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MINIMAL ATLASES OF MANIFOLDS

by Alberto CAVICCHIOLI and Luigi GRASSELLI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE 
CATÉGORIQUES

Vol. XXVI-4 (1985)

RÉSUMÉ. On montre que chaque "ball-intersection atlas" minimal
d’une n-vari6t6 M connexe et lin6aire par morceaux a exactement

n boules si la frontibre de M est non vide. Ceci am6liore divers

r6sultats connus relatifs aux recouvrements par boules minimaux
des vari6t6s.

1. INTRODUCTION.

Given a connected compact n -manifold M, a natural invariant
of M is the minimal number of balls which are needed to cover M.

Following [SN] the L justernlk-Schnirelmann category (resp. the
strong Ljusternik-Schnirelmann category), written cat M (resp. C(M)),
is the minimal number of open contractible subsets (resp. of balls) of
M which suffice to cover M. Obviously

W. Singhof proved that C(M) = cat M if cat M is not too small compared
with the dimension of M.

If tv1 is a closed connected combinatorial n-manifold (n &#x3E; 0) which
is geometrically [n/r ] - connected, r &#x3E; 2, then M can be covered by
r combinatorial balls [Z2]. If M is r -connected and r  n -3, then

[ n/(r +1) ]+1 balls suffice to cover M as was later proved by E.C. Zeeman
for PL-manifolds [Zl] and by E. Luft in the topological case [L]. 

Classical results for particular classes of spaces are :

1° A closed piecewise-linear 3-manifold covered by 3 open 3-balls
is a 3-sphere-with-handles [HM].

2° If M is a locally trivial n-dimensional sphere bundle over a

sphere, having a cross-section, then M admits coverings by 3 open
n-balls [M1].

Theorems which improve some quoted statements are obtained

in [M2, PD, Sl, S2] by making use of residual sets, a concept introduced in
[DH].

(*) Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National
Research Council of Italy) and within the Project "Geometria delle Varieta Dif-

ferenziabili" of the M.P.I. (Italy).
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Relations between the Poincar6 conjecture and ball coverings
arguments are studied in [OS, Z2].

In order to cover a manifold with balls whose intersections are

nice, R. Osborne and J. Stern proved this theorem : If M is a closed
k-connected topological n-manifold and q = min{ k,n-3}, then M can
be covered by p open balls if p( q +1) &#x3E; n. Further, these balls may be
chosen so that the intersection of any collection of them is ( q-l)-con-
nected.

The boundary case is also considered in [OS, KT].

In the present paper, we prove that each minimal "ball-intersection
atlas" of a connected piecewise-linear n -manifold M has exactly n
balls if dM is non-void. This improves some results of [OS] and [KT]
in the piecewise-linear category.

2. NOTATIONS.

Let An be the set 0, 1, ..., n} and N n = An-{0}. The symbol #A
means the cardinality of the set A.

All (compact) spaces and maps considered belong to the piecewise-
linear (PL) category in the sense of [ H ] or [ Z1] . The prefix PL will

always be omitted.

The ball-complexes B, , 82 are said to be abstractly isomorphic if
there exists a bijection f : B , -&#x3E; B 2 preserving the face-incidence
relation.

An n-pseudocomplex K is an n -dimensional principal ball-complex
in which every r -ball, considered with all their faces, is abstractly iso-
morphic with the complex underlying an r -simplex ([HW] , p. 49). K is
said to be a pseudodissection of the polyhedron K I. By Sr(K) and KS,
we respectively denote the set of all the r -balls of K and the s -skeleton
of K. We shall also call r-simplex (resp. vertex) each r-ball (resp. 0-
ball) of K.

Given a simplex s in an n-pseudocomplex K, the disjoined star

std(s, K) is defined to be the disjoint union of the n-simplexes of K

containing s , with re-identification of the (n -1)-faces containing
s and of their faces. The subcomplex

is called the disjoined link of s in K. If K is a pseudodissection of a
manifold, the star st( s, K) and the link lk(s, K) of a simplex s in K
are not necessarily balls or spheres ; however, std(s, K) and lkd(s, K)
are the balls or spheres obtained by a minimal set of severings on

st(s, K) and lk(s, K) respectively. A vertex v of an n-pseudocomplex K
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will be called a cone-vertex if it belongs to alI n -simplexes of K (or,
equivalently, if st(v, K) = K).

An r-simplex s of a closed n-pseudomanifold K (cf. [SP] ) is

said to be regular (resp. singular ) if lkd( s, K) is (resp. is not) a combin-
atorial (n - r -1)-sphere.

An identification system of a principal n -pseudocomplex K

is defined to be a set G of simplicial isomorphisms such that, for any
pair , ,

there exists at most one map

belonging to G. Let ~G be the equivalence relation on

defined as f ollows : 

sha ~ GSk B iff sa = sKB or there exists a sequence of

isomorphisms in G (or their inverses) taking one to the other.

The symbol Kowill denote the quotient complex S(K)/~G.

3. MINIMAL BALL COVERINGS.

Let M be a closed connected n -manifold and B = { Bi | i E 11
be a finite set of closed r-balls such that M = U

i E I

Definition 1. B is said to be a Po-ball covering if it satisfies the follow-

ing property :

(P,) For every i, j E I ( I d j),

has (n -1)-manifolds as connected components.
B is said to be a P, - ball covering if it satisfies the following

property

(P, ) For every i, j E I (i # j),

has (n-1)-balls as connected components.

B is said to be a P2 - ball covering if it satisfies the following
property
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(P,) For every J C I, llJ = k, k  n+1,

has (n -k +1)-balls as connected components.

Obviously P2 =&#x3E; P, =&#x3E; Po.

Definition 2. Let M be an n-manifold with h (h &#x3E; 0) boundary components
Mj ( j E Nh) and B ={ Bi |i E I} be a finite set of closed n-balls such
that M = 1UEI Bi. B is said to be a P-ball covering (a E As) of
M if B satisfies the property Paand 

a

is a Pa-ball covering of the closed (n -1)-manifold Mj , for every j E Nh.

Note that a P a-ball (resp. P, -ball) covering is a ball covering
(resp. strong ball covering) in the sense of [IY, KT] (resp. [FG2]).

Let M be a connected n-manifold. For a E A 2, define :

Obviously,

The following results are known.

Proposition 1. 1 ° If M is a closed n-manifold, b 2(M) = n +1 [PI, FG11.
2° If M has non-em pty connected boundary, b 2(M)  n [FG2].
30 If M has non-empty boundary, bo(M)  n [KTJ. 0

The statements 2 and 3 of the above proposition can be obtained
as easy consequences of the following :

Proposition 2. If M is a connected n-manifold with non-empty boundary,
then b 2(M) = n.

Proof. We first prove that b2(M)  n by exhibiting a P2-ball covering
B* of M with n balls. Let Ml ( i E N ) be the boundary components of M,
M’i a copy of Mi and cpi: Mi -&#x3E; M’i the identification map. Let wi
( i E Nh) be a point such that the adjunction space

is a closed n-pseudomanifold.
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Moreover, if K is a simplicial triangulation of Q, the set of the sing-
ular simplexes of K is {Wi |i E Nhl and the disjoined star of each sim-
plex of K is strongly-connected.
We give an inductive algorithm for constructing a pseudodissection Kp
(0  p  n ) of Q such that So(Kp) has p regular cone-vertices. Set Ko = K .
Let now Aj ( j E Np) be a regular cone-vertex of Kp. There exist a

finite sequence Z1 = [o-n-p a}S a =0 of all the (n - p )-simplexes of Kp
not containing A1, ..., Ap and a finite sequence E1 = {tn-1B fS= 1 of (n -1)-

simplexes of Kp such that, for every B E Ns ?

for some y  i3 . For each o-n-pa E Z1, consider the disjoined star std(on-pa, Kp)
and glue them pairwise together by identifying the two copies of every
(n-1)-simplex of E1. The pseudocomplex B so obtained is a pseudodis-
section of an n-ball. Moreover, there exists an identification system G
on B such that the quotient k is isomorphic with Kp. Define Ap+l as
an interior point of B and set Z = Ap+1*9 B. If G’ is the identification

system induced by G on E, set Kp+1 = ¿G’ . . 

_

There exist a finite sequence Z2 = {vd}ud=0 of all the vertices of Kn

different from the regular cone-vertex Aj (j E Nn) and a finite sequence
F- 2 = {p n-1d} u d = 1 of (n -1)-simplexes of Kn such that, for every ie Nu,

for some 4  6. Note that

By the strong connectedness of std (wi , Kn), it is possible to obtain a

triangulated n-ball Bi ( E NH such that :

1° all the vertices of Bi belong to 3 Bi ,
2° wu is a cone-vertex of Bi , 

N

3° there exists an identification system Gi on Bi such that BiG.
is isomorphic with std( wi, Kn). 
Let Z3 be the finite sequence obtained from Z2 by considering the dis-
joined stars of all the regular vertices of Z2 and all the n-balls Bi ’s.

By identifying the elements of Z3 along suitable (n -1)-simplexes of Z2,
we can obtain exactly h triangulated n-balls D,, ..., Dh such that
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There exist an identification system G* induced by Z3 3 and a triangulated
n-ball E obtained from C ...... Ch such that lEG I = Q, A, ..., An
are cone-vertices of E and

Set T = E . If T’ is the first barycentric subdivision of T, define

where

Note that, by construction,

B* = f Bi 26 Nn} is a P2-ball covering of M.
Now we show that no such covering of smaller cardinality exists. Let

be a P2-ball covering of M. For each i E Nk,

H j(.) being the j -th homology group. The Mayer-Vietoris sequence gives :

while, for j = 1, it is a free abelian group (possibly zero). By induction
on m  k, the Mayer-Vietoris sequence gives :

Then

while, for j = m-1, it is a free abelian group. If k  n , setting m = k ,
we have that

vanishes for j &#x3E;k and is a free abelian group for j = k -1. In particular
Hn-1(MS) = 0 and Hn-2(K) is a free abelian group.
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This is a contradiction because either H n-1 (Ms) = Z or Hn-1 (MS" 0
and Hn-2(MS) has torsion, Ms being a closed (n -1)-manifold. 0

Remark. For the proof of b2 (M) &#x3E; n it is sufficient that each Bj is a

P2-ball covering of Mj without assuming the property P2 for B in the
interior of M.

Note that Proposition 2 improves the statement of the Theorem 4.1
in [OS] in the case q = 0.

4. MINIMAL ATLASES.

A BI-atlas (ball- intersection atlas) of a closed connected n-manifold
M in the sense of [P2] is a finite covering

of M such that :

a) each Va is an open n-ball,
b) the intersection of any number of Va ’s has open balls as connec-

ted components. 
a

In order to define a concept of BI-atlas for manifolds with

boundary, we need the following

Definition 3. Let M be a connected n-manifold. An open subset P of M
is said to be an open n-quasi-ball if P is homeomorphic with the union
of an open n-ball B with a finite number (possibly null) of open disjoint
( n -1)-balls on a B.

Definition 4. A finite covering A ={ Va| are A} of a connected n-mani-
fold M with h ( h &#x3E; 0) boundary components Mi ( i E Nh) is said to be a

BI-atlas if the following conditions hold :

a’) each Va is an open n-quasi-ball,
b’) the intersection of any number of Va ’s has open quasi-balls

as connected components,

is a BI-atlas of the closed ( n -1)-manifold Mi (i E Nh).
Let us define

A BI-atlas A of M such that ll A = a (M) is said to be a minimal atlas

of M.
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In ([P2], Proposition 5.1), M. Pezzana proved that a (M) = n +1
for every closed connected n-manifold M.

Proposition 3. If M is a connected n-manifold with h (h &#x3E; 0 ) boundary
components Mi (i E N9, a(tv1J = n. 

Proof. Let Q be the closed n-pseudomanifold constructed as in Proposi-
tion 2 startingfrom M. If T = EG* is the pseudodissection of Q obtained
in Proposition 2, the interior of the space | std(Ai, T) y underlying the
disjoined star of each cone-vertex Ai e S.(T) ( i E NJ, is an open n-

ball of Q. If T’ is the first barycentric subdivision of T, set

The polyhedron M’ = U B is homeomorphic with M.
i=1

Since M’ C Q, the collection

is a BI-atlas of M’ such that ll A = n . In fact, each connected component
of |Std(Åi, T) n a M’ is an open collar of the (n -1)-ball

bir being the barycenter of the edge  Ai, wr &#x3E; for some singular vertex
war e S.(T). This proves that a (M)  n.
Conditions b’ and c’ of Definition 4 give a (M) ? n, according to a

Mayer-Vietoris argument as in Proposition 2. 0
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