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DECOMPOSITION OF AUTOMATA AND
ENRICHED CA TEGORY THEORY

BY S. KASANGIAN and R. ROSEBRUGH *

CAHIERS DE TOPOLOGIE
ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

Vol. XXVII-4 (1986)

RÉSUMÉ. On étend un resultat de la theorie des automates

finis concernant la d6composition concat6native de langages
reguliers (Paz &#x26; Pelag) aux automates a arbres. On utilise dans

cet article la theorie cat6gorielle enrichie des automates, ou

les automates 6 arbres se laissent d6crire comme categories
enrichies sur une bicat6gorie.

1, INTRODUCTION.

The study of non-deterministic dynamics viewed as categories
enriched in a biclosed monoidal category constructed from the input
monoid 11, 2, 4], and its extension to tree automata [3], is here

applied to decomposition of the associated behaviours using subsets
of the state spaces. Our main result is related to the concatenative

decompositions of regular events defined by Paz &#x26; Peleg [5]. They
showed that the behaviour of a deterministic finite automaton (with a

free input monoid) is decomposable exactly when there is a subset of

the state set through which every computation passes and which, to-
gether with an associated subset, defines a decomposition.

We give a decomposition of the behaviour of (= set of trees

accepted by) a deterministic tree automaton in the sense of [3]. The

decomposition involves a set of tuples of trees substitutable into a

final set of operations of fixed arity. The result of Paz &#x26; Peleg
reappears essentially as a special case of the result just quoted.

*) This research was partially supported by a grant from NSERC Canada,
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We recall briefly some definitions relative to tree automata

viewed as enriched categories. For further details, see [3].

Given an algebraic theory T (a category whose objects are finite
sets In] = {1, ..., n), n - 0, 1, ... and which admits the category of

finite sets as a subcategory, with 101 = 0 as initial object and Ill J =

{1}, such that Inl is the n-fold coproduct of [1]), we construct a bi-

category B(T) which has the same objects as T, the 1-cells from C nJ

to [m] in B(T) are the subsets of T ([n], [m]) and 2-cells are inclu-

sions. Composition of 1-cells and identities are the obvious ones.

B(T) is locally partially ordered, locally complete and cocomplete and
also biclosed. The arrows of T seen as 1-cells of B(T) are called

atoms.

Let X be a B(T)-category with only one object (say*) over 101.

We call an object b over Inl reachable if it is the cotensor of *

along an atom. We call a skeletal B(T)-category reachable if all the
objects are reachable.

Reachable B(T)-categories correspond to non-deterrninistic T-al-

gebras (T-dynamics). Further, a reachable B(T)-category X corresponds
to a deterministic reachable (i.e., definable) T-algebra if its under-

lying category is discrete and if it is cotensored along the atoms.
We denote by X[ n] the "fibre" of X over In). Then X[1]. is the

carrier of the algebra and X[0] = *. Denoting by [n] the trivial, one
object category over CnJ, a tree automaton (i.e., a T-dynamics with a

subset F C X[1] of final states) can be described as a triple
(X, i, 1’) as follows:

X is a reachable (possibly deterministic) B(T)-category;
i: X -&#x3E; [0"] is the initial module, given by i (b) = X(b, 3), where

b = (b1 ...bn) is an X-object over [n];
r: [1^] -&#x3E; X is the final module, given by

r (b) = i g E T([1], 1 n]) I there exists a E F C X[1] and g E X (a, b) ) .

Notice that if the automaton is deterministic, the definition above

can be stated using the cotensor, namely

r(b)= { gET ([1], [n]) I there exists a E F C X[13 and bcg=a }.

Thus, the module i provides sets of tuples of trees (terms),
whereas r selects sets of operations which are "successful" if per-
formed on those trees. The composite module i.1’ is the behaviour of

the automaton and consists of the set of trees, i.e., 1--cells at T([l],
[0]), which are recognizable. Henceforth we assume that the tree

automata considered are deterministic.
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2. THE DECOMPOSITION THEOREM.

DEFINITION 2.1. We call a set of states R C obj X a decomposition set
for the automaton (X, i, 1’) if i.,. = LrcR i (r).T (r).

DEFINITION 2.2. Given a set of states S C obj X, we call associated

with S the set of states

S = I s ^ e obj X I IT scS r (s) C r (s^)}.

REMARK 2.3. Notice that if b is in Xm and c is in Xn, with n - m, it

is always the case that r (b)nr (C) = 0. Hence, the notion of

associated set trivializes unless there is an n with S C Xn. Hence-

forth we assume this whenever we mention associated sets. Notice

also that S G S" from the definition.

Recall that the behaviour i.r of an automaton (X, i, 1’) is a

module i.T : [1^] -&#x3E; [0^] and hence a 1-cell from [1] J to 101 J in B(T).

Notice that it may admit a decomposition into two 1-cells of B(T). We
have the following:

DEFINITION 2.4. Let (X, i, r) be an automaton with behaviour i.1’. We

say that 1-cells D: [1] -&#x3E; [n] and C: [n] -&#x3E; [0] (n # 0 and if n = 1,
then D # 1[1]) in B(T) are a decomposition if i.7 = C.D. Behaviours

which admit a decomposition are said to ’be decomposable.

Notice that C is a set of n-tuples of trees and ’D is a set of

n-ary operations which is performed successfully on these trees.

Hence the definition ensures that the last branching of any tree of

the behaviour is n-ary.
We are now able to prove the Decomposition Theorem:

THEOREM 2.5. Given an automaton (X, i, T) its behaviour is decompos-
able iff it admi ts a decomposi tion set S such that:

i.’r = EqEs- i (q) . TTq,es T (q’).

PROOF. Observe first that, by Remark 2.3, there exists an n such that

S C S" C X", Eqes- i (q): [n] -&#x3E; [0] and TI q’es r(q’) : [1] -&#x3E; (n],

so sufficiency is obvious. To prove necessity, assume the behaviour
is decomposable, i.e.,
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i.r = (111 [n] -&#x3E; C 101, with n * 0.

Ve define S C Xn as follows:

S = { SEX n l i (s)nC # ø }.

Ve show first that S is a decomposition set. For any 1-cell h in the
behaviour i.r, there exists an n-tuple of trees Cl : : [n] e 101 in C

and an n-ary operation di: [1] -&#x3E; C nl in D such that h = C7 d7. Since X

is reachable, there is a q = *C:C1 in Xn , so that Ci e i (q)nC and
hence q E S. Since c1 d1 is in i.r, d, E r (q) and so we have

i.,r C E q’es i (q’). -r (q’).

Hence S is a decomposition set. Further,

C C Eq ’E S i Cq’) C EqEs^ i Cq)

since S C S". Next we show that D C TTq, ES r (a’). Given d E D, we know

that, for all c E C, cd c i.r and there is a q = *Cc in S such that

c E i Cq) and d E r (q). Since S is a decomposition set, for all q’ Ë S,
there exists a c- E i (q’) such that q’ = *Cc- and d e r (q’). Thus it

follows that d E TTq’Es r (a’). Therefore rqcs- i (q) and TTq’cs r(q’) are

non-empty and moreover

l,s- i (q) . TTq ,cs t (q’) ) C.D = i.’r.

To finish to show the reverse inclusion, let

z = xy, with x E Eqes- i (q) and y E TT q ’eS T (q ’).

Aow there exists a g- in S" with x E i (q), i.e., q"- = *Cx. Further, by
the definition of an associated set, y E TTq’s r (q’) implies y E r (q)
for all q E S". Hence

y e T (q-) and z = xy E i (q-).r (’q-) = Eqcx i (q).T (q) = i.T.

REMARK 2.6. Observe that the proof of Theorem 2.5 ensures that the

decomposition decribed above is maximal with respect to the obvious

partial order on the set of pairs of 1-cells which decompose the

behaviour. Recall that, for any n, B (T) ([n], [n]) is a monoid, with

identity 1[n] and multiplication given by composition of 1-cells.
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PROPOSITION 2.7. Let (X, i, r) be an automaton and S C Xn a decompos-
ition set. Define

L is a submonoid of B (T) ([n] [n]).

PROOF. It is immediate that 1[n]3 E L, since S C S" and 1cm C X (S, S)

for al l s e S. Notice also that, since the automaton is deterministic,
an equivalent definition of the associated set of states (Definition

2.2) is

Now we need to show that if x, y e L, then xy e L. Given a z :

[n] A L nl such that scz E F for all s E S and observing that

soy e S", we have that

for all

By the same argument, (s(x)(yz E F for all s E S. But

so that stxy e s’" for all s E S. Thus xy. E L.

The 1--cells of B(T)(1n], [n]) are n-tuples of n-ary operations
and composition is substitution. If we take n = 1, the 1-cells of

B(T)([1], [1]) are unary operations so that giving a decomposition
set S C Xi amounts to considering actions of the monoid L above (a

submonoid of B(T)([1], 111)) on a set of trees.

In the next section we will see an interpretation of these

results in the more special context of sequential automata.

3. APPLICATIONS TO SEQUENTIAL AUTOMATA.

The B-categorical approach to tree automata admits a straight-
forward specialization to sequential automata. However, we will follow
the lines of [1, 2, 41 giving a slightly different (though obviously
equivalent) description in terms of categories enriched in a monoidal
biclosed category, i.e., in a biclosed category with one object.
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The input monoid X yields a monoidal biclosed category X~ = 2x,
where the tensor product is just the Frobenius product of subsets of
X and the internal homs are given by left and right quotients. A (not

necessarily deterministic) dynamics is then an X"’-category Q where

objects q, q’ in Q are the states and Q (q, q’) is the set of monoid

elements which act on q (possibly in a non-deterministic way), car-

rying it to q’. A deterministic dynamics is an X"’-category which is

tensored along the "atoms", i.e., the elements of X, and whose

underlying category is discrete. An X-automaton is then a triple
(Q, i, r) as in the following diagram

where 1 is the trivial, one-object X~-category and i and T are the

initial and final modules. The behaviour is again i.1’ and it is the

subset of X (i.e., a language) recognized by the automaton. Modulo a

"normalization" described in 141, we can think of these modules, as

given by

and

where J and F are the sets of initial and final states. A determinis-

tic automaton has a deterministic dynamics and further the initial

module is required to be I* for some X"’-functor I from 1 to Q, i.e.,

Q (1, q) = I* (q).
As for reachability, here it means ’that for all q in Q, i (q) # 0.

The definitions of decomposition set (2.1) and associated set (2.2) 

apply straightforwardly to this context. The decomposition of a be-

haviour still exhibits it as the composite of two 1-cells of the

(one-object) bicategory X~*. Given a language A in X~, a decomposition
for it is a pair of languages B, C such that A = B.C, B # {e}, C # lel.

This definition applies of course to behaviours and yields the notion
of decomposable behaviour. The following is the analogue of Proposi-
tion 2.5.

PROPOSITION 3.1. Given an automaton (Q, i, T) with deterministic dyn-
amics, its behaviour is decomposable iff it admits a decomposition
set S such that i.1’ = EQEs^ i (q) TTq’cs r (q’).

The proof of Proposition 3.1 is nearly identical to that of Pro-

position 2.5 provided some attention is paid to different interpreta-
tions. In particular, recall the different meanings of i and r and

that now the decomposition set and its associated set are obviously
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constructed without the restrictions of Remark 2.3: Q is all in one

"fibre". Further, in the proof the tensor in Q (rather than the

cotensor) is used because no contravariance is involved. The same

interchange of tensor and cotensor provides the adjustments neces-

sary to prove the analogue of Proposition 2.7.

PROPOSITION 3.2. Let (Q, i r) be an automaton with deterministic dyn-
amics and S C Q a decomposition set. Define

L is a monoid .

Restricting ourselves to deterministic automata (that is with

one initial state) and observing that the initial state is a decomp-
osition set, we get the following:

PROPOSITION 3.3. Let (Q, it T) be a deterministic reacha b1 e a utoma ton .

Then the behaviour is a monoid iff ioA = F, where io js the initial

sta te.

Notice finally that by specializing further to finite state det-
erministic automata on a free monoid X, we get the results of Paz &#x26;

Peleg (see [5] Theorem 1, Lemma 3, Theorem 3).
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