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CROSSED MODULES IN Cat AND A BROWN-SPENCER THEOREM
FOR 2-CATEGORIES

by Timothy PORTER

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFÉRENTIELLE
CATEGORI QUES

Vol. XXVI-4 (1985)

RESUME. Si C et H sont des categories, on appelle C-structure sur
H une extension de categories H -&#x3E; K -&#x3E; C (au sens de Hoff) qui
est scind6e. La cat6gorie des C-structures est 6quivalente a la

cat6gorie Groupesc. Un module croise est une C-structure particuli-
ere. La cat6gorie des modules crois6s est 6quivalente a une sous-

cat6gorie de 2-Cat qu’on caract6rise. Comme corollaires, on re-

trouve deux th6orLmes de Brown-Spencer reliant les modules croi-
s6s aux categories internes.

Recently there has been renewed interest in crossed modules. The

new results obtained have been in two main areas. There have been a

series of papers linking crossed modules, their higher dimensional ana-

logues, crossed extensions, and the cohomology of groups (Holt [9],
Huebschmann [101 and also MacLane’s historical appendix to [9]). Other
results have identified the category of crossed modules with the

category of internal categories in the category of groups. (Here the
principal paper is Brown-Spencer [4], but one should also note Brown-

Spencer [5] and Brown-Higgins [1, 2J.)

Aspects of the cohomology of categories - for instance the

theory of derived functors of lim (cf. Jensen ’12]) - have proved to be
of great use in homological algebra. Considering the power of crossed
module techniques in combinatorial group theory and group cohomology
(cf. Brown-Huebschmann [3 ] and Huebschmann )I ] for instance) it may
be worth while developing a similar theory to that of Holt and Hueb-
schmann for the cohomology of categories. In low dimensions an

approach related to this, based on ideas of Ehresmann (cf. [6]), has
been made by Hoff [8].

In [7], Gerstenhaber says of algebra cohomology - "Fixing a

suitable concept of extension normalises H2 and therewith the theory".
Thus in the initial development of a crossed extension interpretation
of the cohomology of categories one needs a "good" notion of extension
of categories. To the author’s knowledge three such exist - Nico [14],
Wells [16J and Hoff [8], the paper already cited. Although more

restrictive the extensions of Hoff seem to be the most convenient

for this work. Using them we develop the elementary theory of crossed
modules in the category of small categories with fixed object set. Some
of the results are quite well known so proofs are often sketched
or omitted altogether.
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Since the "crossed complexes over a groupoid" of Brown-Higgins
[1] seemed to be related to some concept of crossed complex in the

category of groupoids (with fixed base) it seemed useful to clarify this
connection by proving a version of the first Brown-Spencer Theorem [4]
linking crossed modules with internal categories. Using a result of

Spencer [15] , this theorem has as corollary the second Brown-Spencer
Theorem [5] on crossed modules and special double groupoids with con-
nection. This link is not at all surprising and indicates that the notion
of crossed module introduced here is a reasonably good one.

The development of the cohomology theory must wait whilst
several problems are resolved.

I would like to thank R. Brown for helpful comments on an earlier
version of this work.

1. EXTENSIONS OF CATEGORIES.

Let O-Cat denote the category of all (small) categories having
the set 0 as their set of objects and all functors which are the identities
on objects. We call such categories, O-categories. The following defini-
tion is due to Hoff [8].

A sequence in O-Cat

is an extension, if i identifies H to a subcategory of K and C is a quo-
tient category of K, the projection functor being z, such that for all

k], k 2 E K ,

(*) z(ki) = rr(k2)=&#x3E; there is a unique hE H such that k2 = k1o i (h)

Remarks. a) We write composition, within the O-categories, on the

right - if kl : x -&#x3E; y, k2 : y -&#x3E; z , then kl. k 2 : x -+ z - but all other

compositions, e.g. of functors, on the left.

b) rr i (H) = O.

c) If h, k are such that i(h) o k is defined then there is a

unique hi E H such that

Pro posi ti on 1. I f

is an extension of 0-categories then H is a disjoint union of an 0-

indexed family of groups.
Proof, rr i (H) = 0 implies that H is a disjoint union of monoids, whilst
(*) gives immediately that each H{x} is a group. 0
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The extension E is split if there is a functor

We shall say, in this case, that H has a C-structure.
A C-structure on H is an "action" of C on H and corresponds to

a functor from C to Groups in the following way.

Proposi ti on 2. I f

is a C-structure on Hs then for h E H{x}, c E C (x, y), there is a unique
Ch E H{y} satisfying

(ii) h |-&#x3E; ch is a morphism of groups.

The assignment

is functorial, FE : C -&#x3E; Groups.
Varying E within the category of C -structures (which is defined

in the obvious way) one gets an equivalence of categories

Proof. Much of this is routine checking, using (*). The fact that

F( ) is an equivalence of categories is best proved by using a version

of Ehresmann’s semi-direct product construction [6J to produce a quasi-
inverse. As we will need this construction later we shall sketch the
construction.

Let F : C -&#x3E; Groups be a functor. Let HF be the category coproduct
(disjoint union) of the groups

If h E F(x) and c : x -&#x3E; y in C then it is convenient to write F(c)(h) = ch .
Now let C x HF be the O-category with

and composition defined by

(C x H F is the semi-direct product of C with HF). The sequence
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with

is a split extension. The functor F |-&#x3E; F.- F is quasi-inverse to F( ), as is

easily checked. 0

2. CROSSED MODULES AND INTERNAL GROUPOIDS IN O-Cat.

Given a C-structure on A and a functor a : A -&#x3E; C we say (A, 6)
is a crossed module if d satisfies the conditions :

If C is a group (so 0 has only one element) then this notion red-

uces to the classical one. If C is a groupoid then it corresponds to a
"crossed module over a groupoid", the low dimensional case of the
crossed complexes over a groupoid of Brown-Higgins (cf. [l] and its

reference list).

As in these cases, if a E A{x} satisfies 3j) = e X , the identity at x

in C, then for any a’ E A{x}, a’ o a = a o a’. Also for any c : x -&#x3E; y,
ca satisfies 3 (pa) = ey because of the uniqueness clause in condition (*).

Summing up we have :

Proposition 3. If a : A -&#x3E; C is a crossed module in O-Cat, Ker a = K,
say, corresponds to a functor

Thus the kernel of d is a C-module in the usual sense. The follow-

ing lemma is easily proved.

Lemma. If d : A -&#x3E; C is a crossed modules, then

defines a functor

Using do= rr , di as above and s : C -&#x3E; C x A as in the proof of
Proposition 2 we get a diagram
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Proposition 4. Defining * by

gives C( a ) the structure of an internal groupoid W O-Cat.

Proof. The verification of the cate ory axioms is simple. The inverse for
* of (c, a) is (c o a (a), a-1) where a is the inverse in A{y}. 0

Thus we can represent C( a ) by a diagram (in Sets)

and consider it as a 2-category with object set 0 and with all its 2-
cells invertible.

Writing 2-0-Cat for the category of 2-categories with 0 as their
set of objects, the above construction is easily checked to give a

functor

where X Mod(O) is the category of crossed modules in O-Cat.
Of course since, in each C( 3), the 2-cells are invertible C( ) is

not an equivalence. However even restricting to 2-categories with this

property does not seem to be sufficient. In fact 2-categories of
the form C(6) satisfy the following two conditions, the notation used

being relative to the diagram

(A) For each x E O, the set

say, is a roup for both induced compositions o and * and for

each k E K {x} the inverses for o and * are related by
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(B) Given c e C2, then it can be uniquely written as

These two properties are found by mere observation and are not

very elegant. The following proposition connects them with other known
properties.

Proposition 5. (a) If (A) and (B) are satisfied then the 2-cells of C are all
invertible (i.e. ( C2, do, d1, s, *) is a groupoid).

(b) If (C2, Eo , E1, 0", o) is a groupoid then (A) and (B) are satisfied.

(c) If (C1, E0, E1}, o- , o ) is a groupoid, then (B) is satisfied.

Proof. (a) Given c E C2, C = s(do(c)) o k by (B),

as is easily checked by using (A).

(b) (A) is obvious. For (B) set k = s(do(c)) 0 c and check k E K{e1(c)}.
(c) If (C1, E0 , E1, o-, o ) is a groupoid we can, using the inverse in

C , w e get a = s (d o(c)-1 o c. 0

Theorem. The functor

induces an equivalence between X Mod(O) and the full subcategory of
2-0-Cat determined by those 2 -categories satisfying (A) and (B).

Proof. The quasi-inverse for C( ) is constructed as follows. Given a

2-category as in the above diagram, which satisfies (A) and (B),
then the extension

is split by s and 9 : K -&#x3E; C1 is given by d1’ K.
The verification that 3 is a crossed module is quite long but is a

straightforward use of the interchange law in the 2-category, i.e.,

whenever one side is defined. - 0

Corollary 1. C( ) restricts to give an equivalence of categories bet-
ween the category of crossed modules over 0 -groupolds and the category
2-G-Groupoids, considered as a full subcategory of 2-0-Cat.
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Corollary 2 (case : 0, a singleton). C( ) restricts to give an equivalence
of categories between the category of crossed modules and the category
of internal groupoids in the category of Groups.

This is essentially the statement of the first Brown-Spencer
Theorem [4]. Corollary 1 is a generalisation of the second Brown-Spencer
Theorem [5J, the connection being given by Spencer’s results on

2-categories and double categories with connection, [15]. Corollary 1 can
also be considered to be a special case of one of the equivalences
given by Brown-Higgins.

Restricting the general theorem to the singleton case gives, of
course, a theorem on crossed modules in the category of monoids. It
should be pointed out that these do not seem to be the same concept
as that considered by Lavendhomme and Roisin [13J in this context.
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