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ARCHIMEDIAN LOCAL C~-RINGS AND MODELS OF
SYNTHETIC DIFFERENTIAL GEOMETRY

by Marta BUNGE and Eduardo J. DUBUC

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVII-3 (1986)

RÉSUMÉ . Cet article considdre les anneaux-C°° dans

les topos de Grothendieck, et a pour but de les presenter de

nani6re plus géométrique, et de rendre explicite leur role dans

la construction de modules de la GDS (G6om6trie Diff6rentielle

Synth6tique). En particulier, on 6tudie essentiellement ici les

anneaux-C- locaux et archim6diens, pour montrer qu’ils sont "la

memo chose" que les mod6les bien adaptés de la GDS. En passant,
on donne aussi une autre caractérisation des anneaux-C"° locaux

et archim6diens dans un topos de Grothendieck; ce sont

précisément les anneaux-C°° dans le topos qui poss6dent, de plus,
un morphisme d’anneaux locaux dans l’objet des r6els de Dedekind
du topos. En tant qu’6tude intrins6que des anneaux-C°°, 1’article

ne pr6suppose aucune connaissance approfondie de la Géométrie

Diff6rentielle Synth6tique.

O . INTRODUCT ION.

In this note we establish, or rather clarify, the fact that Ar- 

chimedian local Cm-rings and well adapted models of SDG are essen-

tially "the same thing". At the same time, a novel (geometric)
approach to Cc»-rings is presented. This not only leads directly to

the well adapted models among the Archimedian local C°°-rings, but

also makes explicit the basic principles employed in their construc-

tion. No specific acquaintance with the theory of SDG is presupposed.

This paper was written while the second author visited McGill

University in the winter of 1986, as a guest of the Centre Interuni-

versitaire en 6tudes cétégoriques, for whose financial support he is
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grateful. The first author acknowledges support from the National

Sciences and Engineering Research Council of Canada, and from the

Ministère de 1’Education du Quebec.

1. C°°-RINGS IN CATTEGORIES WITH

FINITE LIMITS.

By definition (cf. [7]) a C--ring is a model (in Sets) of the

algebraic theory whose n-ary operations are the C°°-maps R" 1 R, with
R the real numbers, and whose equations are all identities holding
between them.

Denote by A the category of Cc»-rings and morphisms of Cl*-rings;
Arr and AFP will denote - respectively - the full subcategories of A
whose objects are the C°°-rings of finite type, and the C°°-rings which
are of finite presentation among those of finite type.

By X we will denote the category of (paracompact) C°°-manifolds

and em-maps. Let us recall a couple of definitions.

A pullback diagram

in X is called a transversal pullback if and only if for all p E S,
the images of the tangent spaces of M at x = k (p) and of N at y -

h (p) generate the tangent space of T at z = f (x) = g (y).

Let N be an zrdimensional C°°-manifold; h 1, ..., hk: N -) R C-’-

maps. The functions h, ..., hk are said to be independent if and
only if for all p E Z (h 1, ..., h..) - with Z (h, ..., hk) the set of

common zeros of the h1 , ..., hk in N - the rank of the -Jacobian

matrix [6hi/6xj] at p equals k.

The following is the key result about C°°-rings in the context of

building models of SDG. The construction of all (known) models using
C°°-rings follows from it (cf. [3]).

1.1 - THEOREM. Let N be an n-dimensional C°°-manifold; h1,..., hk, 
N -) R independent C°°-functions. Then, M = Z (h1 , ..., hk) is an (n-k)-

dimensional C°°-manifold of N, and the restriction map
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is a quotient in A, with kernel the ideal (h1, ..., bk) generated by
the hi, i = 1, ..., k.

PROOF. In order to prove the theorem we will show that the above is

an instance of a quotient of C--rings for which "comuting it locally"
agrees with "computing it globally". Three basic facts in the theory
of Ca’-functions are essential for this purpose. Namely, the implicit
functions Theorem (I.F. T.) the (local) Hadarnard ’s Lemma (L.H.L), and

the existence of C°°-partitions of unity (P.U.).

We recall the first:

(I.F.T.) For every p E M, there exists an open U C N , p E U, an open
V C R", 0 E V, and a diffeomorphism 0: U A V , 8 (p) = 0, such that the

following diagram commutes.

In a picture

This defines a structure of an (n-k) -dimensional C°°-1-manifold

for M (actually, a closed submanifold of N). It follows trivially that
the restriction map Cm (N) -&#x3E; C°° (M ) is locally surjective. That is, for

all p E M, C°°p(N) -&#x3E;-&#x3E; C°°p(M) is surjective, where by C’p we indicate

the ring of germs at p of C°°-functions.
The problem is to show now that the kernel of this map is the

ideal (h1 lp1 ..., hk Ip) generated by the germs at p of the functions
h1 , ..., hk. For this, we need the c’local) Lemma of Hadamard, in the

form:
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(L.H.L.) Let U = U1xU2x...xUn C R" be open, with the U1, i = 1, ..., n,

open intervals of R, and let f : U -&#x3E; R be any C°°- f unct ion . Then there

exist (unique) C°°-functions

such that for all

If we put

above, we have the following form of the theorem:

Let U = U1 xU2x...xUn C R" be as above, and let f : U -&#x3E; R be a Cw-

function such that

for all x, e R, I = 1,2, ...,n-k. Then there exist (unique) C--functions

gi: U -&#x3E; R, I = n-k+1, ..., n, such that for all x E U, x = (x1, ..., xn),

We now return to the restriction map C°°p (N) --&#x3E;-&#x3E; C°°p (M). We can

assume that the open set V (as in (I.F.T.)) is a product of intervals
(since these form a basis for the topology of Rn,). Let f : U -&#x3E; R be

such that f lMMu = 0. It follows then that for any x - (x7, ..., xn) in

V.

Thus for every x E V, 

Therefore, for every x E U,

which shows that the germ of f at p E U is in the ideal generated by
the germs at p of the functions h1, ..., hk. Thus, for all p e M we
have:
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This says that the restriction map is locally a quotient map.
To globalize we now use partitions of unity (P.U.). Let f be a

C°°-function defined on M. Take open sets Uoc C N which cover X and

smooth functions fx: Uo -&#x3E; R, such that

A standard (P.U.) argument permits to patch all the fo together to

obtain an extension of f to the whole of N. Let now h : N e R be any
function such that hlM = 0. Take open sets U.x C N such that they
cover M and such that

Let

Clearly, the Uo together with the Ui cover the whole space N and also

trivially, for each i = 1, ..., k. Let (UB) indicate the open covering
{Uo} U {Ux,}. We then have, for all B,

Ve can assume (Uv) to be locally finite, with an associated partition
of unity {oO}. Let fi B: UB -&#x3E; R be such that

The functions o B. g i B) are all defined globally, and

Thus



8

where

(Remark that for each x E N, the sums above are finite in a

neighborhood of x.) This shows that h E (h1, ..., h,,) . Hence, the

theorem is proved.. 

In what follows, we derive some useful consequences of the

above.

1.2. COROLLARY. a) For- any U C R n open, C°° (U) i s a finitely presented
C°° -ring, and the restriction map C°° (R") -&#x3E; Ceo (U) is an epimorphism in
A.

b) For any U C R" and V C Rm both open, 

where 0.. denotes the coproduct jn A.

both open, and 

independent functions,

wh ere E -&#x3E; U is the equalizer of f, g.

PROOF. a) Let fi : R" -i R be a smooth characteristic function of U C

R", i.e., let be such that

The restriction map C°° (R") -&#x3E; C°° CU ) is the universal solution to the

problem of making the element invertible in the category of C--

rings and, as such, is an epimorphism. Indeed, a simple direct proof
of this may be given as follows. Let Y : U 4 R n+1 be given by

This map is injective, and identifies U with the set of zeroes of the
function
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This function is independent, thus Z(1 - o(x).y) carries the structure
of a closed submanifold of Rn+1. and x is a diffeomorphism of it with

U. It follows from 1.1 that establishes an isomorphism

Clearly, the following diagram is commutative:

where p is induced by Y. We now show that the restriction map
induced by the inclusion U C R n is an epimorphism in the category of

C°°-rings. Let h, h’ ; C°° (U) -&#x3E; A be equal on the image of the

restriction map. Then, h (Xi) = h’ (Xi), i = 1, ..., n. Also, b (o) = h (o’).
Thus, also h (1/o) = h (1/o) . This shows that hp (y) = h’p (y). since

y*(y) = 1/o. But C°° (Rn+1) is freely generated by x, , ..., xn and y.
Since h and h’ coincide already on x, , ..., .Y,, it follows that they
are equel on the whole of Cw (R n+’). Now, since p is a quotient map (by
the commutativity of the diagram and Y* iso), h and h’ are equel on
the whole of C°°(U). This finishes the proof.

b) Let o and I be smooth characteristic maps of U and V, 

respectively. Using (a) we see that

Since

it follows that

Since the functions 1-A (x),y, 1-y (u).v are independent, 1.1 gives that

c) Notice that E = Z (f-g) and that the function f-g is indep-
endent (since the functions f, g are assumed to be independent).
Apply now 1.1 to get
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Denote by C the category of opens of the R n, n &#x3E; 0, and smooth

-maps. The following is easily shown of [5]).

1.3. LEMMA. Let F : C -&#x3E; E be a functor, where E is any category with
finite limits.’ Then, the following are equivalent:

(i) F preser ves transversal pullbacks (i.e., takes any
transversal pullback in C into a pullback in E) and the terminal

object 1 ;
(ii) F preserves open inclusions, fi n i te products and equa-

Ii2ers of independent functions,..

1.4. THEOREM. The functor C°°(-) : C -1 AIP, defined on objects by the
rule : U H C°° (U) (where the bar rnerely indicates that the object
C°° (U) of A is to be regard ed in th e opposite category), factors

through the inclusion AFP°° -&#x3E; AoP and preserves transversal pullbacks
and 1.

PROOF. By 1.2 (a), C°° (U) is finitely presented. Also by 1.2 (a) , C°° (-) 

preserves open inclusions of the form U C R’’’ : this is enough to

show that C°°(-) preserves arbitrary open inclusions in C, as if

U C V C R", if the composite

is an epimorphism, also C°° (V) -&#x3E; C°’(U) is an epimorphism in A.

By 1.2 (b), C°° (-) preserves finite products and, by 1.2 (c), it

preserves equalizers of independent functions. Finally, 1.3 gives that
Cm(_) preserves transversal pullbacks and 1..

Given a C°°-ring A in E (a category with finite limits), and any
finitely presented C--ring B, say

denote by SpecA (B) E E the object Z Ch1 , ..., hk) of E defined as in the

equalizer
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in E (the notation h x : A" -&#x3E; A, for h1 : R" -&#x3E; R, indicates the corres-

ponding n-ary operation on A given by its structure of a CaD-ring in

E). This association gives a functor

We now recall from the general and well established theory of

algebraic theories, the following fact.

1.5. THEOREM. Let E be a category with finite limits.

(a) There is a bijection between :
(i) finite limit preserving functors F : AFFop -&#x3E; E ;

and (ii) Ceo-rings A in E.

The bijection is given by assigning, to a Cm-ring A in E the functor

FA = SpecA (-) ; under this bijection A = FA (C°°(R)).

b) The above extends to a bijection between morphisms A -&#x3E; B of

Cm-rings and natural tr-ansformations FEa -i FB . 

The following is now a characterization of C°°-rings in

categories with finite limits which renders explicit the geometric
nature of the ("algebraically" defined notion of a) C°°-ring.

1.6. TREOREN. Let E be a category wi th finite 1 imj ts.

a) Tbar-e is a bijection between:
(i) functors F : C -1 E preserving transversal pullbacks

and 1

and

b) This bi jection extends to one between morphisms, as in 1.5.

PROOF. For A a C°°-ring in E, the composite
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preserves transversal pullbacks and 1, by 1.4, 1.5.

In the opposite direction, if F : C -&#x3E; E preserves transversal

pullbacks and 1, then A = F (R) is a C°°-ring in E (since F preserves
finite products, by 1.3). Moreover, F = FA. To see this, just observe
that a trancversal pullbook and 1 preserving functor is totally 
determined by its value at R E C. This follows from considering the

diagrams:

which are transversal pullbacks, where A is - as in the proof of 1.2

(a), any smooth characteristic function of U. Part (b) is straightfor-
ward from 1.5. b .

NOTATION. In order to stress the fact that a C--ring A is the "same

thing" as a functor C -&#x3E; E (preserving transversal pullbacks and 1) , 
as established in 1.6, we shall denote this functor by the same

letter A. Thus, in this notation, A = A(R) and, for any open set

U C R", there is a subobject A(U) y A" such that any C°°-function f :

U A R has an interpretation f : A(U) -) A. Thus, for a C°°-ring A, in

addition to the n-ary operations A" -&#x3E; A arising from the algebraic
theory of Cm-rings, viewing it as a transversal pullbacks preserving
functor (in addition to a finite products preserving functor) makes

explicit also those partially defined n-ary operations with domain

A(U)% A n corresponding to an open U C R", and a C°°- function

f : U -&#x3E; R.

Very often, the functor is given more naturally than in the

canonical construction utilized in the proof of 1.6. Thus, for example,
if M is a manifold, and A = C°°(M), then A (U) = C’"(M, U), and if

A = C°°p (M), then A(U) = C°°p (M, U) (i.e., n-tuples of germs

such that the rrtuple of their values at p is in U,
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For the remainder of this Section (and article), E will be

assumed to be a Grothendieck topos. We will make use then of the

internal language and logic of E (cf. [7], or [1]).

1.7. PROPOSITION. Let E be a ca tegory with finite limits. For A a CUJ-

r.ing in E, denote by A* the subobject of its invertible elements, i.e.,

a) Then, A(R+) = A*, where R* = RB{0}.
b) Moreover, for any U C Rn open, with I a smooth

characteristic map of U, A (U) = ø -1 (A*). Tha t is, A (U) can be

described as

PROOF. It follows immediately from considering the two diagrams in

the proof of 1.6.. 

. ARCHIMEDIAN LOCAL C°°-RINGS IN

GROTHEND IECK TOPOSES.

Let A be a C°-ring in E, E a Grothendieck topgs. Then A

possesses a strict order &#x3E;, compatible with the ring operations, as

well as a strict order , also, compatible with the ring operations.
Indeed, define

Compatibility with the ring operations follows from the functoriality
of A. E.g., the commutativity of

implies that of
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Similarly, let

Since

we have, for x E A, that x c Ao iff -x E A&#x3E;o.

DeTiote by B the natural numbers object of E. A C°°-ring A in E

is said to be local if and only if

holds in E. It is said to be arcbimedian if and only if

holds in E.

The next proposition follows immediately from 1.7. In it, the

expression

" A: C -&#x3E; E preserves the open covering {Uo C U}o "

is to be interpreted as saying:

" A takes the open covering lU« C U}o into an epimorphic
family {A(Uo) .t A(U))o in E ".

2.1. PROFOSITION. Let A be a C’-ring In a Grothendieck topos E. Then,
the following are equivalent:

(i) A is archimedian local as a CII-ring in E;
and

(1i) A : C 4 E preserves the open coverings
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The following holds; the proof given here was obtained in

collaboration with A. Joyal.

,2.2. PROPOSITION. Every open covering of C is generated (by pullback
composition and refinement) by the two basic coverings (a) and (b)

of 2.11.

PROOF. We may restrict ourselves to open coverings of Rn, n &#x3E; 0 . Let

tUa C R")..,r be any such open covering. If J is the set of finite

parts of I and, for B = {a1, ..., ak) E J we let

then the given open covering may be obtained, by composition, from

the covering IVB C Rn}B E J and the coverings

Any finite covering can be reduced to the case R" = UUV, with U, 
V C R", open. In turn, if o, y: R" A R are smooth characteristic

functions of U, V, we may assume that o + y = 1 (replacing, if

necessary, o, y by

Thus, while Hence

a covering of type (a). This applies to each of the {Uo C WB)a E B,
j3 E J.

Consider now the smooth map 0’ : R n -&#x3E; R given by

Let
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For {WB C R"}BcJ, a refinement can be given by the {Um C Rn}mEN.

Indeed, since for each m, U,,, (the closure in Rn) is compact, and

since {Ua 0. Rn}xE .[ is an open covering, for some finite

Thus, IVB [Rn} BEJ is obtained from a covering of type (b) by
refinement from {Um [R"}m,£N, -

2.3. THEOREM. Let E be a Grothendieck topos. There is a bijection
between:

(i) functors C -&#x3E; E preserving transversal pullbacks (and

1) and arbitrary open coverings,
(ii) archimedian local Cm-rings in E.

PROOF. Immediately from 2.1 and 2.2.. 

Let RE be the object of Dedekind reals in E. It is the object of
Dedekind cuts, each of which is a model of the theory determined by
the lattice (locale) 0" (R) of open subsets of the real numbers R (in

Sets). This can also be presented as a theory of open intervals with
rational end points (Joyal and Joyal-Tierney, see [4]). Thus, a

Dedekind cut is a functor D : o- (R) -&#x3E; E, which sends 1 (1 = R) to R£,
and which preserves finite intersections and arbitrary unions. It is

not difficult to see that this extends to a functor D : O -&#x3E; E, from

the category 0 of open sets of the R", n &#x3E; 0, and continuous maps,
which preserves all finite limits and arbitrary unions; with R" sent
to RE. (Consider the fact that if U is open and f continuous, then

f (U) is open.) 
Since C 4 0, it follows, in particular, that RE is an archi.raedian

local C°°-ring in E.

As we will show below, the existence of a so-called standard

map (cf. [8]) n : : A -&#x3E; RE is automatic for any archimedian local Co-

ring A in E, and is, in a sense, characteristic of the latter. This

requires a definition.

2.4. DEFINITION. Let f : A -&#x3E; B be a morphism of cm_-rings in E. Call f

a local map of Cm-rings if and only if for each U C W in C, the

commutative diagram (by naturality of f)
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is a pullback.

2.5. PROPOSITION. Given an y morphism f : A -&#x3E; B of C--rings in E, the

following statemen ts are egui valen t:
a) f is a local map of C--rings;
b) for every open inclusion U C Rl (and o any smooth

characteristic map of U), the commutatjve diagrams

is a pullback; equivalently, in terms o-f )f Rn -&#x3E; R (recall 1.7), the

sta teiaen t

holds in E ;
c) f is a local map of rings (in the usual sense), i.e., it

satisfies:

PROOF. (a) =&#x3E; (b) follows immediately from general properties of

pullback diagrams on account of the fact that

Clearly (b) =&#x3E; (c). It remains to be seen that (c) =&#x3E; (b). Consider the

diagram
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where the lateral faces are pullbacks (by preservation of transversal
pullbacks) and the back face is a pullback by assumption; it follows

from general properties of pullbacks that also the front face is a

pullback..

2.6. LEMMA. Let f ; A -&#x3E; B be a local map of C°°-)rings in E. Let

IU« C U}a be any open covering in C which is preserved by B. Then

such an open covering is also preserved by A.

PROOF. In any Grothendieck topos, epinorphic families are pullback
stable..

2.7. COROLLARY. Let f : A -&#x3E; B be a local map of C°°-rings In E. Then,
if B is archimedian loml, so is A.

PROOF. Immediate from 2.1, 2.6.

2.8. THEOREM. Let E be a Grothendieck topos, with RE the object of
Dedekind reals in it. Then, there is a bijection between:

a) archimedian local C°°-rings A in E;
(ii) C°°-rings A i n E, together- wi th a local map n : A

RE of Cm-rings;
(iii) C--rings A in E, together with a map TC : A -&#x3E; RE of

C°°-rings which is local as a map of rings.

PROOF. (I) 4 Ciii) . Clearly (by 2.3) an archimedian local C°°-ring
in E, viewed as a functor C 7 E, determines a morphism of locales

(observe that O(R) C-&#x3E; C) :

where P(A) is the locale of subobjects of A in E. In turn (cf. [4]),
this induces a morphism 1C : A A Re in E, with the property that for

any U C R open, the diagram
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is a pullback. To finish the proof, just take U = R*.
(iii) =&#x3E; (ii). Immediate from 2.5.

(ii) n (i). Since RE is archimedian local (by a remark

made earlier), this follows from 2.7..

S. REMARKS CONCERNING WELL ADAPT-

ED MODELS OF SDG .

Well adapted models of SDG were introduced in 121 (see also

16,71). Theorem 2.3 above says that they are, essentially, just
archimedian local C°°-rings in some Grothendieck topos. These, in

turn, by Theorem 2.8, are COD-rings in a Grothendieck topos, together
with a local map of rings into the object of Dedekind reals in that

topos. Thus, to construct a well adapted model of SDG amounts,

basically, to construct a topos with a C°°-ring in it, together with a
local map into the Dedekind reals. Of course, a further non-

elementary requirement is imposed; namely, the model, viewed as a

functor, should be full and faithful on a sufficiently large category
of (duals of) COD-rings.

Usually, also, a well adapted model is supposed to be defined, 
as a functor, on the category N of all (paracompact) C°°-manifolds,
rather than just on C. This turns out to be equivalent because the

inclusion C -4 M is "dense" in the sense that for any X e M, there

exists an open cover {Ua C M} a£1 with U« = V« e C. In fact, we have:

3.1. THEOREll. Let E be a Grothendieck topos. There is a bijection
between:

(i) functore M-&#x3E; E preserving transversal pullbacks and
1, and open coverings,
and (ii) archimedian local C--rings A in E.

PROOF. Clearly (I) n (ii) since an archimedian local C--ring A in E

can be identified with a functor C -1 E preserving transversal

pullbacks and 1, and open coverings (see Theorem 2.3), so that one

such results from a functor M -1 E as in (i), by restricting to C -1 M.

To see that (ii) =&#x3E; (i), let A : C -&#x3E; E be an archimedian local

C°°-ring in E, viewed as a functor. Consider the definition of a

manifold M £ 3f as a collection of open sets lU« C Rn)a£I together with
patching data, that is, a construction of the manifold X as a

quotient of the disjoint union (coproduct) of the U«’s. Then, A

determines a collection of objects in E,
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together with (the same) patching data. Thus, the same construction

performed to obtain M, when performed in E, determines an object A (M)
of E. It is straightforward to show that this process defines a

functor al -&#x3E; E which preserves transversal pullbacks and open covers
and which restricts to A : C i E on C..

3.2. REMARK. Let us recall, in connection with Theorem 2.1, the

observation (cf. [3D - due to Lawvere - that since a C--manifold M,
can be viewed as a retract of an open U of some Rn, the C"’-ring
C°° (M ) is finitely presented, as Cm (U) is finitely presented. Hence,
there is an extension of C- (-) : C e AFF °p to M, i.e.

As in Theorem 1.4, it can be proved that this extension

preserves transversal pullbacks and 1. If A is an archimedian local

Cm-ring in E, then the composite

also preserves open covers. Having established this, it immediately
follows from Theorem 1.6 (which says that SpecA (C°° (U)) = A (U) for all

U C R") that this composite must agree with the functor M -) E asso-

ciated with A in Theorem 3.1. Thus, these remarks constitute an

alternative proof of the same theorem. However, it must be pointed
out that this way of argueing relies on the Whitney embedding
Theorem - a highly non elementary fact, also focusing attention on a
secondary aspect of manifolds, namely, that of being closed subsets
of some R-, whereas, by their very definition, manifolds are locally
open subsets of some R", which is what is used in the proof we give
here of Theorem 3.1.
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3.3. REMARK. The geometric approach to C°°-rings presented here is

particularly useful in order to establish directly many properties of
the ring of line type R in a well adapted model. Some of these

properties are postulated by the authors elsewhere (cf. t9J in their

axiornatic treatment of well adapted models. For example, the order in
a C°°-ring, as defined above, is strict ( l (x  x)), and for an archi-
median local C--ring - although only the preservation of finite open
covers is needed here - this order is local

and total on the invertibles

where an additional assumption is that R is a field of fractions,
i.e., that R* = l {0}. Using similar techniques, the result proven in

1101, which says that, in a topos, any local C°°-ring js separably real
closed, is immediately recovered using the coherent axiomatization of
the notion of separably real closed local ring, once the appropriate
transversal pullback is identified, and applies, in particular, also to
the object of Dedekind reals, a proof of which is included separately,
in [10].
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