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A DIRECT DESCRIPTION OF UNIFORM COMPLETION IN LOCALES
AND A CHARACTERIZATION OF LT-GROUPS

by Igor K0159Í017E

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRÍE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVII-1 (1986)

RESUME. Isbell a construit la completion uniforme d’un locale

(au sens de fermeture absolue) a 1’aide d’hyperespaces. Ici on don-
ne une autre construction, plus directe, par g6n6rateurs et

relations.
Comme application, on obtient "1’enveloppe locale" d’un groupe

topologique, qui permet de caract6riser les groupes topologiques
qui sont des locales. Dans le cas commutatif, une telle caract6risa-
tion a été obtenue dans un article par Isbell, Kriz, Pultr et

Rosický.

The question of uniform completeness in locales (in the sense of

absolute closedness) was discussed first in Isbell’s paper [3]. Among
other results, Isbell gave a description of the uniform completion. Since
the classical Cauchy-filter approach does not yield the absolute
closedness property in locales, it was replaced by another construction
the idea of which was to employ hyperspaces. This is also one of the
reasons why Isbell called completion in locales "hypercompletion".

The main purpose of this paper is to introduce another description
of uniform completion in locales, which does not use hyperspaces and
in fact is even more straightforward than the original topological cons-
truction. It -simply consists of writing down generators and defining
relations. In connection with this we will also prefer the natural term-
inology without the prefix "hyper".

As an application, we give a general construction of a "localic
hull" of a topological group, which yields a characterisation of those

topological groups which are localic. It should be noted that for the
commutative case a characterisation of this type was obtained in [4].

1. PRELIMINARIES.

1.1. Frames and locales. Basic facts concerning locales can be found
in [5] (as well as in other papers, e.g. [1, 3J).

A frame is a complete lattice A in which the distributive law
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holds for any a E A, S C A. We will write I(A) or 1 for VA and O(A)
or 0 for VO. A frame morphism is a mapping f : A -&#x3E; B of frames A, B
preserving joins and finite meets. The category of frames will be
denoted by Frm. The lattice Q(X) of all open sets of a topological space
X ordered by inclusion is a frame and a continuous mapping f : X -&#x3E; Y
induces a frame morphism

Thus, Q becomes a contravariant functor from the category Top of
topological spaces to Frm.

To make Q a covariant functor, one introduces the category
Loc = Frmop of locales, and writes Q : Top -&#x3E; Loc. The functor Q
has a right adjoint

where T(A) is the set of all frame morphisms A -&#x3E; 2 = Q (.) together
with the natural topology (see e.g. [5]).

There is a natural parallelism between the concepts in Top and
Loc (see [3, 5J). It is, however, often not of much use in technical

parts of the proofs presented. For that reason it is of an advantage
to write morphisms as in frames, although we think in locales. Let us

give some examples, which will be useful later on :

A frame morphism f : A -&#x3E; B is called an embedding of B
into A iff it is surjective. An embedding is called closed if we have

A morphism f is dense iff

It is easily checked that a dense closed emnbedding is an isomorphism.

Now let A be a frame. For a, b E A write a A b iff

The frame A is called regular, iff

I.I.I. Pcoposition. The dense frame morphisms of regular frames are
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exactly the monomorphisms in the full subcategory of Frm generated
by the regular frames.

Proof. See [4].

Let Sp denote the subcategory of Frm generated by the objects
Q(X) where X are topological spaces. It can be shown (see [5] ) that
Sp is characterized by

1.2. Uniform locales. (For the details, see [9, 101) A cover of a frame
A is a set S C A with the property that VS = 1. The system of all
covers of A will be denoted by C (A). Let us call a U E C (A) a refine-
ment of a V E C(A) (and write U - V) iff

If U, V E C(A) then we have a cover

Write for

Obviously We write

iff there exists a U E U such that U x  y . Put

The pair is called a uniform frame iff we have

The system U is called a uniformity on A. A uniform basis is
a system UC C (A) satisfying (iii) and (iv). Similarly as in Top, we

have the least uniformity generated by a given uniform basis (see
[8]).

Let (A, U), (B, V ) be uniform frames. A frame morphism f : A -&#x3E; B
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is called uniformly continuous with respect to U , V iff we have

where "#" indicates the image function. In that case we write

We call f a uniform embedding iff it is surjective and, moreover,

We will often speak about uniform locales, related to uniform frames
in the same way as locales relate to frames.

1.2.1. Lemma. Each uniform locale is regular.

Proof. See [8]. We could really claim "completely regular", but it would
be never used in the sequel. 0

1.3. In general, the products in Top and Loc need not coincide. Thus,
a question arises as to what is the relation between groups in Top and
Loc. It was shown in [ 4 ] and [7] that none of the concepts contained
the other. We will be particularly interested in the fact that a topologic-
al group need not be a group in Loc.

Denote by "@ " and "+" the sum in Frm, resp. in Sp. (Realize that

In the sequel, an L-group means a cogroup object in Frm, while a T-

group designates a cogroup object in Sp. (Note that if X is a topological
group, then S2 (X) is a T-group and if A is a T-group or an L-group,
then T(A) is a topological group.)

Thus, an L-group A consists of a multiplication 03BC : A -&#x3E; A a A,
an inverse L : A + A and a unit point E : : A -&#x3E; 2 which satisfy the usual
identitites

where V : A ® A -&#x3E; A is the codiagonal and 6 is the initial morphism.
A T-group consists of similar mappings
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satisfying analogous identities. We define homomorphisms of L-groups
(T-groups) in the obvious way [4]. Note again that a homomorphism
of T-groups is always a pre-image function of a homomorphism of

topological groups. An embedding of L-groups will be an L-group homo-
morphism which is an embedding.

1.3.1. Proposition. L-groups are regular frames.

Proof. Indeed, they are unifomizable (see [4, 7] ). 0

1.3.2. Proposition. Any embedding of L-groups is closed.

Proof. See [4]. 0

Let us now specify what we mean by saying that a T-group
(A, 03BC) is an L-group. First of all we should claim the existence of a

lifting

where T is the standard restriction mapping. Since T is evidently a
dense embedding (see [4]), it follows directly from 1.1.1, 1.3.1 that
whenever 03BCl exists, it is uniquely determined and makes (A, 03BCl) an L-
group. T-groups which require this property will be called LT-groups.

2. SUBLOCALES AND FACTOR FRAMES.

In this section we give a general description of factorization in
frames. The main idea of our approach belongs to Johnstone [ 6] ,
who really proved the full strength of the theorem, but restricted the
statement by unnecessary assumptions. In this paper we present the
theorem in the full generality, although the case we really need
is much closer to that of Johnstone [6].

2.1. The right adjoint of a frame morphism f : A -&#x3E; B will be denoted

by f* : B -&#x3E; A (recall that f*(x) = f(y) VXy ). Putting for a surjective f:

we obtain a natural 1-1 correspondence between the embeddings and
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the nuclei (see [1 ]). (Recall that a nucleus on A is a mapping
j : A -&#x3E; A satisfying

for any two a, b E A.) If j is a nucleus on A, then one can put

and obtain a frame embedding j : A -&#x3E; Aj , whose right adjoint is the
inclusion.

2.2. A join - basis of a frame A is any subset A’ C A which satisfies

We call a subset R C AxA a precongruence relation if for any a, bE A
with a R b the set

is a join-basis of A.

2.2.1. Observation. Let S C AxA and let A’ be a join-basis of A, which.
is closed under finite meets. Then

is a precongruence relation on A.

Take an R C AxA. An element a E A will be called R- coherent
if for any two a, b E A with a R b we have

Denote by =&#x3E; the operation of implication in A given by

2.2.2. Lemma. L et R be a precongruence on A and let b E A be R -
coherent. Then the element a =&#x3E; b is R -coherent for any a E A.

Proof. Let x R y. Since R is a precongruence relation, we can choose
a set Q C A such that

Now
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2.2.3. Theorem. L et R be a precongruence on A . Then the set A(R)
of all the R-coherent elements together with the induced ordering
is a frame and there exists a nucleus j : A -&#x3E; A such that A j = A(R) .
Moreover, j : A -&#x3E; A(R) is universal among the join-preserving
mappings f from A to complete lattices B satisfying

(More exactly, for any such f there exists a unique join-preserving
f j : A(R) + B such that f = fj o j .)
Proof. Define j : A -&#x3E; A by

Since a (finite or infinite) meet of R-coherent elements is evidently
R-coherent again, we obtain

Let us show that j preserves finite meets. We obviously have

since the right hand element is R-coherent. Conversely, it holds

while the right hand elements are R-coherent by Lemma 2.2.2. Thus
we have

as required. - It remains to prove the universality of j . Let f : A -&#x3E; B

preserve joins and let a R b -&#x3E; f(a) = f(b) . Put for a E A

Since s(a) is R-coherent and s(a) &#x3E; a , we conclude that s(a) ? j(a) ,
and consequently

On the other hand, since f preserves joins, we have f(s(a))  f(a).
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2.2.4. Corollary. Preserve the notation of 2.2.3 and assume that
R = R(S, A’) for a join-basis A’ and a relation S C AxA . Then for

any frame morphism f : A -&#x3E; B which satisfies

there exists a unique frame morphism g : A(R) - B satisfying f = g o j.
Proof. Since f preserves finite meets, we have

2.3. Let A be a meet-semilattice. Denote by 4-A the set of all down-
ward-closed ("decreasing") subsets of A. Then 4- A is a completely
distributive lattice (in particular, a locale) and we have a mapping

Moreover, one can prove

2.3.1. Proposition. The mapping ! gives rise to a reflection from the

category MSL of meet-semilattices to Frm (see [11J). 0

Of course, the word "reflection" applies only to the properties
of the mapping § and does not indicate that Frm should be a full

subcategory of MSL. Considering 2.3.1, one sees that Proposition 1.1
from [6] is a special case of 2.2.3 for a certain type of precongruence
relations on !A.

3. COMPLETION OF UNIFORM LOCALES.

In this section we give a description of uniform completion in terms

of generators and defining relations. Throughout this paper, the com-

pleteness means the natural categorical phenomenon and not a

generalization of the topological Cauchy-filter construction. It

coincides with Isbell’s concept of "hyper-completeness" (see [3J).

3.1. Let (A, U) be a uniform locale. Denote by S C ! Ax ! A the system
of all pairs

with a E A, U E U , where k and c are given by

Put
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(Realize that + A’ is meet-closed.) Recalling the notation of 2.2.3, write

Now both ! A and A are locales. Since A C ! A, we should be careful
when indicating their localic operations. There is no trouble with the

meets, which are preserved by the nucleus and hence coincide.
On the other hand, there is a natural way to distinguish joins : we
reserve the symbol " V " for A, while in + A we simply use the set-
theoretical symbol " U ".

It follows immediately from the definition of S that + A’ C A.

Hence, we have a dense embedding p : A -&#x3E; A given by

Put

We see easily that Uo is a system of covers, for

In fact we obtain a uniform basis. Denote by U the corresponding
uniformity (see [8]).

The pair (A, U ) together with the mapping p : A -&#x3E; A (which is

easily checked to be a uniform embedding) will be called the comple-
tion of a uniform locale (A, U ).

3.2. Let f : (A, U ) -&#x3E; (B, U’ ) be a uniformly continuous frame morphism.
Define g : A -&#x3E; B by putting

(recall that elements of the form ! x are R-coherent). Using 2.3.1,
we obtain a frame morphism f 0 : ! A -&#x3E; B, satisfying

Since the mapping f o o k : A -&#x3E; B preserves also finite meets, we obtain
a unique frame morphism f 1 : ! A -&#x3E; B satisfying

3.2.1. Lemma. We have

Proof. Use 2.2.4. First, note that
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Now, compute

Take a U E U . Choose a W E U to satisfy W.W  U (see 1.2) and
conclude the proof by another calculation :

3.2.2. Theorem. For a uniformly continuous morphism

there exists a unique frame morphism f : (A, U) -&#x3E; (8, U’) completing
the diagram

Moreover, this morphism is uniformly continuous.

Proof. Realizing that the frames A, B, A, B are uniform and hence

regular, we deduce the uniqueness part of the theorem from I.1.1
and from the density of p . Taking into account that

we obtain the existence part_ from 3.2.1 and 2.2.4. It remains to

prove the uniform continuity of f . Let

Choose again a W E U to satisfy W.W  U. We compute
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_We will call a uniform locale (A, U) complete if the completion
p : A -&#x3E; A is an isomorphism in Frm.

3.3. Theorem. A frame (A, U) is complete iff each uniform embedding
f : (B, U1) -&#x3E; (A, U) is closed.

Proof. If we assume that each_ uniform embedding f : B -&#x3E; A is closed,
so is in particular the dense p : A -&#x3E; A. Thus, p is iso.
We prove the converse. Assume that A is complete. It suffices to

prove that any dense

is an isomorphism (in other cases we simply consider the restriction
of f to the closure of A in B, see e.g. [3, 4, 6]). Thus, let f be

dense. Put j B = f * o f .

3.3.1. Observation. We have

Proof. Take a U E U 1 with U a  b. Put

We have

hence

and hence finally jB(a) A c = 0.

3.3.2. Lemma. For a E A we have

Proof.

3.3.3. Lemma. For U E U we have
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Proof. Let and thence

Take a b E B. We have a commutative diagram

Since p A is iso, we deduce

Put

Considering 3.3.2, 3.3.3 and the inequality f* (0)  b (which follows
from the density of f ), we see that v is S-coherent and hence R-

coherent, since f* preserves finite meets. On the other hand we

have

by Lemma 3.3.1. Thus, it follows from (3.3.1) that + f(b)  v which

implies f(b) E v and in consequence

Thus, j B is the identity and hence f is iso. 0

3.4. Theorem. The completion mapping p gives rise to a reflection
from the category of uniform locales to its full subcategory of

all locales which are absolutely closed under uniform embeddings.
Proof. It follows directly from 3.2.2, 3.3. 0

4. A CHARACTERIZATION OF LT-GROUPS.

4.1. Let (A, il, L, £) be a T-group and let

be the corresponding (not necessarily commutative) group operation.
For any m E A with e(m) = 1 put
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Then we have certain uniform bases

on A. We denote the corresponding uniformities by U R, UL. By
standard arguments, we obtain

4.1.1. Lemma. For a, b E A we have

Proof. Straightforward. 0

4.2. Denote the completions of the uniform locales (A, UR ), (A, UL)
by AR resp. AL and put ARL = Arf’A.... (recall that both AR, AL are
subsets of ! A). Clearly ARL is a frame and the diagram of canonical

embeddings

is a pushout. The composition mapping + A + ARL will be denoted

b y jRL. ·

4.2.1. Lemma. The equalities

hold in ARL for any a, n E A. On the other hand. any frame morphism
f : A -&#x3E; B satisfying
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for all a, n fA, can be (uniquely) factorized through j R L.
Proof. It is easily obtained from (4.1.1), 3.1 and 2.2.4. 0

4.3. Let p R: A R -&#x3E; A, pL : AL -&#x3E; A be the completion mappings and let
p RL : · A RL - A be their colimit. The mappings

(where ’C is taken from 1.3.1 and the asterisk indicates adjunction)
are easily checked to preserve finite meets. Using 2.3.1, we obtain

unique frame morphisms

satisfying

4.3.1. Theorem. The morphisms v, x can be factorized through j RL.
Proof. By Lemma 4.2.1 it suffices to prove the equalities (4.2.2). The
relations

are trivial. Computing

and

we conclude the proof for the case of n (the remaining identities
are analogous). In the case of v , we calculate, first,



33

To obtain the last identity, assume

and compute

The symmetry argument concludes the proof. 0

4.3.2. Theorem. VVe have an L-group (A RL, 03BC, l, e) making diagrams

commutative. Thus, any T-group can be embedded into an L-group as
a dense subgroup of its spatial reflection.

Proof. We define 03BC, L as factors of v, x, through jRL. Recall that
T and pRL are dense and hence monomorphisms in regular frames,
and for that reason (ARL , ti, L, d is an L-group. 0

4.3.3. Theorem. A T-group A is an L T-group iff the diagram

is a pushout.
Proof. The sufficiency follows directly from 4.3.2. Thus, let A, 03BCl 

A -&#x3E; A e A be an LT-group. Then the following diagram is commutat-

ive, since T is dense. This makes (A, 03BCl) a dense subgroup of (A
We deduce that PRL is iso by Theorem 1.3.2.
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4.3.4. Remark. Note that if the T-group A is complete with respect
to U R or UL (i.e., we have A R = A or AL = A) the condition of
Theorem 4.3.3 is obviously satisfied and hence A is an LT-group.

Acknowledgement. I would like to thank A. Pultr and J. Rosicky for
valuable discussions.
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