 0 is assumed to

be right invariant. On C, both sides of (13.1.3) are multiplication by
0. On L they give e LUc8 = Ye c8, which is true since ye c = E LUC-

The proof of (13.1.1) is now possible. If c E C,

We can now prove 1 of (13.1). If Oc = 0 for every 0 E z, then

8y c = Y0c = 0 for every right invariant 0 E Ader L. Pick coordinates

z7, ..., zh for G in the neighborhood of e, and write

Let R be the local ring of L (so L = Rll {0*}). Then d/dz., is a linear

combination over R of right invariant elements of Ader L. If r E R

and D, E e Ader L, we have

and

f or every f E LIIC, where D acts on LUC as DUO, E as EYO. Thus
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for

By (10.2.2), this implies yc E C, so c is invariant.

14. LOW ORDER TERMS IN THE POWER SER I ES

EXPANSION OF Nb.

Let xi, ... xh e Ae be the functions of a coordinate system of G
centered at e E G. Since we shall be working in the neighborhood of 0
in Kh, we shall write e as 0 and assume xr (C))= ... 

= xh(O) = 0. We

have Le = Ao x1 , ..., xh&#x3E;. Let us apply (11.3) ("Taylor’s Theorem") to Y c.
Ve can write

Y (C)= (YC) (0) + (X7CI1 f ... f xhcih) + (1/2) E i j Xi (CZ)iJXj + R2 (Yc)

where R2 (’I c) is an infinitesimal of order &#x3E; 2. Furthermore, since cz

is given by partial derivatives, it is a symmetric hxh-matrix. Its

entries (c2),, E C and satisfy O(C2)ij = Oc. Also 0ci,; = Oc, for

1  t  h .

Until stated otherwise, we shall steadfastly ignore all

infinitesimals of order &#x3E; 2. Setting x = 0, we get (Y C) (0) = c. Let us

therefore use matrix notation to write

here considering x as the "row vector" [X7... Xh] with xT the "column

vector" transpose of x. For any set S we shall let Mu, v(S) denote the

set of uxv matrices over S.

We need to do some technical work that will lead to the proof
of 2 of (13.1). Let us look at the 1-th component ci, of c7 E Mh,(C)
in

and apply ? to it to get

Ve shall be needing the specific formula that one can obtain for

these (CU)1 E C by using the relation (uUC)Y = (Lllý)y. For this
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note that (C1i)1 E Mh,1(C) and so has entries (C1i)1J, for 1  S h. It

is convenient to define (ci)i in Mh,h(C) by

To derive the formula for (c1)1, we shall first need to consider the

Taylor expansion of p at e (ignoring infinitesimals of order &#x3E; 2). We

shall write

LEWNA (14.1). For i = 1, ..., b we have

where

We have

and

Thus

for appropriate ai, bi, ci E Mh,h(K), and at and c, can be taken to be

symmetric. But then

for all

so

LEMM (14.2). Let bt be defined as in (14.1), i = 1, ..., h. Then

Use the relation (uUC)Y = (LU’I)’ on c, writing

Ve have

as one sees by writing
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and noting that

Let b, E M , h, (M hh (K) be defined by b* = [b, ... bhl. Then also

In view of (8.18), the expressions we have obtained for (LUY) (yc) and

(uUC) (Yc) must equal each other. Equating the two expressions and

performing cancellations we get

As c2 is symmetric, 

Also

so (12.2) follows.

Let 8i e ’go be defined by 8jf = (df/dxi)(e) for f E L. Abbreviate

De. by Di.

LEMMA (14.3). Let c E C. Then:

For 1,

Then, because of 1, Dj (Dtc) = (c1i)1j, proving 2. From 2 and (12.2),

so 3 follows immediately from the fact that C2 is symmetric.

At this point we shall discontinue our practice of ignoring
infinitesimals of order &#x3E; 2. Write La = RU(O*).
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LEMMA (14.4). Let I = 1, ..., h. Then in Ader L we have

where V 1 E Mh,h(R) and 8/8x is the "column vector" with entries ð/ðx7,
... , d/dxh’ Furth ermore Vi. sa ti sfi es

We can write

where bi E Mh,,,(R) and bj (e) = bj. If S is any right invariant element
of Ader L,

8xj= (eUL) (8UO) (xj + y.y + XbjYt) = 0eYj + (0ex)bj,xT.

In particular,

Thus

where (Wi)vJ = (bj)iv, Th is proves (14.4).

LEMMA (14.5). For i = 1 ... , h , 

From (14.4),

Thus, since x (e) = 0, 

Therefore the equation of (14.5) holds, for it is an equation between

right invariant vector fields that agree at e.

We can now prove 2 of (13.1). From 3 of (14.3) we have

from (14.5) that
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and by 1 of (14.3), 8 uc = C’q, so [Dj,Di] = Dtei,ej. Then 2 of (13.1),

[De,Dx] = Dcp,x, is an immediate consequence of the K-bilinearity of

this equation.
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