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CAHIERS DE TOPOLOGIE Vol. XXVII-3 (1986)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

ARCHIMEDIAN LOCAL C®-RINGS AND MODELS OF
SYNTHETIC DIFFERENTIAL GEOMETRY
by Marta BUNGE and Eduardo J. DUBUC

RESUME. Cet article considere les anneaux-C* dans
les topos de Grothendieck, et a pour but de 1les présenter de
maniére plus géométrique, et de rendre explicite leur rdle dans
la construction de modéles de la GDS (Géométrie Différentielle
Synthétique). En particulier, on étudie essentiellement ici les
anneaux-C* locaux et archimédiens, pour montrer qu'ils sont “la
méme chase" que les modéles bien adaptés de la GDS. En passant,
on donne aussi une autre caractérisation des anneaux-C* locaux
et archimédiens dans un topos de Grothendieck; ce sont
précisément les anneaux-C* dans le topos qui posseédent, de plus,
un morphisme d'anneaux locaux dans l'objet des réels de Dedekind
du topos. En tant qu'étude intrinséque des anneaux-C=, l'article

ne présuppose aucune connaissance approfondie de la Géométrie
Différentielle Synthétique.

O. INTRODUCTION.

In this note we establish, or rather clarify, the fact that Ar-
chimedian local C®-rings and well adapted models of SDG are essen-
tially "the same thing". At the same time, a novel (geometric)
approach to C™-rings is presented. This not only leads directly to
the well adapted models among the Archimedian local C=-rings, but
also makes explicit the basic principles employed in their construc-
tion. No specific acquaintance with the theory of SDG is presupposed.

This paper was written while the second author visited McGill
University in the winter of 1986, as a guest of the Centre Interuni=~
versitaire en études cétégoriques, for whose financial support he is



™M, BUNGE & E . .J DUBLC

grateful. The first author acknowledges support from the National
Sciences and Engineering Research Council of Canada, and from the
Ministére de 1‘'Education du Québec.

1. C-RINGS IN CATEGORIES WITH
FINITE LIMITS.

By definition (cf. (7]) a C®-ring is a model (in Sets) of the
algebraic theory whose n-ary operations are the C--maps R” - R, with
R the real numbers, and whose equations are all identities holding
between them.

Denote by A the category of C*-rings and morphisms of C*-rings;
Arr and Ar~ will denote - respectively - the full subcategories of 4
whose objects are the C=-rings of finite type, and the C~-rings which
are of finite presentation among those of finite type.

By M we will denote the category of (paracompact) C~-manifolds
and C~-maps. Let us recall a couple of definitions.

A pullback diagram
X

s—&
bl f
bl g

in ¥ is called a transversal pullback if and only if for all p € S,

the images of the tangent spaces of M at x = k() and of N at y =
h(p) generate the tangent space of T at z = f(x) = g(y).

Let N be an n-dimensional C=-manifold; h,, ..., hx: N 2 R C=-
maps. The functions h,, ..., he are said to be independent if and
only if for all p € Z<(h;, ..., ho - with Z<(hs, ..., h) the set of

common zeros of the h:, ..., he in N - the rank of the -Jacobian
matrix [3dh./dx;]1 at p equals k.

The following is the key result about C*-rings in the context of
building models of SDG. The construction of all (known) models using
C=-rings follows from it (cf. [3D).

1.1. THEOREN. Let X be an n-dimensional C~-manifold; h., ..., h« :
N - R independent C=-functions. Then, M = Z(h,, ..., ho) is an (n-k)-
dimensional C¥-manifold of W, and the restriction map
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C*N) 4 C~D

is a quotient in A, with kernel the ideal (h:, ..., h«) generated by
the hy, 1 = 1, ..., k.

PROOF. In order to prove the theorem we will show that the above is
an instance of a quotient of C®-rings for which “comuting it locally"
agrees with “computing it globally". Three basic facts in the theory
of C*-functions are essential for this purpose. Namely, the implicit
functions Theorem <(I.F.T.>, the (local) Hadamard's Lemma (L.H.L), and
the existence of C=-partitions of unity (F.U.).

Ve recall the first:

(I.F.T.) For every p € M, there exists an open U C N , p e U, an open
VCR, 0€eV, and a diffeomorphism 6: U »+ V , 6(p) = 0, such that the
following diagram commutes.

MNU ¢ 3 U (hi, ooy hi) ) R*

|

8

RN ¥ - V

—_ 13
(Xn-k+ty 21y Xn) ' R

In a picture

.| Rr-*
\//—\ 9

This defines a structure of an (n-k)-dimensional C*-manifold
for N (actually, a closed submanifold of N). It follows trivially that
the restriction map C*(N) - C*(M) is locally surjective. That is, for
all p e M, C*p,(N)—~ C=,(M) is surjective, where by C=, we indicate
the ring of germs at p of C*-functions.

The problem is to show now that the kernel of this map is the
ideal (ailp, ..., bxlp) generated by the germs at p of the functions

hi, ..., he. For this, we need the <(local) Lemma of Hadamard, in the
form:
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(LHL.) Let U = U;xUze...x/l» C R” be open, with the Uy, £ = 1, ..., m,
open intervals of R, and let f: U 4 R be any C=-function. Then there
exist (unique) C=-functions

&at UxU 2 R, =1

1]

such that for all (%, ¥ € UxU, X = (X1, ..., Xy T = (F1) oory Y,

GO - £ = Jimr (Xa— yi). g (X, ).

If we put

X = (1, ..., ) and ¥ = (X1, .y Xo-k, 0y ory O

above, we have the following form of the theorem:

Let U = UixUzx...xU, C R” be as above, and let £ : U 9+ R be a C~-
function such that

£ty ooy Xnoky Oy oy 0) = 0

for all x; € R, 1 = 1,2, ...,n~k. Then there exist (unique) C*-functions
g U+ R, 1 = n-k+1, ..., n, such that for all x e U, X = (x1, ..., Xa),

£OX) = Limn-ker X1, 81 (x2.

Ve now return to the restriction map C=,(N) —- C=,(M). Ve can
assume that the open set V (as in (I.F.T.)) is a product of intervals
(since these form a basis for the topology of R.). Let £ : U 2 R be

such that fimuw = 0. It follows then that for any X = (x:, ..., Xa) in
v,

f B (X1, ..p Xn-ky 0y ...y 02> = 0,

Thus for every X e V,

£8°" (X) = Limn-ker X1.81(C0O.
Therefore, for every x € U,

£ = Limr By (X, Gaeres(B (X)),

which shows that the germ of f at p e U is in the ideal generated by

the germs at p of the functions h:, ..., h«. Thus, for all pe X we
have:
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restriction
C*(N) ————— C=/ Chy, ..., he) - C= D
Copo(N) ——— C=p(ND/(hilpy vvvy helg) ——— C=p (M)

This says that the restriction map is locally a quotient map.

To globalize we now use partitions of unity (P.U.). Let f be a
C~-function defined on M. Take open sets Ux C N which cover M and
smooth functions fi: Us - R, such that

for any p e UM, fu(p) = fp) .
A standard (P.U.) argument permits to patch all the fx together to
obtain an extension of f to the whole of N. Let now h : N + R be any
function such that hixw = 0. Take open sets Ux C N such that they
caver M and such that

AU € (h1lWe, ..., hella) C C=Ua).
Let

Us = x| hutx2 #0), for 1i=1, ..

Clearly, the U together with the U: cover the whole space N and also

hlUy € ('.h1|Ux, eey helU ),

trivially, for each i = 1, ..., k. Let {Us} indicate the open covering
{Ux)U{Uy}. Ve then bhave, for all B,

.hlUs € (b1|Up, ey bklUp).

Ve can assume {Us} to be locally finite, with an associated partition
of unity {ga). Let f:# : Uz » R be such that

blUp = 21-1 g.. }11|U. .
The functions #s. g:* are all defined glaobally, and

#s. h = L.t ga. 845 ha.
Thus
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h=1%p gs. h = Ls Limi* fo. 2% he = Liss* Lo g0 . g% By = Limi* g4. hy,

where
gt = Lp #8. 817 .

(Remark that for each x € N, the sums above are finite in a
neighborhood of x.) This shows that h € ¢hy, ..., h2 . Hence, the
theorem is proved. «

In what follows, we derive some useful consequences of the
above.

1.2. COROLLARY. a) For any U C R” open, C*(U) is a finitely presented
C®-ring, and the restriction map C*(R™ - C=(U) is an epimorphism in

A.
b) For any U C R” and V C R™ both open,
Cx(U) 8x C=(V) = C=(UxV),
where . denotes the coproduct in A.

¢) For U C R, V C R™ both open, and f, g : U 2 V
independent functionms,

C=(E) = C*R™/(f-g) ,
where E - U is the equalizer of f, g.

PROOF. a) Let ¢ : R” 2 R be a smooth characteristic function of U C
R”, i.e., let g be such that

U = gt (R", R* = R\{O)
The restriction map C*(R™ -+ C=(U) is the universal solution to the
problem of making the element ¢ invertible in the category of C=-
rings and, as such, is an epimorphism. Indeed, a simple direct proof
of this may be given as follows. Let ¥ : U 3 R”*' be given by
YO = (X, 1/8 (X)),

This map is injective, and identifies U with the set of zeroes of the
function

1 - gy : R**! 5 R,

8
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This function is independent, thus Z(1 - ¢ (x).y) carries the structure
of a closed submanifold of R”*/, and Y is a diffeomorphism of it with
U. It follows from 1.1 that ¥ establishes an isomorphism

¥* 1 CP RN/ (L-g (X).y) = C().

Clearly, the following diagram is commutative:

Cm (R n) ) ‘Co (R'rnl)

c= W) Y Ce@R™N/ (- ().

where p is induced by Y¥. We now show that the restriction map
induced by the inclusion U C R” is an epimorphism in the category of
C*-rings. Let A&, h’ : C*(U> -+ A be equal on the image of the
restriction map. Then, h(xs) = h'(xy), £ =1, ..., n. Also, h(g) = h(g".
Thus, also h(1/g) = h(1/g>. This shows that hp(y) = hp (y), since
Y*(y) = 1/4. But C=(R"*") is freely generated by x:i, ..., X, and y.
Since h and bh' coincide already on x:, .., X. , it follows that they
are equel on the whole of C®(R”". Now, since p is a quotient map (by
the commutativity of the diagram and ¥* iso), h and k' are equel on
the whole of C*(U). This finishes the proof.

b) Let # and y be smooth characteristic maps of U and V,
respectively. Using (a) we see that

Co W) 8a CoCV) & C=RP*1*D/ (1= (£).7, 1~y (@).0).
Since
UesZAd-gx).p and V = ZA-y .9,

it follows that
UxV = Z(1-¢ (x).y, 1-y @).V.

Since the functions 1-¢ (x).y, 1-y (uw).v are independent, 1.1 gives that
CoM) 8am C=(V) = C=(UxV).

c) Notice that E = Z(f-g) and that the function f-g is indep-

endent (since the functions f, g are assumed to be independent).
Apply now 1.1 to get
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C®(E) = C™(RP)/(f-g). o

Denote by C the category of opens of the R”, n > 0, and smooth
maps. The fnllowing is easily chown (cf [B1).

1.3. LENNA. Let F : C » E be a functor, where E 1s any category with
finite limits. Then, the following are equivalent:

(1) F preserves transversal pullbacks (i.e., takes any
transversal pullback in C into a pullback in E) and the terminal
object 1 ;

(11) F preserves open inclusions, finite products and equa-
lizers of independent functions.

1.4. THEOREN. The functor C*(-) : C -+ A°r, defined on objects by the
rule : U B C=(U) (where the bar merely indicates that the object
C>{U) of A 1s to be regarded in the opposite category), factors

through the Inclusion Are°?<y A° and preserves transversal pullbacks
and 1.

PROOF. By 1.2 (a), C=(U) is finitely presented. Also by 1.2 (a), C=(-)
preserves open inclusions of the form U C R™ : this is enough to
show that C=(-) preserves arbitrary open inclusions in C, as if

UCVC R~ if the composite
C=(R" — C=(V)— C=
is an epimorphism, also C=(V) + C=(U) is an epimorphism in A.
By 1.2 (b), C=(-) preserves finite products and, by 1.2 (c), it

preserves equalizers of independent functions. Finally, 1.3 gives that
C=(-) preserves transversal pullbacks and 1. o

Given a C*-ring A in E (a category with finite limits), and any
finitely presented C*-ring B, say

B=C®R"/ (h:, ..., h),

denote by Speca(B) € E the object Z(h:, ..., h) of E defined as in the
equalizer

10
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Chyy ooy i)
ZChy, ..., k) E— AP G
————ee—

0

in E (the notation h; : A" 3 A, for h, : R” » R, indicates the corres-
ponding n-ary operation on A given by its structure of a C*-ring in
B). This association gives a functor

Speca (=) : Aer® -+ E .

We now recall from the general and well established theory of
algebraic theories, the following fact.

1.5. THEOREN. Let E be a category with finite limits.

(a) There is a bijection between :
(1) finite 1imit preserving functors F : Aer® + E ;
and (i1) C=-rings A in E.
The bijection is given by assigning, to a C®-ring A in E the functor
Fa = Speca(-) ; under this bijection A = Fa C=®).

b) The above extends to a bijection between morphisms A - B of
C»-rings and natural transformations Fa - Fa.

The following 1is now a characterization of C=-rings in
categories with finite limits which renders explicit the geometric
nature of the (“algebraically" defined notion of a) C®-ring.

1.6. THEOREN. Let E be a category with finite limits.

a) There is a bijection between:

(1) functors F : C -+ E preserving transversal pullbacks
and 1 ;

and (ii) C~-rings A in E.

b) This bijection extends to one between morphisms, as in 1.5.

PROOF. For A a C=-ring in E, the composite

Fa - (C Cre=) > Arpor Speca ) - B

11
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preserves transversal pullbacks and 1, by 1.4, 1.5,

In the opposite direction, if F : C -+ E preserves transversal
pullbacks and 1, then A = F(R) is a C*-ring in E (since F preserves
finite products, by 1.3). Moreover, F = Fa. To see this, just observe
that = +rancvercal pullback and 1 preserving  functor is totally
determined by its value at R € C. This follows from considering the
diagrans:

x, 1/x
R RxR vy ———— R~

1 y R R* —— 5 R
which are transversal pullbacks, where ¢ is - as in the proof of 1.2

(a), any smooth characteristic function of U. Part (b) is straightfor-
ward from 1.5b o

NOTATIOR. In order to stress the fact that a C*-ring A is the "same
thing" as a functor C - E (preserving transversal pullbacks and 1),
as established in 1.6, we shall denote this functor by the same
letter A. Thus, in this notation, A = A®) and, for any open set
U C R~ there is a subobject A(U) <3 A” such that any C=-function f :
U » R has an interpretation £ : A - A. Thus, for a C~-ring A, in
addition to the n-ary operations A” + A arising from the algebraic
theory of C®-rings, viewing it as a transversal pullbacks preserving
functor (in addition to a finite products preserving functor) makes
explicit also those partially defined n-ary operations with domain
A@U) = A" corresponding to an open U C R~ and a C~-function
f:U- R

Very often, the functor is given more naturally than in the
canonical construction utilized in the proof of 1.6. Thus, for example,
if M is a manifold, and A = C=(M), then AU = C=(M, U), and if
A = C°p,(M), then AW = C~p,(M, U) (i.e., rtuples of germs

(f1, ..., Fa) € C=p(M),

such that the n-tuple of their values at p is in U,

12
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F1 (p)y v, Fa(p)) € U .

For the remainder of this Section <(and article), E wiil be
assumed to be a Grothendieck topos. Ve will make use then of the
internal language and logic of E (cf. [7], or [1D).

1.7. PROPOSITIOR. Let E be a category with finite limits. For A a C~-
ring in E, denote by A* the subobject of its invertible elements, i.e.,
A*=LxeAl yed (xy=1DI

a) Then, A(R*) = A*, where R* = R\{0).
b) Moreover, for any U C R” open, with g a smooth

characteristic map of U, AU) = ¢ (%), That is, AU) can be
described as

AU = L Xe A" | §(X) is invertible in A 1.

PROOF. It follows immediately from considering the two diagrams in
the proof of 1.6.

=. ARCHIMEDIAN LOCAL C>-RINGZS IN
GROTHENDIECK TOPOSES.

let A be a C®-ring in E, E a Grothendieck topus. Then A
possesses a strict order >, compatible with the ring operations, as

well as a strict order <, also, compatible with the ring operations.
Indeed, define

Aso = ARso)t— A(R) = A,

Compatibility with the ring operations follows from the functoriality
of A. E.g., the commutativity of

Rio x Rep ——F————— Ry

|

RxR - » R

implies that of

13
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Ao x Ay —mF—u Aso

AxA == — A .

Similarly, let

Aco = ARco) & A = AR,
Since
Rco = {xXxe R I —-x € Rraol,

we have, for x € A, that x € Aco iff -x € Aso.

Denote by N the natural numbers object of E. A C®-ring A in E
is said to be local if and only if

VxeAlxe A V (1-x) € A*]
holds in E. It is said to be archimedian if and only if

Vxedl View (-n¢x v x<n)l

holds in E.

The next proposition follows immediately from 1.7. In it, the
expression

" A: C » E preserves the open covering U« C Ul&

is to be interpreted as saying:

" A takes the open covering {U«x C U« into an epimorphic
family {AWUs) + AN ) in E .

2.1. PROPOSITION. let A be a C®-ring In a Grothendieck topos E. Then,
the following are equivalent:

(1) A is archimedian local as a C*-ring in E;

and

(i1) A : C + E preserves the open coverings

14
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(a) R = R* U (1-R*), where
1 -R"={xeR! 1I-x € R*%),
(B) R = Unen {(-n, m. ¢

The following holds; the proof given here was obtained in
collaboration with A. Joyal.

2.2. PROPOSITION. Every open covering of C 1s generated (by pullback
composition and refinement) by the two basic coverings (a) and (b)
of 2.11.

PROOF. Ve may restrict ourselves to open coverings of R", n >0. Let
{U« € R« be any such open covering. If J is the set of finite
parts of I and, for B = {ov, ..., o) € J we let

Vs = Uoﬂ U ... U Uak)

then the given open covering may be obtained, by composition, from
the covering (Wz C R™es and the coverings

{Usx C Wplaes , for each 8 ¢ J.
Any finite covering can be reduced to the case R” = UUV, with U,
V C R~ open. In turn, if ¢, y : R” 3 R are smooth characteristic

functions of VU, V, we may assume that g + y = 1 (replacing, if
necessary, f, y by

F2/C82 + Y2, YR/ (g2 + y?) ),
Thus, while U = g" (R*), V = g (1-R*), Hence
UUV =g r® v (1-R*)),

a covering of type (a). This applies to each of the {Ua C Vidlace,
Beld.

Consider now the smooth map ¢ : R” » R given by
(X1, ..., Xa? = X212 4+ ... + X% .

Let
Un = ¢~ (-m, m), R = Uunen Um.

15
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For {Ws C R7sc, a refinement can be given by the {Un C R7auen.
Indeed, since for each m, U, (the closure in R” is compact, and
since {Ux C R™ux«: is an open covering, for some finite

R= v, ..o, wd O 1. U € Uaa € Usr U oo U Ugy = Ws.

Thus, (Vg C R is obtained from a covering of type <(b) by
refinement from {Um C R"}aen. o

2.3. THEOREN. Let E be a Grothendieck topos. There is a bijection
between:

(1) functors C -+ E preserving transversal pullbacks (and
1) and arbitrary open coverings,
(i1) archimedian local C*-rings in E.

PROOF. Immediately from 2.1 and 2.2. .

Let Re be the object of Dedekind reals in E. It is the object of
Dedekind cuts, each of which is a model of the theory determined by
the lattice (locale) ¢(R) of open subsets of the real numbers R (in
Sets). This can also be presented as a theory of open intervals with
rational end points (Joyal and Joyal-Tierney, see [41). Thus, a
Dedekind cut is a functor D : ¢(R) -+ E, which sends 1 (1 = R) to Re
and which preserves finite intersections and arbitrary unions. It is
not difficult to see that this extends to a functor D : O - E, from
the category O of open sets of the R”, n > 0, and continuous maps,
which preserves all finite limits and arbitrary unions; with R” sent
to Re. (Consider the fact that if U is open and f continuous, then
£~*{U) is open.)

Since C& 0O, it follows, in particular, that Re is an archimedian
local C*-ring in E.

As we will show below, the existence of a so-called standard
map (cf. [8) = : A » Re is automatic for any archimedian local C~-

ring A in E, and is, in a sense, characteristic of the latter. This
requires a definition.

2.4. DEFINITION. Let f : A 5 B be a morphism of C*-rings in E. Call f
a local map of C<-rings if and only if for each U C W in (, the
commutative diagram (by naturality of O

16
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AW ——L  Bpap

AGH — T B

is a pullback.

2.5. PROPOSITION. Given any morphism f : A - B of C*-rings in E, the
following statements are equivalent:

a) f is a local map of C~-rings;

b) for every open iInclusion U C R" (and g any smaoth
characteristic map of U), the commutative diagram

A ——f _ Bap
An I _ , p»

is a pullback; equivalently, in terms of § : R” + R (recall 1.7), the
statement

VXeAr [ gx) e A* 8 §(Ff X)) € B*)

holds in E ;
¢) f is a local map of rings (in the usual sense), i.e. it
satisfies: Vx eA [xe A*¥ 8 f(x)e B*] .

PROOF. (@ & (b> follows immediately from general properties of
pullback diagrams on account of the fact that

UCVCR» for some n >0 .

Clearly (b) & (c). It remains to be seen that (c) & (b). Consider the
diagram
A ———————— B>

e £ e
A = BW
¢
An In B

17
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where the lateral faces are pullbacks (by preservation of transversal
pullbacks) and the back face is a pullback by assumption; it follows

from general properties of pullbacks that also the front face is a
pullback.

2.6. LENNA. Let £ : A + B be a local map of C®-)rings In E. Let

{U« C Ul be any open covering in C which Is preserved by B. Then
such an open covering is also preserved by A.

PROOF. In any Grothendieck topos, epimorphic families are pullback
stable. o

2.7. COROLLARY. Let £ : A 4+ B be a local map aof C=-rings in E. Then,
1f B is archimedian local, so is A.

PROOF. Immediate from 2.1, 2.6. «

2.8. THEOREN. Let E be a Grothendieck topos, with Re the object of
Dedekind reals in it. Then, there is a bijection between:
(1) archimedian local C®-rings A In E;

(11) C~-rings A in E, together with a local map m : A -
Re of C=-rings;

(1i1) C=-rings A 1in E, together with a map = : A + Re of
C=-rings which is local as a map of rings.

PROOF. 1) 3 (iii). Clearly (by 2.3) an archimedian local C®-ring

in E, viewed as a functor C - E, determines a morphism of locales
(observe that OR) & C) :

OR)—— PQA) : U b A,
where P(A) 1is the locale of subobjects of A in E. In turn (cf. [4D),
this induces a morphism w : A - Re in E, with the property that for
any U C R open, the diagram

AU —m Re(W)

A————— Re

18
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is a pullback. To finish the proof, just take U = R*.
(1ii) 2 i), Immediate from 2.5.

(11> 3 ). Since Re is archimedian local (by a remark
made earlier), this follows from 2.7.

3. REMARKS CONCERNING WELL ADAPT-—
ED MODELS OF SDG.

Well adapted models of SDG were introduced in (2] (see also
[6,71). Theorem 2.3 above says that they are, essentially, Jjust
archimedian local C=-rings in some Grothendieck topos. These, in
turn, by Theorem 2.8, are C*-rings in a Grothendieck topos, together
with a local map of rings into the object of Dedekind reals in that
topos. Thus, to construct a well adapted model of SDG amounts,
basically, to construct a topos with a C®-ring in it, together with a
local map into the Dedekind reals. Of course, a further non-
elementary requirement is imposed; namely, the model, viewed as a
functor, should be full and faithful on a sufficiently large category
of (duals of) C~-rings.

Usually, also, a well adapted model is supposed to be defined,
as a functor, on the category X of all (paracompact) C=-manifolds,
rather than just on C. This turns out to be equivalent because the
inclusion C< X is "dense" in the sense that for any M ¢ KX, there
exists an open cover {U« C Mlsa: with Us = V4« € C. In fact, we have:

3.1. THEOREN. Let E be a Grothendieck topos. There is a bijection
between:

(1) functors M -» E preserving transversal pullbacks and
1, and open coverings,
and (11) archimedian local C~-rings A in E.

PROOF. Clearly (i) = (ii) since an archimedian local C*-ring A in F
can be identified with a functor C -+ E preserving transversal
pullbacks and 1, and open coverings (see Theorem 2.3), so that one
such results from a functor ¥ + E as in (i), by restricting to C » M.

To see that (1) =2 (), let A : C » E be an archimedian local
C»-ring in E, viewed as a functor. Consider the definition of a
manifold M € ¥ as a collection of open sets {Us« C RM.: together with
patching data, that is, a construction of the manifold M as a
quotient of the disjoint union (coproduct) of the Us's. Then, A
determines a collection of objects in E,

19
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AUa) = AMteer ,

together with (the same) patching data. Thus, the same construction
performed to obtain M, when performed in E, determines an object A(M)
of E It is straightforward to show that this process defines a
functor M -+ E which preserves transversal pullbacks and open covers
and which restricts to A : C » Eon C. o

3.2. REMARK. Let us recall, in connection with Theorem 2.1, the
observation (cf. [3]) - due to Lawvere - that since a C*-manifold X,
can be viewed as a retract of an open U of some R” the C~-ring
C=(M) is finitely presented, as C=(U) is finitely presented. Hence,
there is an extension of C®(-) : C + Arr°° to M, i.e.

c » M

C= (= C=(

ArpoP

As in Theorem 1.4, it can be proved that this extension
preserves transversal pullbacks and 1. If A is an archimedian local
C=-ring in E, then the composite

C=) Speca ()
M ———— Ap®? ——— E

also preserves open covers. Having established this, it immediately
follows from Theorem 1.6 (which says that Speca(C=(U)) = A(U) for all
U € RM that this composite must agree with the functor ¥ - F asso-
ciated with A in Theorem 3.1. Thus, these remarks constitute an
alternative proof of the same theorem. However, it must be pointed
out that this way of argueing relies on the Vhitney embedding
Theorem - a highly non elementary fact, also focusing attention on a
secondary aspect of manifolds, namely, that of being closed subsets
of some R™, whereas, by their very definition, manifolds are locally

open subsets of some R”, which is what is used in the proof we give
here of Theorem 3.1.
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3.3. RENARK. The geometric approach to C=-rings presented here is
particularly useful in order to establish directly many properties of
the ring of line type R in a well adapted model. Some of these
properties are postulated by the authors elsewhere (cf. [9)) in their
axiomatic treatment of well adapted models. For example, the order in
a C=-ring, as defined above, is strict (7(x < x)), and for an archi-

median local C=-ring - although only the preservation of finite open
covers is needed here - this order is local

G <x a3aVz y<xVylz)
and total on the invertibles
(T, vy x0 =0 2 Vimmxs > 0V x: < 0,

where an additional assumption is that R is a field of fractions,
i.e., that R* = 71{0). Using similar techniques, the result proven in
{10}, which says that, in a topos, any local C=-ring 1s separably real
closed, is immediately recovered using the coherent axiomatization of
the notion of separably real closed local ring, once the appropriate
transversal pullback is identified, and applies, in particular, also to

the object of Dedekind reals, a proof of which is included separately,
in [10].
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