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CLOSURE OPERA TORS, MONOMORPHISMS AND EPIMORPHISMS
IN CA TEGORIES OF GROUPS
BY Gabriele CASTELLINI

CAHIERS DE TOPOLOGIE

ET GEOMETRI E DIFFÉRENTIELLE
CATÉGORIQUES

Vol.XXVII-2 (1986)

RESUME. On donne une caractérisation des 6pimorphismes dans
une sous-catégorie C d’une categoric concrete (A, U) sur une

categorie X, en termes d’operateurs de fermeture. On obtient
aussi une caractérisation des monomorphismes dans C à 1’aide
de la notion duale d’opérateur de cofermeture. Les resultats
sont illustr6s par des exemples dans des categories de groupes
ab6liens.

In many concrete categories, whose objects are structured

sets (e.g., SET, TOP, GR, TG), the epimorphisms coincide with the

surjective morphisms. However, this is not always the case. E. g., in
the category TOP2 of Hausdorff topological spaces, the epimorphisms
are precisely the dense maps. The problem of characterizing the epi-
morphisms is still unsolved for many important categories such as, for

example, the category of Hausdorff topological groups. In this paper a

categorical approach to the above problem is presented.

In 1975, S. Salbany [14] introduced the concept of closure operator
induced by a subcategory C of TOP. A similar idea had already appeared
in 1965, in some papers by J.R. Isbell [11, 12, 13]. Salbany showed
that in TOP31 (Tychonoff spaces) the closure induced by TOP31 is the
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usual closure and in TOPo, the TOPo-closure is the b-closure (cf. [1]),
also called front-closure (cf. [15]). He also gave a characterization of

epimorphisms in terms of TOPo--closure. Other characterizations
in TOPI and TOP, can be found in [2]. In 1980, E. Giuli [7] provided
a characterization of epimorphisms in terms of C-closure for any
epireflective subcategory C of TOP. Many results and examples about
the C-closure for specific subcategories of TOP can be found in

[4, 5, 8].
In §1, we define the concept of closure operator over an object

of a category, together with the concept of C-closure for a subcategory
C of a concrete category (A, U) over a category X. This allows us to
show a relationship between epimorphisms in C and C-closure. Such
a characterization is less restrictive than the one in TOP that can be
found in [7], since we do not require C to be epireflective. Moreover,
this general formulation allows us to use such results in L2tegorles that
are not necessarily concrete over SET.
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In §2, we introduce the concept of coclosure operator, which is
the exact dual of closure operator, and we formulate duals of results
in §1. Thus, we get a characterization of the monomorphisms in C,
in terms of C-coclosure. This idea is quite new, since the problem
of characterizing the monomorphisms does not arise in TOP ; the reason
being that in every full subcategory of TOP, the monomorphisms are
injections. However, in other categories, such as AB, one can easily
find interesting subcategories, where the monomorphisms are not

necessarily injections.

Applications of the theory (and of the dual theory) are provided
in §3.

1. CLOSURE OPERATORS AND EPIMORPHISMS.

Notations. 
_ _

Given a category X, throughout the paper M (resp., E) will denote
a class of X-monomorphisms (resp. X-epimorphisms) satisfying:

(1) M (resp., t is closed under pullbacks (resp., pushouts),
(2) M (resp., t) contains all (arbitrary) intersections of regular

subobjects (resp., cointersections of regular quotients).

For example the class of all X-monomorphisms (resp., X-epimor-
phisms) and the class of all strong monomorphisms (resp., strong epi-
morphisms) in X, defined below, both satisfy the above conditions
for M (resp., E).

Given X E _X, M(X) denotes the class of all M-subobjects of X,
i.e., (M, m) E M(X) means that m : M -&#x3E; X belongs to ~M ~E(X) denotes

the class of all E-quotients of X, i.e., (q, Q) E E(X) means that q : X -&#x3E; Q

belongs to E. Given (M, m) and (N, n) belonging to M(X), we will write

iff there exists a morphism
t : M -&#x3E; N such that nt = m.

Similarly, given (q, Q) and (p, P) belonging to E(X), we will write

iff there exists a morphism
e : P -&#x3E; Q such that ep = q .

Definition 1.1. Let X be any category and let X E X. By a closure

operator over X, we mean a function [ ]X : -M(X) - ~M(X) satisfying for
every (M, m ) and (N, n) belonging to M(X) :
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The M-subobject (M, m) is called [ ]X-closed provided that

We observe that the concept of closure operator is given only
up to isomorphism, i.e., two closure operators [ X1 and [ ]X2are consider-
ed to be essentially the same if for every (M, m) e M(X),

in other words, there exists an isomorphism
v v

such that its composition with [m]X2 is equal to [m]X1.

We will often simply write M instead of (M, m) whenever no

confusion is likely.

Throughout the remainder of the paper X will be a category
with equalizers and arbitrary intersections of regular subobjects and
(A, U) will be a concrete category over X, i.e., U : A -&#x3E; X is faithful,
and amnestic (*). Furthermore, all the subcategories are assumed to

be full and isomorphism-closed.

Definition 1.2. Let C be a subcategory of A and let X E A. For

every (M, m) E M(UX) we define: 

[M]XC= n equ(Uf, Ug) such that f, g E A(X, Y), Y E C and Ufm = Ugm,

where r-) denotes the intersection and equ(Uf, Ug) the equalizer
of Uf and Ug.

When no confusion is likely, we simply will write [M] c instead

of [M] CX . 
-

Proposition 1.3.

Proposition 1.4. Let us assume that U preserves monosources. Let

Mo be a class of monosources. if X E A and (M, m) E M(UX) , then

for every subcategory C of A, we have

(*) Amnesticity means that every A-isomorphism f such that Uf is an X-identity
is an A-identity.
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(where Mo(C) is defined as follows: X E M.(C) iff either X E C or

there exists a source ( mi: X - Xi), belonging to Mo with Xi E C
for every i e I).

Proof. Since C is contained in Mo(C), there exists a monomorphism

Let us consider the diagram

with:

and aij is either an M.-source or the identity of Bi (in the case

of Bi E C). U f im = U 9 im implies

Since [M] C = nMij, for fixed i, we get

for every j E J. Since (a ij) J is a monosource, for fixed 1, and U
preserves monosources, (U 0: ij ) J is a monosource. So

Since N i = equ(U fi, Ugi), for every i E I, there exists a unique

Now

so there exists

This together with
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gives

i.e., d is an isomorphism. 0

Corollary 1.5. If we add, in Proposition 1.4, the hypothesis that A is
an (E, M. )-category, with Mo a class of monosources, we get 

(where E(C) denotes the E -reflective hull of C).

Proof. From [9], Proposition 1.2, we have that X E E(C) iff there exists
an M.-source from X into C. Thus, we can apply Proposition 1.4. 0

Proposition 1.6. Let A be a category with products and let U carry pro-
ducts to monosources. Suppose that X is regular well-powered. If C
is a subcategory of A, X E A and (M, m) E M(UX) , then there exists

Y e A and f, g : X -&#x3E;Y such that

Moreover, if C is closed under products, then Y E C .

Proof. First we observe that, since X is regular well-powered, we do not
really need X to have arbitrary intersections of regular subobjects,
but just intersections of set-indexed families of regular subobjects.
Let us consider the following diagram:

where Mi = equ(Ufi , Ug i ) and [M]c is defined (as in 1.2) relative to
the pairs (f i , qi ) - We want to show that
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In order to construct II Yi, we observe that, since is regular
well-powered, we can restrict our attention to only a set of Yi ’s

to obtain [M]C. Now

From the hypothesis, we get that (UIIi )I is a monosource and so

Suppose there exists h: M’-&#x3E; UX such that Ufi&#x3E; h = U gi&#x3E; h, then

So there exists t1 : M’ + Mi such that

Since [M] C= nMi, we get a unique

i.e.,

Clearly, if C is closed under products, 11 Yi E C.

Pcoposition 1.7. If X E A and (M, m) E M(UX) , then

(i.e., [M]C is C-closed).

Proof. From Proposition 1.3, there exists a monomorphism

with

both belonging to M(X). Let us consider the following diagram
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with

for every i E 1. Since U fi m = Ugim implies

by the definition of [[M]C ] C there exists a unique

However [M IC = nMi and so, there exists a unique

This, together with

Proposition 1.8. If (N , n) and (M, m) are M -subobjects of UX such that
(N, n) ~ ( M, m), then

Prooof. Let us consider the diagram

with

and t : N- M satisfying m t = n .
Uflm = Uglm implies

which implies Ufi n = Ugin and so, by definition of [n]c ,
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Thus, for every i e I, there exists a unique morphism

Since [M ]C= nM1 , there exists a unique morphism

Remark 1.9. From Propositions 1.3, 1.7 and 1.8, we get that []C
defined in 1.2 is a closure operator in the sense of Definition 1.1.

Definition 1.10. Let X be an (epi, M)-category and let C be a subcateg-
ory of A. A C-morphism f : X -&#x3E; Y is C-dense iff given the (epi, M)-
factorization

of Uf , one has [w]C=UY.

Notice that the above definition makes sense, because m E M.

Theorem 1.11. L et X be an (epi, M )-category and let C be a subcategory
of A . A C-morphism f : X -&#x3E; Y is an epimorphism in C iff f is C-dense.

Proof. (=&#x3E;). Let us consider the following diagram:

with (e, m) the (epi, M)-factorization of Uf ,

and Zi E C for every i e 1. U him = Uki m implies

which implies hi f = kif , since U is faithful, and so ’1 = ki, because f is

an epimorphism in C. Thus wi is an isomorphism, for every i E I, and
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and so is d , since it is an intersection of isomorphisms.

(=). Now, we can use the same diagram by simply dropping the sub-
script i . From hf = kf, we get

which implies

because e is an epimorphism. By the definition of [W]C , we get

which implies Uh = U k since [m ] C is an isomorphism. Thus h = k

because U is faithful. 
- 

0

Definition 1.12. Given a category X, an X-monomorphism m : X-&#x3E; Y

is called a strong monomorphism iff, for every episink (ej : Rj - S)j ,
sink (rj : Ry -&#x3E; X)J and morphism s : S -&#x3E; Y such that the diagram

commutes, there exists a morphism d: S -&#x3E; X such that

For M = {Strong Monomorphisms}, we get the following result:

Proposition 1.13. Let X be a balanced (epi, regular mono)-category and
let U : A-&#x3E; X be topological. If (M, m) is a strong subobject of

UX E X and B is bireflective in A , then [M ] g = M .

Proof. We observe that U(B) = B’ is bireflective in X and since X its

balanced, B’ = X. 
- -

From the assumptions on X, we get that every strong monomorphism is

regular ([10], Prop. 17.18) for (E, M) = (epi, regular mono)), so there

exist

Since B is bireflective, the indiscrete object Y’ such that UY’ = Y be-

longs to B (cf. [3], Theorem 1.5) and h and k can be lifted to morphisms
~h,~k : X -&#x3E; V’. Thus M = [M ] B. 0
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2. COCLOSURE OPERATORS AND MONOMORPHISMS.

In the previous section, we have characterized the epimorphisms
in a subcategory C in terms of C-closure. The duality principle
in category theory suggests that we could get a characterization
of monomorphisms in C in terms of a concept dual to the C-closure.
We need to observe that such an idea does not appear in previous papers,
for the simple reason that most of the work in this area has been

done in the category TOP, and the monomorphisms in all full subcategor-
ies of TOP are injections. A similar result for a full subcategory C
of AB is the following: if the additive group of integers Z belongs to
C, then the monomorphisms in C are injections. However there are

many interesting subcategories of AB which do not contain Z. So, the
problem of characterizing the monomorphisms in subcategories of AB
is not trivial. With the above motivation, we are going to present
in this section the basic definitions of the dual theory and we will state
the two main results.

Definition 2.1. Given any category X, by a coclosure operator over

X E X, we mean a function

satisfying for every (q, Q), (p, P) belonging to L(X) :

The E-quotient ( q, Q) is called [ ] -coclosed provided that

As in § 1, whenever we do not need to specify the morphism q , we
will simply write Q instead of (q, Q).

Let X be a category with coequalizers and arbitrary cointersections
of regular quotients, and let (A, U) be concrete over X.

Definition 2.2. Let X E A and let C be a subcategory of A. For

every ( q, Q) E E(UX), we def ine 

[Q]C X= u {coequ(Uf, U g) such that f, g: Y + X, Y E C, q Uf -- q Ugx 

where u denotes the cointersection and coequ(Uf, Ug) the coequalizer
of U f and Ug . C
When no confusion is likely to arise, we simply will write [Q]C instead

of IQIC*X
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Definition 2.3. Let X be an (E, mono)-category, and let C be a subcateg-
ory of A. A C-morphism f : X -+ Y is C-codense iff given the (E, mono)-
factorization

of Uf , we have [Q]C= UX .

Theorem 2.4. Let X be an (E ,mono)-category and let C be a subcateg-
ory of A . Then a C -morphism f : X - Y is a monomorphism in C iff f
is C-codense.

For ~E = {Strong Epimorphisms}, we get the following result:

Proposition 2.5. Let X be a balanced (regular epi, mono)-category, and
let U : A -&#x3E;X be topological. If (q, Q ) is a strong quotient of UX E X
and B is bicoreflective in A , then [Q]B = Q .

3. APPLICATIONS TO CONCRETE CATEGORIES.

In this section we will see some applications of the results of
the previous two sections in the categories AB (Abelian Groups),
ATG (Abelian Topological Groups), GR (Groups) and TG (Topological
Groups). For this purpose, AB and GR will be considered as concrete

categories over themselves, via the identity functor, and ATG and TG
will be considered as concrete over AB and GR respectively, via the
usual forgetful functors. In order to use the preceding results, we will
assume M and E to be the class of all monomorphisms and the class
of all epimorphisms, respectively.

Remark 3.1. In AB and GR, strong monomorphisms coincide with mono-
morphisms and strong epimorphisms coincide with epimorphisms. In
general, we have that regular monomorphism implies strong monomor-
phism, implies extremal monomorphism. Since ATG and TG are

(epi, regular mono)-factorizable, then from [10], Proposition 17.18,
dual, these three concepts agree. The same conclusion can be drawn
about strong epimorphisms, since ATG and TG are (regular epi, mono)-
factorizable.

Proposition 3.2. L et C be a subcategory of AB and M a subgroup of
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X E AB. M is C-dense in X iff

Proof. (=&#x3E;). Let us consider the following diagram

hqi = Oqi implies hq Ci 1= 0q[I]c and [ M]C= X implies hq = 0q, i.e.,
h = 0 because q is an epimorphism. 
(= ). Suppose h, k : X - Z are such that hi = ki, i : M-&#x3E; X; then the

following diagram

x h-k z

q sB /
X/M

commutes, because M is contained in keT(h-k ). By the hypothesis,
we get s = 0, so h = k, i.e., [M] C =X . 0

Corollary 3.3. Let C be a subcategory of AB, and let f :X-+ Y be a

C-morphism. f is an epimorphism in C iff

Proof. From Theorem 1.11, f is an epimorphism in C iff [f (X)]C = Y
and this, by Proposition 3.2, is equivalent to 

Corollary 3.4. Epimorphisms in the category TF of torsion free abelian

groups are not surjective.
Proof. Let Z, 2Z and Z(2) denote the group of integers, the group of

even integers and the group Z/2Z, respectively, i : 2Z -&#x3E; Z is a morphism
in TF which satisfies Corollary 3.3 (notice that
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Thus I : 2~Z -&#x3E;~Z is an epimorphism in TF, which is clearly not surjective.

We observe that the above result can be found in [10] (Examples 6.10).
We have just reproved it with this new approach.

Corollary 3.5. In the category R of abelian reduced groups, the epimor-
phisms are not surjective.

Proof. Let Q, Z and FQ denote the additive group of rationals, the

group of integers and the free abelian group over the underlying
set of Q. Q is divisible and FQ is reduced. If e : F~Q-&#x3E; Q is the in-
duced surjection, then FQ/ker( e )= Q. Thus i : ker(e ) -&#x3E; F~Q is a

morphism in R and satisfies Corollary 3.3, because Q is divisible. Hence
it is an epimorphism in R, that is not surjective. 0

Corollary 3.6. Epimorphisms in the category F of free abelian groups
are not surjective.

Proof. The same example as in Corollary 3.5 can be used here. 0

Lemma 3.7. Let C be a subcategory of AB (ATG, GR, TG). If every

subgroup of a C-object is C-closed, then the epimorphisms in C
are surjective.
Proof. Let f : X -&#x3E; Y be an epimorphism in C. From Theorem 1.11,
f is C-dense, i.e., [ f (X)IC = Y. By hypothesis [ f (X)IC = f (X). Since
f (X) is a subset of Y, we get f(X) = Y, i.e., f is surjective. 0

Proposition 3.8. If B is bireflective in AB (ATG, GR, TG ) , then the

epimorphisms in B are surjective.
Proof. From Remark 3.1 and Proposition 1.13, we get that every sub-

group of a B-object is B-closed. So we can apply Lemma 3.7. Notice
that AB, ATG, GR and TG satisfy the hypotheses of Proposition
1.13. 0

Proposition 3.9. L et C be a subcategory of AB (ATG) , closed under

extremal epimorphisms and let X E C. Then every subgroup of a C-

object X is C-closed. 
-

Proof. If M is a subgroup of X, then

So M is C-closed. Notice that if X E ATG, then X/M carries the quo-
tient topology. 0
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Corollary 3.10. If C is a subcategory of AB (ATG), that is closed under

extremal epimorphisms, then the epimorphisms in C are surjective.

Corollary 3.11. The epimorphisms in AB, ATG, GR and TG are sur-

jective.

Corollary 3.12. If C is monocoreflective in AB (ATG), then the epi-
morphisms in C are surjective.

Corollary 3.13. In the following subcategories of AB the epimorphisms
are surjective: divisible, torsion, bounded, cyclic, cotorsion.

Proposition 3.14. Let C be a subcategory of AB and let (q, Q ) be a

quotient of X E AB . (q, Q) is C -codense in X iff for every subgroup
M of ker(q), M E Q(C) implies M = {0} , where Q(C) denotes the quotient
hull of C . 

- 
-

Proof. (=&#x3E;). Let us consider the commutative diagram :

with e : Y-&#x3E; M an epimorphism, Y E C. Since B1 is a subgroup of

ker(q), we get qie = q 0e and by the definition of [Q]-C,

Hence ie = Oe , because [qJf is an isomorphism. Thus i = 0 since e

is an epimorphism, i.e., M = {0}.
(=). Let us consider the commutative diagram:

with Y E C. Suppose qh = qk, then q(h-k) = 0, which implies that

( h-k )(Y) is a subgroup of ker( q ). Moreover
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This implies h = k. Hence [qf- is an isomorphism, because the cointer-
section of a family of isomorphisms is an isomorphism. 0

Corollary 3.15. Let C be a subcategory of AB . A C -morphism f : X-&#x3E; Y

is a monomorphism in C iff for every subgroup M of ker(f), M E Q(C)
implies M = {0}. 

- -

Proof. Let f denote the restriction of f to f(X). From Theorem 2.4, f

is a monomorphism in C iff (f , f(X)) is C-codense and from Proposition
3.14, (fy f(X)) is C-codense iff for every subgroup M of ker(f) = ker(f),
M E Q(C) implies M = t ol. 0

Corollary 3.16. In the category D of abelian divisible groups, monomor-

phisms are not necessarily injective.

Proof. Let us consider the D-morphism q : Q-&#x3E; Q/Z, where Q and Z

denote the additive group of rationals and the group of integers, resp-
ectively, and ~Q/~Z is the quotient groups. Clearly q is not injective. Now,
if M is a subgroup of ker( q ) = Z and M E Q(D), then M is divisible

and so it must be equal to 10), because Z is reduced. Thus from

Corollary 3.15, q is a monomorphism in D. 0

We observe that the above result can be found in [10J (Examples
6.3). We have just reproved it with this new approach.

Corollary 3.17. In the category AC of algebraically compact abelian

groups, monomorphisms are not necessarily injective.

Proof. Let us consider q : Q +1ilZ as in Corollary 3.16. We observe that
q is an AC-morphism because divisible groups are algebraically compact
([6J, Theorem 21.2 and also Chapter 38). If M is a subgroup of ker(q) = Z
and M E Q(AC), then M is free and a cotorsion subgroup of ker( q )
(notice that Q(AC) is the category of cotorsion abelian groups, [ 6],
Proposition 54.1). So, there exists A E AC such that q : A-&#x3E; M is a

surjective homomorphism. This implies 
-

because M is free. M is algebraically compact (cf. [6] , Chapter 38).
Hence from [6], Chapter 38, Exercise 1, we get M = 101. Thus, from
Corollary 3.15, g is a monomorphism, that is clearly not injective. 0

Corollary 3.18. In the category COT of cotorsion abelian groups, mono-

morphisms are not necessarily injective.

Proof. The same example as in Corollary 3.17 can be used here. 0
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Lemma 3.19. Let C be a subcategory of AB (ATG, GR, TG). If every
quotient of a C-object is C-coclosed, then the monomorphisms in C

are injective.

Proof. If f : X -&#x3E; Y is a C-monomorphism, then from Theorem 2.4, f is

C-codense, i.e. [f (X)-C= X . From the hypothesis, f(X) is C-coclosed, so

hence f is injective. 0

Proposition 3.20. If B is bicoreflective in AB (ATG, GR, TG) , then
the monomorphisms in B are injective.
Proof. From Proposition 2.5, every quotient of a B-object is B-coclosed,
so we can apply Lemma 3.19. 0

Proposition 3.21. If C is a subcategory of AB (ATG, GR, TG ), closed
under extremal monomorphisms, then every quotient of a C-object X
is C -coclosed.

Proof. If q : X -&#x3E; Q is an epimorphism, then

(q, Q) = coequ(i, 0), i , 0 : ker(q ) -&#x3E; X ,

i.e., Q is C-coclosed, because ker( q ) E C. Notice that if X is a top-
ological group, then ker( q ) carries the relative topology. 0

Corollary 3.22. The monomorphisms in AS, ATG, GR and TG are in-

jective.

Corollary 3.23. If C is a subcategory of AB (ATG, GR, TG) that is

closed under extremal monomorphisms, then the monomorphisms in
C are injective.

Corollary 3.24. If C is epireflective in AB (ATG, GR, TG), then the
monomorphisms in C are injective.

Corollary 3.25. In the following subcategories of AB the monomorphisms
are injective: torsion, reduced, torsion-free, free, bounded, cyclic, loc-
ally cyclic. I
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