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HOW TO DEFINE THE DIFFERENTIABLE GRAPH OF A
SINGULAR FOLIA TION

By Jean PRADINES

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATFGORIQUES

Vol. XXVI-4 (1985)

RESUME. Pour une large classe de feuilletages singuliers au sens

de Stefan, nous construisons un groupoide differentiable qui g6n6-
ralise le "graphe" d’un feuilletage r6gulier ; ceci attache à chaque
feuille singulilre un espace fibre principal differentiable, qui est
une extension du rev6tement d’holonomie defini par Ehresmann

pour les feuilletages topologiques localement simples.
La construction utilise une description par diagramme des

6quivalences regulieres et des isomorphismes transverses entre

elles, ainsi que de la composition de leurs graphes r6guliers. Ensuite
cette description est affaiblie pour tenir compte des eventuelles

singularites. Ceci conduit aux concepts de germes de "convections"
et de "convecteurs", et leur composition. Finalement les feuilletages
de Stefan assez bons admettent une convection intrinsèque.
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NOTICE. We present here the full version (with some minor corrections)
of a text written in october 1984 for the Proceedings of the Fifth Inter-
national Colloquium on Differential Geometry (Santiago de Compostela,
September 1984).

Only a shortened version, taken from the Introduction, will

appear in these Proceedings (Research Notes in Mathe., Pitman Ed.,
1985). Another summary was published in :

J. PRADINES &#x26; B. BIGONNET, Graphe d’un feuilletage singulier, C.R.A.S. Paris 300,
S6rie I, n° 13 (1985).

0. INTRODUCTION.

As recalled in the lecture delivered by Haefliger at the present
Conference [12], to any regular foliation is associated its holonomy pseu-
dogroup, well defined up to a suitable equivalence (considered independ-
ently by W.T. van Est and by A. Haefliger), which bears all the topolo-
gical and differentiable information on the transverse structure of
this foliation, in other words on its leaf space, which in general
fails to exist as a manifold.

As a matter of fact, this holonomy pseudogroup may be viewed
as a pseudogroup representative (under a suitable equivalence relation
between differentiable groupoids) of the holonomy groupoid, introduced

by C. Ehresmann in 1961 [9] as a topological groupoid (and considered
by the author, in a wider context, with its manifold structure ir 1966

[151), later rediscovered (using a different construction) by Winkeln-

kemper [23] and popularized by A. Connes [5], under the name of graph
of the foliation.

On the other hand, as explained in the address by A. Lichnerowicz

[13], the study of symplectic geometry has focused attention on

those foliations with possible singularities, which are generated by
families of vector fields.

Such foliations were encountered previously by H. Sussmann in
the context of control theory [21J, and a nice geometric characteriza-
tion was discovered independently by P. Stefan [20] .

We give an equivalent geometric formulation in the Appendix B,
where we prove too a basic theorem connecting Stefan foliations
and general differentiable groupoids (in a way that is not implied by
nor implies Stefan Theorem), which completes a result stated by
the author in 1966 [15].

If we drop the differentiable structure, Stefan foliations may be
viewed as special examples of topological foliations in the sense of
Ehresmann [9] and as a consequence their holonomy groupoid has been
defined as a topological groupoid by this author, at least under the as-

sumption of (topological) "local simplicity", which ensures the existence
of a "germ of leaf space".

It should be noticed that the much more restrictive assumptions
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of local stability and "almost regularity", recently used by P. Dazord

[6J and M. Bauer [11 respectively, imply Ehresmann’s local simplicity.
Under these assumptions these authors show that the Ehresmann holo-

nomy characterizes the structure of the foliation around a singular
leaf.

However we point out that in general the above process involves
a considerable loss of information, as it follows from the two subsequent
remarks concerning the singular case :

1° the loss of differentiability is irreversible, the holonomy groupoid
being no longer a manifold, which is related to the fact that even the
local quotient spaces fail to exist as manifolds ;

2° the holonomy group of any singular leaf which is reduced to
a single point will always vanish and therefore brings no information
on the vicinity of such a leaf, which contradicts the intuition that a
kind of whirl should be associated with such leaves, involving a contin-

uous local group action in some loose sense.

The purpose of the present paper is to extend (by means of comp-
letely new methods) the construction of the differentiable graph to
a rather wide class of Stefan foliations (expected to be generic in some

suitable sense) and to derive from this construction the holonomy groups,
which, for singular leaves, will be continuous, and will not arise from
the fundamental groups of the leaves.

This implies that the "graph" is no longer equivalent in any
sense (even the algebraic one) to a pseudogroup, and the full definition

of differentiable groupoids cannot be avoided.
More precisely we attach to any singular leaf a principal "holo-

nomy bundle" which generalizes the holonomy covering of a regular
leaf. By "squeezing" the connected components of the fibres, we

recover Ehresmann’s groups and the associated covering.
This opens the way for defining and studying the transverse struc-

ture ofi a singular foliation as the equivalence class (in a suitable sense)
of its "differentiable graph", which we postpone to future papers.

We proceed through successive steps :
First, as a heuristic introduction, we recall a new construction

of the graph in the regular case, which we published recently [19],
and which is adapted to the desired extension. It consists in dealing
first with "all" the germs of regular foliations rather than wilh a

specified one, and playing with the two equivalent descriptions of the loc-
al structure by means of the local regular quotient space and of the
local regular graph. As the former description is going to vanish in the

singular case, we notice some intrinsic properties of the latter. In this

way the holonomy groupoids of individual foliations appear as connected

components (in a suitable sense) of a universal differentiable groupoid
called the universal graphoid.

Then tackling the singular case, the properties of regular
graphs have to be weakened one by one.

Dealing first with a unicity property, we are led in Section 2 to
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the notion of monographs, and, by localisation, of faithful graphs, which
are not purely set-theoretic nor topological, but involve the differentiab-
ility by means of a categorical trick.

Sections 3 to 8 develop a somewhat systematic account of the

machinery of morphisms of differentiable graphs (to be used in future

papers too) and bring out the important notions of "differentiable equival-
ences" and "differentiable actors", and the "decomposition diagram" for a

morphism.
Then, to supply the missing local regular equivalence and quotient

space, we introduce the notions of local rule of three and of germs of
convectors and convections, which are defined by the existence of (germs
of) differentiable commutative squares (or "ratios "), describing the

equivalent "fractions".
It is a highly remarkable and non obvious fact that these germs of

convectors may be composed in a way which is the exact generaliza-
tion of the set-theoretic composition of graphs, but cannot be expressed
but in terms of diagrams in the category of germs of differentiable

maps.
The proofs are by diagram chasing through a beautiful hypercubic dia-

gram whose prototype is presented and discussed in Section 10, using
some formal rules that are stated in Appendix A, and some consequences
listed in the previous sections. These rules rely themselves on a few

numbers of elementary properties of submersions and embeddings that
we listed in [18] under the name of "Godement dyptich", because of
the axiomatic use of Godement’s characterization of regular equivalences
by regular graphs.

This leads to a differentiable groupoid, called the " universal

convector", whose units are the germs of convections, which contains
the universal graphoid as an open subgroupoid. The essential property
of this groupoid is that its structure is uniquely determined by its under-

lying graph structure, though it has non trivial isotropy groups.
However, as the terminology suggests, a convection is something

more than the underlying Stefan foliation, and may be viewed intuitively
as a certain class of (multidimensional) flows along the leaves, which
are the stream lines.

Unfortunately it may happen that there is no way, or no canonical

way of associating a convection to a singular foliation. So in order to

recover fully the nice situation of the regular case, we have to limit
ourselves to the class of those Stefan foliations (called " holonomous")
which admit an intrinsic or extremal convection, in a sense to be made

precise.
It seems that this class is broad enough for a wide number of appli-

cations, though we must confess that at present we cannot make precise
to what extent it is "generic" (if it is), and it may happen that the def-
inition of "holonomous" we use here, will require some further adjustment
in view of new examples.

With this reservation, we have an exact generalization of the differ-
entiable graph of the regular case.

The present work was achieved in partial collaboration with my
student B. Bigonnet in whose thesis examples of the holonomy bundle
will be found.
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Oa. SOME CONVENTIONS AND NOTATIONS.

In the sequel, a class of differentiability Ck is fixed throughout,
with k 2: 1. The manifolds may be non Hausdorff and non connected, but
are locally finite-dimensional. " Map" means "differentiable map of the
fixed class C k ".

As in [3J, "submanifold " means "regular submanifold" and embed-
ding " means "regular embedding".

We make a distinction between " transversal " and "transverse"
(which requires supplementary tangent spaces).

Often but not always we use the following types of arrows in our

diagrams :
-&#x3E; for a (differentiable) map ;

-&#x3E; for a surmersion (= surjective submersion) ; or sometimes for
submersive germs ;

-&#x3E; for an open inclusion ;
&#x3E;-&#x3E; for an embedding ;
---&#x3E; for a locally defined map ;

° 

00-&#x3E; for a set-theoretic map between (abstract) sets ;
..-&#x3E; for an arrow to be constructed in the course of the proof.

A universe U is fixed throughout, and M denotes the " universal
manifold ", i.e., the disjoint sum of manifolds belonging to U.

We recall that, when an equivalence relation is defined on a (non
small) subset of U, an equivalence class is defined by its canonical

representative (chosen by the Hilbert symbol), so that it is still an

el em en t of U [2].
This convention applies in particular when defining germs of

manifolds, maps, and (finite) diagrams.

The symbol || is sometimes used, when necessary, to forget
extra structures on a manifold.

Letters A, B are used to refer to the Appendlces. Appendix A
is used throughout.

1. THE REGULAR CASE : A UNIVERSAL GRAPH.

As announced in the Introduction, we just sketch here roughly the
ideas of the construction detailed in [19].

A transverse isomorphism between two simple foliations defined
on manifolds A, B is just a diffeomorphism between the leaf spaces
(which are here manifolds by assumption). It may be identified with a

pair of surmersions (i.e., surjective submersions) from A and B onto the
same target Q, considered up to a diffeomorphism on Q : this is called
a regular isonomy in [19J and might have been called too a regular
cograph.

Taking the pullback of this pair, we get a commutative square,
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which has very nice categorical properties : it is not only a pullback
but a pushout too (cf. Proposition A 6).

As a consequence, each of the two lower and upper halves
of the square uniquely determines the other one, up to isomorphism.
Moreover the map p = (b, a) : R -&#x3E; BxA is a (regular) embedding.

Now let A and B run through the open subsets of a fixed (big
enough) manifold M fin fact it is more convenient to work with universes,
using some logical cautions), and consider the set of all germs of iso-
nomies. We claim that it-bears a canonical structure of differentiable

groupoid H (which we call the universal graphoid) ; the algebraic struc-
ture comes immediately from the cograph or lower half of the square
while the manifold structure comes naturally from the graph or upper
half : it is an open subset of the manifold J of germs of submanifolds
of Mx M, and more precisely of the open submanifolds Jr of germs of

regular graphs (denoted by Js in [19 ]).
The units of this groupoid are the germs of regular equivalences,

alias the germs of foliations of M, which lie in a manifold F, etale
on M.

Now any foliation F may be identified with a sections of F over an

open subset M of M . The differentiable groupoid I induced on F by the
universal graphoid H is called in [19] the isonomy groupoid of

F, and the holonomy groupoid may now be identified with its "a-con-
nected component ", which means the union of the connected compon-
ents of the units in the fibres of the source projection (cf. Appendix B).

Moreover if we consider those differentiable groupoids G with

base B for which the map

(where a, B denote the source and target maps) is an immersion (resp.
a subimmersion), the canonical factorization of this (sub)immersion,
in the sense of [3 1 defines a functor and a local diffeomorphism (resp.
submersion) from G onto an open subgroupoid of the universal graphoid
H. We call these groupoids local graphoids (resp. epigraphoids), a n d

graphoids when this factorization is injective (in which case 1T is called

a "faithful immersion").
This means essentially that the groupoid structure is uniquely det-

ermined by its underlying graph structure (i.e., the paic B, a).

Now, as announced in the Introduction, it is interesting, with the
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extension to the singular case in mind, to get some intrinsic (i.e., indep-
endant from the lower half) characterization of the upper half of

the square : it is given by the following purely algebraic (or set-theor-
etic) condition (added to the submersion and embedding conditions al-

ready mentioned) : RR""l R = R, in which the composition rule is the

usual one for graphs. The graphs satisfying this condition are called
isonomous in [19].

The geometric interpretation of this condition is, picturing the
elements of R as arrows, that there is a unique way of filling a

square with 3 given edges in R. A more algebraic interpretation is

that there is defined on R a 3-- terms composltion law, which is a groupoid
analogue to the elementary rule of three t = zy-lx in a multiplicative
group.

Finally we have a nice, intrinsic characterization of the local

properties of R, which says that the two (simple) foliations defined by
the projections a and b (which are induced by the canonical projections
in BxA) generate a regular foliation. (Compare with Theorem B 8 below.)

Note that the groupoid law of H , which we derived from the (trivial)
composition of cographs comes too from the (less trivial) composition
of graphs, which is the usual one, except it is convenient for us

to reverse it. But observe that the composite of any two regular graphs
is not in general regular, though this is true for isonomous graphs. To
get coherent conventions, we reverse likewise the usual definition of
the graph of a map f : A -&#x3E; B ; it will be the set of pairs (f(x), x) E BxA.

The previous considerations on the regular case have to be kept in

mind as a heuristic guide for the singular case and allow us to be now
more dogmatic for the following unpublished construction.

2. DIFFERENTIABLE GRAPHS, MONOGRAPHS AND FAITHFUL GRAPHS

The first step consists in weakening the monomorphism condition

impiied by the embedding condition on R -&#x3E; BxA for a regular graph.

Let us fix two manifolds A , B E U. A differentiable isogeny (from
A to B) is just a differentiable map

where a, b are surmersions.
It is convenient to consider p as defining an extra structure, briefly

denoted by R or sometimes BRA, on the underlying manifold R. The

notation I will be used to emphasize (when necessary) that this struc-
ture has to be forgotten, so that |R| = R.

When several isogenies are involved, we use the notations pR, aR,
b R , or sometimes p’, a’, b’, etc... Later on, we shall also use arrows

with various directions.
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The isogenies are the objects of a category B’A. An arrow r : RI - R
is defined by a map from R’ to R commuting with p and p’. There is
a terminal object BxA. We speak of a weak morphism, when k is only
assumed to be Ck-1.

When A = B, the diagonal map defines an isogeny denoted by Ony
called the null isogeny.

The equivalence class (cf. Oa) of an object of BIA up to isomorphism
is called a differentiable graph from A to B.

fWhen much accuracy is required, [R] will denote the graph defined
by R. Note that there is no quotient category of BIA with the graphs
as objects. However in the following we shall often mix up the notions
of isogeny and graph.

A regular graph is a differentiable graph for which p is an

embedding.

Proposition 2.1. 1° If R - is a regular graph from A to B , then any mor-
phism in BIA with source R is an embedding.

2° L et p : R -&#x3E; BxA be an isogeny, z E R, x = a(z), y = b(z). Then
there exists a submanifolds Z of R containing z on which p induces a

regular graph (from U to V , open subsets of A, B ).
If moreover dimXA = dimyb, then we can choose for Z a graph

of diffeomorphism.

Proof. 1° It is well known that if p = p’ u is an embedding, then so
is u.

2° Take Z transverse to Ker Tzp in the first case, and tangent to
a common supplementary of Ker Tz a and Ker TzB in the second, and
shrink Z if necessary. 0

To handle the singular case, we need the following fundamental

generalization. - 

Ck-A differentiable graph R is called a monograph (of class cf) if
it is a subobject (sous-true in the sense of Grothendieck [10]) of the
terminal object BxA : this just means that given two surmersions

( g, f) : Z -&#x3E; BxA, there exists at most one differentiable map u : Z -&#x3E; R
such that au = f, bu = g. (Note that it is meaningful to speak of mor-

phisms of monographs.)
The same unicity property then remains valid whenever f, g are

(possible non surjective) submersions, as it is readily seen by extending
f, g, u in an obvious way to the disjoint sum of R and Z.

In order R to define a monograph, it is necessary that there exist
a dense open subset of R in which p be an immersion, and sufficient
that this immersion be injective.

We turn now to a necessary and sufficient criterion.
For any manifold X let us denote by J(X) the (non Hausdorff!)
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manifold of germs of submanifolds of X of class Ck.
Given an isogeny p : R -&#x3E; BxA, let U be the open subset of J(R)

consisting of those germs on which p induces a regular graph, and, when
dim A = dim B (= constant), let V be the open subset of those germs,
which are transverse to the fibres of both a and b.

Let p (resp. p) denote the maps induced by p from U (resp. V)
to J(BxA). Then using Proposition 2.1 one proves :

-

Proposition 2.2. With the above notations, R defines a monograph iff
p (resp. p) is Injective. 0

Letting now A, B run through the set of manifolds belonging to
U, it follows from the above remarks that if R defines a monograph,
any open subset of R bears an induced monograph structure (from the

image of a to the image of b).

We have a notion of germ (cf. Oa) of differentiable isogeny, graph,
and monograph. From tiiv obvious (non Hausdorff!) manifold structure

on the set of germs of isogenies, we derive a canonical structure of ma-
nifold Jm for the set of germs of monographs, which bears a canonical
differentiable graph structure Jm from M to M.

Warning! There is no good manifold structure on the set of all germs
of differentiable graphs!

The manifold of germs of regular graphs is canonically identified
with an open subiiianifold of Jm.

- 
When much accuracy is needed, we use the notations (R)x,

[ R]x for germs of isogenies and graphs at x , and sometimes (R)., [R],
when we do not want to name x, but we shall often denote a germ im-

properly by one of its representatives.

The following example and counterexample shed light on the

subtlety of these notions.

Example. A monograph structure of class Ck (k = 1) from R to R is

defined on R*+ xR by setting p(y, x) = (yx, x) . Note that p is not injec-
tive and that the two simple foliations defined by the two projections
have a leaf in common. Though apparently trivial, this example will

be useful to understand how a group structure on the singular fibre

may arise from the differentiable graph structure, which is the key
idea for building our holonomy groups.

Counter-example. Consider now the differentiable graph from R to
R defined on RxR by setting

Observing that the graphs induced on the submanifolds Z. defined

by y = (2n nJl are equal, one deduces immediately that the germ of this
differentiable graph at the origin is not a germ of monograph. However
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one can prove that the monograph property would be true if, in the

previous definitions of the category 4A and of the monographs, the maps
had been replaced everywhere by germs of maps.

The counter-example shows that this latter definition would not
be the good one (for no good manifold structure could be defined on
such germs) though it would be much simpler to handle. This is a source

of technical difficulty in proving that a germ of graph is a germ of

monograph, for this property cannot be proved by working directly in

the category of germs of maps, and requires the construction of a

monograph representative of the germ.

The following proposition is very useful ; it generalizes the property
for a graph that p be a subimmersion.

Proposition 2.3. Given an isogeny R , there exists at most one factoriza-
tion u of p through 7m which is a submersion.

Definition 2.4. If such is the case, the graph defined by R is said to
be sub-faithful (sub-fidble). It is called faithful (resp. a local mono-

graph) if the factorization u is injective (resp. 6tale).
Proof. Let ui ( i = 1, 2) : R -&#x3E; Jm be two factorizations. Take any ro E R
and set mi = ui(ro) E Jim, The germs mi may be represented by open
sets Mi of J m which define monographs. Consider local sections si of

ui such that si(mi) = ro and set

The composite kh (which is defined on a neighborhood V 1 of mi)
defines a local automorphism of the monograph F/li and therefore has
to be the identity of Vi ; likewise hk is the identity of an open set V2.
This means that m I and m 2 are isomorphic germs of isogenies and
hence are equal as qerms of monographs. 0

3. VERTICIAL MONOGRAPHS.

A monograph [R I from A to B- is called verticial if A = B and
if there exists a morphism o : OA -&#x3E; R, otherwise a bi-section of both
a and b. Note that o is unique ; we call it the vertex map. It induces

a diffeomorphism of A onto a submanifold Ro of R.

Let us denote by Jmo C J m the subset of germs of verticial mono-

graphs ; clearly these germs are characterized by the existence
of a germ of bi-sections.

Proposition 3.1. Jmo is a submanifolds of Jm 6tale on M.

Proof. A germ x 0 E Jmo has an open neighborhood R C J m which is a

verticial monograph from A to A (an open subset of M ). The canonical
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section o induces a diffeomorphism of A onto a submanifold Ro of R.

We have clearly xo E Ro C Jmo n R.
Conversely if x lies in lmo nR, there is by the previous argument

a submanifold Z of R such that one has x e Z C Jmo . If we set

the germs of induced isogenies (Z)x _and (Ro)y are clearly isomorphic ;
hence the germs of graphs [Z Jx and RoJy are equal, which implies x = y.

So we have Jmo nR = Ro, which is a submanifold, and Jm is itself
a submanifold of Jm, on which a and b agree, and induce a local diffeo-

morphism onto M. Note that by composition with the local inverses
we get retractions of an open neighborhood of Jmo onto 0no . 0

-

When we have A = Ro for a verticial monograph R, we say that
it is in canonical form.

4. REDUNDANT COMPOSITION.

- 
Let R = ibt, aR) be a differentiable graph from A to B, and

S = (bS, aS) - a differentiable graph from B to C. Then their redundant

composite S * R from A to C is defined by considering the fibre

product (SxB R, v, u) of as and bR and then taking

The redundant composition defines a category (with the open sets
of M as objects), but not a groupold : the symmetric graph of R, which
will be suggestively denoted by R, and which is defined by

is not in general an inverse.
Note that the redundant composition of isogenies would not be

associative! However we go on using often improperly R instead of CRJ.

The following notations are very suggestive, once one agrees to

picture an element of R by an arrow pointing downwards and a sequence
of arrows by a broken line :

We sometimes abbreviate

Note that the canonical projections (which are surmersions) of /B and
V onto R define on these manifolds a second structure of (regular iso-
nomous in the sense of [19J) graph from R to R, and the redundant comp-
osite of these graphs has the same underlying manifold as N(R).



350

5. CHANGE OF BASES. DIFFERENTIABLE EQUIVALENCES.

Letting now A, B run through the manifolds belonging to our univ-
erse U, we have an obvious notion of morphisms of isogenies (but not
of graphs!). A morphism r : R’ -&#x3E; R is defined by a commutative

diagram :

Note that f , g are uniquely determined by the map r ; they are
called the changes of bases and we say r is a morphism over gxf.

It is clear that the previous symbols /B, V, N now define functors.
E-- +

Warning! The canonical morphism R + BxA is no longer a monomorphism
in the whol e category of morphisms when it is a monomorphism of pig !

However we note the obvious but useful :

Remark 5.1. Given changes of bases f : A’ - A, g’ : B’ -&#x3E; B , and an

isogeny p’ : R’ -&#x3E; B’ x A’, then (gxf)p’ defines an isogeny from A to

B iff f and g are surmersions. 0

As a consequence we have :

Proposition 5.2. If f, g are surmersions and R is a - monograph from
A to B , there exists at most one morphism from R’ to R over gxf.

Now given an isogeny R -&#x3E; BxA and changes of bases f, g we

can consider the induced manifolds R* = f*(R), *R = *g(R) defined by
the pullbacks :

Definition 5.3. We say f is right (resp. g is left) transversal to R if

b* (resp. * a ) is again a surmersion. A sufficient condition is that f

(resp. g) be a frmersion. Then there is defined the right (resp. left )
induced isogeny R* = f*(R) (resp. *R = *g(R)). -

When both are defined, we say gxf is transversal to R. By comp-
osition of pullbacks one has readily :

Proposition 5.4. If gxf is transversal to R , then *g(f*(R)) and f*(*g(R ))
are canonically isomorphic, which defines the induced graph [* R*].
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Keeping the preceding notations, let now be given three surmer-

sions

- - - -

and set R’ - *9(R), 51 = g*(S). Denote by u: R’ -&#x3E; R, v : 5’ -&#x3E; S the canon-
ical surmersions. In the following proposition Sx6R, 5’xB’R’ are viewed as
(isonomous regular) graphs from R to S, R’ to S’.

Proposi ti on 5.5. One has

a surmersion.

This results from the following commutative diagrams :

in which all the squares are pullbacks, using the properties of the

composition of pullback squares. In the second diagram, the dotted
arrow is constructed by means of the universal property of the front

square, and the two new squares which arise are again pullbacks,
which proves this arrow to be a surmersion. 0

By repeated use of the proposition, we get the useful following
corollary, which is also a consequence of Proposition 6.4 below :

+ -

Corollary 5.6. If r : *R* -&#x3E; R is the canonical morphism over surmersive
changes of bases then Vr, /Br, Nr are again surmersions.

We consider now a morphism r : R’ -&#x3E; R over (not necessarily sur-
mersive) changes of bases f, g. The differentiable version of the alge-
braic notion of essential surjectivity is given by the :

Definition 5.7. The morphism r is said to be essentially surmersive
if gxf is transversal to R.

Without any assumption on f, g we can draw the important decom-
position diagram :
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When gxf is transversal to R, then R* and *R are isogenies, and
r* and *r are morphisms.

Playing with Corollary A 3 through out this diagram, we get :

Proposition 5.8. The four squares

have the same properties of versality and monicity. (Cf. App. A.)

This leads to the following definition, in which the word "differen-

tiably" will be often omitted (but should be restored when there is a risk
of confusion with the underlying purely set-theoretic conditions).

Definition 5.9. 1° We say the morphism r is [locally] ] differentiably full
(resp. [ regularly] faithful) when the square Q(r) is [locally] versal

(resp. [regularly] monic). (App. A)
2° It is called a [local] differentiable equivalence if it is [ locally]

differentiably full, faithful and essentially surmersive (this last condition
being fulfilled in particular when f and g are surmersions).

Note that this definition is meaningful even when *R* is not def-

ined ; when it is, the canonical morphism is a special case of differen-
tiable equivalence. (This notion of differentiable equivalence is especially
useful in the case of groupoids, and may be used to define the transverse
structure of a foliation ; in another paper, we’ll study the link with the
van Est-Haefliger equivalence for pseudogroups [12, 22] and the Skan-

dalis-Haefliger equivalence for groupoids [11]).

From Proposition A, 3 results the composition of [ reqularly]
faithful morphisms as well as of [locally] full submersive ones. The

composition of [local] equivalences results from the diagram :
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These definitions can be stated for germs too.

6. ACTORS.

We turn now to the properties of the two squares Q*(r) = (I),
*Q(r) = (II) :

which amounts to the properties of the (always defined) canonical maps
r*, *r : R’ -&#x3E; R*, *R ; they are linked to the property that r arises from
"actions" of R on A’, B’.

Definition 6.1. 1° We say the morphism r is right (and/or left) [locally]
differentiably full (resp. [locally] ] active, resp. [regularly] faithful) when
the square (I) (and/or (II)) is [locally] versal (resp. [locally] universal,
resp. [regularly] monic).

2° It is called a [local] actor if it is surmersive and [locally] right
and left active.

By Proposition A 2, all these properties are stable by composition.

Warning. Again these definitions are transferrred to germs. But when

defining a germ of actor, it is convenient to require that it admits a

right active representative as well as a left active one, but in general
it will not admit a representative which is both, i.e., which is an actor.

This is a source of important technical difficulties which cannot be re-
moved. However we can find a representative which is a local actor.

From the decomposition diagram and Proposition A 2, we deduce
the following implications (in opposite directions!).

Proposition 6.2. 10 If f is differentiably full (resp. locally full) and g/f
is a surmersion (resp. a submersion), then r is right/left differentiably
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full (resp. locally full).
2° If r is right or left regularly faithful, then it is regularly

faithful.

(Note : in the more restrictive context of functors, Ehresmann
uses "well faithful " for our "right faithful" .)

From Remark 5.1 and Proposition 5.2 one gets :
- -

Proposition 6.3. Assume r : R’ - -&#x3E; R is a [ germ of] faithful m2rphism
over two surmersions. Then if R is a [germ of] monograph, so is R’ . 0

- -

Proposition 6.4. Assume r : R’ -&#x3E; R is right and left locally full.
Then if it is submersive so are r, V r, Nr. (More precisely right is

enough for /Br and left for V r.)

Proof. Consider the "prismatic" diagrams whose base consists in the
three pullbacks :

and top is the analogous diagram for R’, the vertical arrows being f, g,
r, Vr, Nr. By Proposition A 2, the versality of the vertical sides R’RA’A,
R’RB’B, is transferred step by step to all the vertical sides and the

submersivity of r to all the vertical edges. 0

Using Proposition A 2 6° d, one has :

- -

Proposition 6.5. L et be given a morphism r : R’ -&#x3E; R.

1 ° Assume r is regularly faithful (in particular a local actor or

a local equivalence). Then if R is regular, so is R’. 
-

2° Assume r is a surmersive equivalence. Then if R’ is regular,
so is R.

This a ppl ies to germs. 0

Remark 6.6. When gxf is transversal to R, Proposition 5.8 may be
restated by saying that the squares Q(r), *Q(r*), Q*(*r) have the same
properties as R’R**RR. In turn this means that

the properties of [local] fullness and [regular] faithfulness of
r are equivalent to the same left properties for r* or right properties
f or *r.
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7. FIBRE PRODUCTS.

By a universal square of morphisms, we mean a commutative

square of morphisms such that the underlying square of maps is univ-
ersal in the sense of App. A, as well as the two base squares. This clearly
implies the pullback property in the category of morphisms.

For instance, if r is differentiably full and faithful, Q(r) is univ-

ersal.
We fix the following notations for a commutative square of mor-

phisms :

By a repeated use of Proposition A 2 and Corollary A 3, one proves :

Proposition 7.1. L et be given a universal square of morphisms as above.
- - -

1 ° Assume f, g, m, n are surmersions. Then if R, R’, S are [ver-
ticiall monographs, so is S’.

2 ° A ssum e m, n are surm ersions. Then if u is respecti vely [locally]
full, [regularly] faithful, a [local ] equivalence, right/left [locally]
full, right/left [regularly] faithful, a [local] actor, so is u’.

3° Assume r, hence f, g, are surmersions. Then :

a) if u’ is respectively [regularly] faithful, right/Ieft [regularly] faith-

ful, right/left active, right/left full, a [local] actor, so is u ;

b) Assume moreover m, n (or equivalently m’, n’) are surmersions. Then
if u’ is [locally] full or a [local] equivalence, so is u.

This proposition remains valid for germs.

We give now a basic existence criterion (keeping the same not-

ations) :

Proposition 7.2. A sufficient condition for the existence of the fibre

product of (u, r) is that u be a right and left full surmersion (for ins-
tance a local actor or a surmersive equivalence). The pullback square
is then universal.

This remains valid for germs.

Proof. We construct s, u’, h, k, m’, n’ by fibre product of (differen-
tiable) maps, and the universal property gives the map S’ -&#x3E; D’xC’.
The non obvious point is that this map defines an isogeny, i.e., that one
gets surmersions vvhen composing with the canonical projections. This
comes from a repeated use of Proposition A 2 in the two cubic diagrams
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with top side RR’SS’ and bottom sides AA’CC’ and BB’DD’. The

versality of the vertical side is transferred to the parallel one, which
in turn implies the surmersivity of both projections of S’. 0

Remark 7.3. In the case of germs we point out again that we do not

require the existence of a representative satisfying both right and left
fullness. We get a pullback in the category of germs of morphisms,
but in general we cannot use the same representative for the two cubic

diagrams of the above proof.
However it is important to notice that there is a basis of

representatives of the germ of S’ consisting of fibre products of repres-
entatives of S, R’. This relies on the fact that the topology of S’ is
induced by the product topology of S and R’. But when several universal

squares are involved, we cannot in general make simultaneous choices of
such representatives!

The proposition applies in particular when u = nxm, where m, n are
surmersions. As a first application, we have :

- -

’Proposition 7.4. 1 ° Assume! : R’ -&#x3E; R is a surmersive equivalence. Then
R’ is a monograph iff so is R . This remains valid for germs.

2° Assume moreover f = g. Then the germ of R’ is verticial iff
so is the germ of R.

Proof. Use the following diagrams : 
S

In the left diagram we construct z and the isogeny q’ by pullback
and we lift the given u, v by the universal property of Q(r). We conclude
u’ = v’, and then u =v because z is epimorphic.

In the right diagram we use a right inverse s of the submersive

germ f , an define o as ro’s (composition of germs).
The validity of 1° for germs relies on Remark 7.3.
This proves the "only if" part.
The "if" part of 1° comes from Proposition 6.3, and of 2° from the

versality of Q(r). 0

Remark 7.5. The above argument has proved the following :
f - -

L et R, R’ be germs of monographs and r : R’ -&#x3E; R a germ of

morphism over f = g. Then
f -

1 ° If f is a submersive germ and R’ is - verticial, so is R ;
2° If r is full and R is verticial, so is R’ .
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8. REGULAR DOUBLE GRAPHS.

The constructions involved in the next sections are significantly
cleared by replacing them in the slightly more general context described
here, intended to emphasize the symmetries which are at work.
The double graphs appear as a powerful tool for lifting singular graphs
up to regular ones and for carrying over properties from one graph
to another one.

A double isogeny H+ on the underlying manifold H is a commut-

ative diagram of surmersions :

This may be viewed equivalently, and in two different ways
as an "isogeny in the category of morphism of isogenies".

The less pedantic expression "double graph" should be kept for
an isomorphism class of such structures with A, B, C, D fixed, but, as
for graphs, we shall often use loosely one for the other, except when
more accuracy is needed.

We have a corresponding notion of germs.
There are two underlying graph structures on H : the horizontal

one Pl 
-&#x3E; 

from P to Q, and the vertical one H from R to S (and of
course their symmetrics), as well as graph structures P from A to B,
Q from C to D, R 

- 

from A to C, S 
- 

from B to D, and morphisms

There are also oblique graph structures H" from B to C, H-
form A to D (and their symmetries).

H+ is called a bi-actor if a - , b- (or equivalently a ,b are

actors, and a bi-valence if a , b , a, b are equivalences.

When defining the germs of these notions, we cannot

require the representative squares involved to be simultaneously univer-
sal : they will only be locally universal.

Proposition-Definition 8.1. Assume P!, Q! , R , S- , are regular. Then
the following are equivalent :
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d) H is a submanifold of DxCxBxA ;
e) H is a submanifold of SxRxQxP.

When all these conditions are fulfilled, H+ is called regular.

Proof. We consider the commutative diagram

Even without the first assumption, we always have :

as well 2s ¡he analogous ones. Finally the regularity assumptions on
pi’, Q’t’, R , S give e =&#x3E; d, which loops the loop. 0

We make now the assumption :
! ! ! !

(RI) P , Q , R , S are regular and isonomous.

Then we can complete the commutative diagram by adding the
four "cographs" (unavoidably distorted on the figure) :

This diagram defines on H a second double graph structure, the

"oblique" one, denoted suggestively by H . We have also oblique graph
structures on A, B, C, D.

Note that the oblique maps aJt, b" of HX are right and left full. Con-

versely any double graph structure H having this property comes from
a well defined H+.

Proposition 8.2 (Turn-table Lemma). (L emme de la plaque tournante)
Under assumption (RI), the following conditions are equivalent :

(i) a- and b +- (or equivalently a and b!) are right and left full

(resp. right and left [regularly] faithful, resp. are actors) ;
(ii) a", b-, ail, b/ are full (resp. [regularly] faithful, resp. are equi-

valences).
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Proof. The squares PABI, RACK being universal by construction, we
may view HPRA as the decomposition square (cf. § 5) of the morphism
a- : (a")* and a+, *( a-) and a’ have the same underlying maps. So by
Proposition 5.8, each property (ii) for a" is equivalent to the same right
property (i) for a- or for a! because this property is expressed by
the same property of the square HPRA. Likewise for the four analogous
squares. 0

These equivalences remain true for local properties of the squares
and morphisms, so that Proposition 8.2 remains valid for germs (with the
usual warnings!). In particular we state :

Corollary 8.3. Let H+ be a germ of double graph satisfying (RI). Then
the following conditions are equivalent :

(1) H+ is a germ of bi-actor ;
(ii) H is a germ of bi-valence.

They imply H+ is regular.
(The last assertion comes from Propositions 8.1 and 6.5.) 0

The study of this very rich and beautiful diagram will be completed
in Section 10 and will be the key of our constructions. We shall need
the following lemma, which concerns a diagram extracted from the above
one :

Lemma 8.4. Let H+ be a germ of double graph such that HPRA is ver-

sal, and suppose the diagram is completed by t wo squares QCDJ, SBDL
which are monic, with submersive edges. Assume LDj is a germ of

monograph.
Now let be given four germs of maps p, q, r, s, from a germ

of manifold Z to P, Q, R, S, such that the whole diagram be com-
mutative. Denote the composed germs by a, b, c, d, j, l, from Z
to A, B, C, D, J, L.

Then if j, 1 are surmersive, there exists a germ h from Z to H

making the whole diagram commutative.

Proof. We construct h using the versality of HRPA. By composition
we get only three (possibly) new germs of maps q’, s’, d’ from Z to

Q, S, D. Now the monograph property of LDj gives d = d’ and then
the monicity of SBDL, QCDJ gives s = s’, q = q’. 0

As an immediate consequence of Proposition 8.1, we have :

Proposition 8.5. With the notations of Proposition 7.1, let be given a
universal square of morphisms with surmersive edges. Then if m’ and
5 are regular, so is S’.

In fact, taking into account the change of notations, the assumption
of Proposition 8.1 is satisfied and the conclusion follows from c =&#x3E; c + . 0
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9. THE LOCAL RULE OF THREE : GERMS OF CONVECTORS AND
CONVECTIONS.

The next step consists in generalizing foliations and graphoids by
extending the isonomy condition RR 1 R = R for a regular graph. ,

First let (R, b, a) be a regular graph from A to B. With the above
notations the characterization of isonomous graphs recalled in § 1
may be restated (rather pedantically) as follows :

The following statements are equivalent :
a) there exist surmersions u : A -&#x3E; Q, v : B -&#x3E; Q such that the square
(a, b, u, v ) be a pullback ; - -

b) there exists a (unique) morphism of isogenies V : N(R) --&#x3E; R ;
b’) RR 1 R = R.

Note that the graphs of regular equivalences are just the verticial ison-
omous regular graphs.

In the singular case, we have to give up the first formulation,
and the second condition cannot be required but locally which leads to

the following fundamental generalization :

Definition 9.1. A germ of monograph (of class Ck) [R Jx is called iso-
nomous if there exists a (necessarily unique) germ of morphism from

(N(R))xxx to (R)x ·
A, germ of isonomous monograph is called a germ of convector, and

a germ of convection if it is moreover verticial.

The germs of convectors (resp. convections) define an open sub-
manifold C of J m (resp. Co of Jm ). The next objective is to construct

on C a canonical structure of differentiable groupoid with base Co,
containing the universal graphoid H as an open subgroupoid.

Definition 9.2. An open subset of C is called a cowector. A local con-
vector is a graph whose all germs lie in C. A convection is a local
section of the canonical projection Co -&#x3E; M.

A regular foliation may be identified with its canonical convection.

Definition 9.1 means precisely that we can find a monograph re-
presentative R from A to B, an open subset U of the manifold N = N (R) 
containing (x, x, x), and a (differentiable) map 8 : U -&#x3E; R commuting
with the projections into A and B. The following notations may be sug-
gestive : 4(z, y, X) = (z : y : x). -

Note that there is a maximum U denoted by 0(R) on which such a
V is defined (for two local V ’s have to agree in the intersection of
their domains).

This unique 8 (assumed to exist) is uniquely characterized by the
properties
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The graph (see the above convention at the end of Section 1) of this

map V- is a submanifold of R4, diffeomorphic to 0(R), denoted fly
H = H(R), and called the ratio manifold (vari6t6 des proportions) of R.

In general there is no representative R of a germ o f convector
such that the rule of three is defined on the whole of N(R), so that,
in the regular case, the terminology of Definition 9.1 requires a

justification, which is given by the important following semi-global
proposition :

-

Proposition 9.3. L et [R]x be a germ of regular graph. Then the follow-

ing conditions are equivalent :

a) it is a germ of convector ;
b) it admits a representative which is a regular isonomous graph.

Only a =&#x3E; b has to be proved. Let R be a regular representative
of the germ, and set

From the fact that N = N(R) is a submanifold of R3 and R a submanifold
of BxA, we can assume that V is defined on Z = T3n N, where T
is an open neighborhood of xo in R, and is itself the trace on R of

WxV, where V, W are open, neighborhoods of ao, ba in A, B. If T is the

regular graph induced by R on T, we note that Z is the whole of

|N(T)|. On the other hand 4 , which is well defined by its projections
a8, b8, takes its values in Rn(WxV) = T. So T is a (globally) regular
isonomous representative of the germ. 0

It is worth noting too that for a regular germ being isonomous,
the set-theoretic existence of V is enough.

Warning 9.4. In the following we shall encounter a germ of manifold

bearing two (and more) germs of regular isonomous graphs. In spite of
the above semi-global proposition, it will not be possible in general
to find a representative which is a (global) regular isonomous graph for
both structures! (That would simplify the proofs significantly, but they
would be false!)

The consideration of the ratio manifold enlightens the symmetry
properties of the rule of three :

Proposition 9.5. The germ of the ratio manifold H is invariant by the
Klein group of permutations of R4.

Proof. Let us denote by u, v the maps N -&#x3E; R induced by the canonical
projections pr3, pr2 : these are submersions. The maps

from 0 to R, induce maps with range N, hence local maps from 0 to
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0. So we have well defined local maps u’ = 8-0 , v’=VT. Now it is im-
mediate that one has

and these maps are submersions ; so by the monograph property of
R, we have

whenever these are defined, which expresses the invariance of the germ
of H by the generators of the Klein group. 0

Corollary 9.6. There are on H two associated canonical germs of double

graphs HX and H described in the diagram below. Moreover H+ is a
germ of bi-actor and Hx a germ of bi-valence, and H+ is regular.

Identifying H with 0, we have first the locally universal square (I) with
submersive edges and the map %’ (identified with the rule of three). We
get the two other diagonal arrows by composition, and then the

dotted maps by the pullback properties. Now Proposition 9.5 forces 8’
to be a (possibly non surjective!) submersion too as well as the dotted

maps, and the three other squares to be locally universal (but not univ-
ersal in general!). The last conclusion comes from Corollary 8.3. 0

10. THE PULLBACK-PUSHOUT HYPERCUBE.

For a better understanding of the properties of the diagram
just above, and an analogous one to be encountered later, we state

first some general stability properties of convectors and we come back
to the slightly more general context of Section 8.

Proposition 10.1. L et r : R’ -&#x3E; R be a germ Qf equival ence over two sub-
mersive germs f, g (with f = g). Then R’ is a germ of [regular]
convector (convection) iff so is R.

Proof. First the properties of regularity, monograph and verticiality
come from Propositions 6.5 and 7.4. Now to the rule of three :

Using the functoriality of N, the "if" part comes from the versa-

lity of Q(r), while the ’’only if" part is a consequence of the right in-
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vertibility of the germ of map Nr (which results from Proposition 6.4
or Corollary 5.6). 0

We can now complete Proposition 7.1 for universal squares of

morphisms (keeping the same notations) :

Proposition 10.2. Given a germ of universal square of morphisms over
submersive germs f, g, m, n [ with f =- g, +- m = n], then if R, R’, 5 are

germs of convectors iconvections], so is S’.

Proof. Applying the functor N, we get a new commutative square.
Because of the monograph property of R, the diagram is still commut-
ative when we add the three given germs of rules of three. The fourth
rule of three now results from the pullback property. The proof of the
verticiality assertion follows the same lines. 0

We now complete Corollary 8.3 :

Proposition 10.3. Given a germ of diagram+(H+, HX) satisfying the (equi-
valent) conditions of Corollary 8.3, then H , H! are both germs of reg-
ular convectors.

Proof. We already know t-f and H are regular. To construct the rule
of three, we apply the functor N to the germs of morphisms Hy - pi, Q!,
which by Proposition 6.4 gives submersive germs, and we compose with
the germs of rules of three (which are again submersive). So we get
germs from N(H!) to P*, Q t, which are submersive, as well as the can-
onical germ from N(H!) to R, S, and the whole diagram is clearl
commutative. The Lemma 8.4 applies and gives the conclusion for H .
Likewise for H -. 

As a consequence we have by Proposition 9.3 well defined germs
of "cographs" (Q, P -&#x3E; E), (S, R -&#x3E; F), which complete two new germs
of pushout universal squares.

Moreover, using the pushout property of these squares (cf. Remark
A 7), we define on E, F graph structures

So we have built two germs of universal squares of graph morphisms

(which are pushouts too) and by Proposition 7.1 3° a we know that
the germs P! (or Q!) -&#x3E; E+, R (or S-) -&#x3E; F- are again germs of actors,
which means that the four new squares that arise PAEK, RAFI, PBEL,
RCFJ, are again germs of universal squares.

Now the full symmetry of the superb commutative diagram that
has just arisen cannot be restored but by a four-dimensional figure, which
the extra-terrestrial reader will draw easily, while the sublunary one
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will be content with the poor Figure 1 on page 26 and its three

extracted diagrams.
This diagram reveals four levels of hierarchy among the structures

involved, the structures at the same level playing equivalent roles :

1° The "sunned" letter H is the origin of four edges generating by
pairs six graph structures (up to symmetries) and three double graph stru-
ctures with their associated "double cross" structures pictured on the

extracted diagrams ;
2° the four circled letters P, Q, R, S are the origin of three edges

defining three graph structures ;
3° the six squared letters A, B, C, D, E, F bear graph structures,

which now play symmetric roles ;
4° the four letters I, J, K, L are non-structured manifolds ;
5° finally the starred vertex and the dotted arrows ending at it

are " virtual": they don’t exist as manifold and differentiable maps.
However, using the pushout property of the pre-existing square sides,

it is possible to construct them in the category of sets in such a way
that the six new squares arising to complete the "hypercube" be simul-
taneous pushouts. According to the general philosophy of the description
of "virtual quotients", the "structure" of this set is described precisely
by the differentiable diagrams situated above it.

We are led to the following definition.

Definition 10.4. A germ of regular superconvector is a germ of commuta-
tive diagram as in Figure 1 (without the dotted part) such that all the

edges are submersive and all the square sides are germs of universal

squares.

Scholium. We can then summarize the above discussion by saying that
such a germ is determined :

1 ° in three different ways by a germ of bi-valence whose four

squares are germs of versal squares, such as Hx ;
2° in three different ways by a germ of bi-actor satisfying condi-

tion (RI) such as H ;
3° in six different ways by pullback of a pair of germs of actors

with common target whose sources are germs of regular convectors,
such as P!, Q .

Applying Proposition 10.1, we have as a consequence the basic :

Proposition 10.5. If one of the germs A, B, C, D, E, F, is a germ of

convector, all of them are.

In fact, by the oblique equivalences, the convector property is
transferred from A (for instance) to B He, then to 0, then to FH E,

- - - -

then to B and C, then to DH A , then to E and F, using successively the
diagonals of Figures 2, 3, 4, 2, 3. 
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In the next section, we are going to build two fundamental germs
of superconvectors, playing with the equivalence of the various ways
of generating them.

11. CONSTRUCTION OF THE UNIVERSAL CONVECTOR.

Given a germ of convector Ry we first construct the units from the di-
agram of Corollary 9.6 which is a special case of regular superconvector.

Proposition 11.1. H! and H are regular, isonomous, and verticial.
Proof. By Section 10, only the verticiality is left to be proved. The map

induces a map from VR to NR. Arguing as in Proposition 9.5, one proves
that locally one has (y : y : X) = x. So the germ of the diagonal map
from R2 to R 4 induces a germ from VR to H which is the desired bi-

section for H - .The proof is similar for H+. 0

So we have well defined germs of regular equivalences in VR and
AR having H as their common graph. But this does not mean (in
spite of Proposition 9.3) that we can find a representative of our germ
R such that the two (global) equivalences on VR and /BR have a

common global graph!! We can only say that the intersection of these

graphs is an open subset of each one.

By the general theory of superconvectors the quotient germs bear
well defined graph structures (denoted by E, F in Section 10, while

A, B, C, D coincide all four with the present R), which we denote by

respectively from A to A and from B to B. Applying Proposition
10.5 and Remark 7.5, we have :

Proposition 11.2. a(R) and 6(R) are germs of convections.

They are called the source and target of the germ of convector R

( not to be confused with the germs A, B).

(Note that what we have done is just mimicking the set-theoretic
definition of the composites RF-1 , R-1 R, in terms of diagrams.)

From the previous proposition we get well defined global applica-
tions a, B : C -&#x3E; Co, which provide factorizations of the canonical sur-
mersions a, b : C -&#x3E; M through the etale map Co -&#x3E; M. This proves that

a, B are again surmersions, so that we get on C a new graph structure :
(13, a) from Co to Co .

From now on C will denote this new graph structure. It would be

pedantic to make a distinction between the germs of graphs induced
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by Jm and by C : the latter are deduced from the former by a canonical
change of bases and we say that they are put in canonical form ; we can

assume this has always been done from now on.

Proposition 11.3. The surmersions c6 define retractions of C onto Co.

Proof. This means that if x = [R]x is a germ of convection, then
a(R) and R define the same germ.

This follows from the commutative diagram (to be read in the

category of germs) : 

in which the squares are germs of universal squares, hence the vertical

composite too. This implies the dotted vertical map to be a germ of

diffeomorphism, and more precisely a germ of isogeny isomorphism,
therefore the identity for the germs of graphs. 0

More precisely the diagram proves that a and B extend to the whole
of C the local retractions of Jm considered in Section 3.

Now to the composition of germs of convectors (not to be confused
with the redundant one of Section 4).

For more symmetry it will be convenient to define first the "dif-
ference (or quotient) law"

- 
So we consider two germs of convectors R, S with a(R) = a(S) = X,

R from A to B, S from A to C. -

Let us denote by VR, VS, /‘,(S, R) the (germs 01) graphs we

get by considering the (germs of) manifolds |V(R)|, |V(S)|, 1 S . RI , as
(germs of) graphs from R to R, S to S , R to S respectively. , +-

- 
We know that the canonical germs of morphisms from VR and VS

to X are germs of actors. So taking their pullback, we construct, by
the scholium of Section 10, a germ of regular superconvector associated
to the diagram :
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By the general theory of Section 10, the vertical structure H 4
is regular. isonomous, and verticial (because VR, VS, X are verticial).
It defines a germ of regular equivalence on A(S, R) whose quotient germ
gives the sixth lacking squared vertex (denoted F in § 10) with its

germ of graph structure from B to C, which will be a germ of convector
by Proposition 10.5. We denote it by 0(5, R) = SR.

This gives the announced difference law 6 in C.

(Once more we have translated the set theoretic composition of
graphs in terms of diagrams.)

To prove the dlfferentiability of 6, we use the fact that the mani-
fold of germs of monographs is, by construction, locally diffeomorphic to
the manifold of germs of isogenies (here it is very important to

make the distinction !), which is itself locally diffeomorphic to the

representative manifolds R, S and so on. So we get a chart for 6
which is just the canonical map from SXAR to its quotient i S Ri,
which is differentiable, and even a submersion.

Now we have to check the axioms of groupoids.

Proposi ti on 11.4. One has :

Proof. Keeping the same notations, let us consider the two morphisms :

By Proposition 6.4, we get two submersive germs of maps when apply-
ing the functor A. Writing Y for the mid term, we can write the com-
mutative diagram: e I

which gives two factorizations of the same germ of isogeny through
a submersion on a monograph. So the conclusion follows from Propo-
sition 2. 3.

The proof is similar for a . 0

Note that, by the very construction, we have
- -&#x3E; 

So if we set

we have an inverse law, and, by Proposition 11.4, we have
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The associativity law comes from the commutative diagram :

The two lateral squares are written only in order to justify the
submersions by their universality. The conclusion follows again from

Proposition 2.3.
In the same way the unit law comes from the diagram :

and Proposition 2.3. Likewise for a.

Thus we have just defined on C a canonical structure of differen-
tiable groupoid (in the sense of Ehresmann) with base Co , whose

underlying graph structure is the canonical one.

On the other hand, given any differentiable groupoid G (not neces-
sarily a monograph), we can define a global rule of three by

It is differentiable and moreover a submersion : in fact, we can write
4 - ps , where p is the second projection of NG, which is submersive,
and s : NG -&#x3E; NG is defined by

which is clearly differentiable and involutive, hence a diffeomorphism.
So, here, again by Proposition 2.3, the global rule of three of C

must extend the local canonical one, as well as any given one. Since the
composition law is in turn uniquely determined by the global rule of

three, we have that the groupoid structure just defined on C is the

only one with the canonical graph structure as the underlying one.

Summarizing, we have proved the first two parts of the basic :

Theorem 11.5. VVe consider the manifold C of germs of convectors and
the submanifold Co of germs of convections. Then : 

1 ° There is defined on C a canonical structure of verticial differen-
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tiable graph with Co as base ;
2° C admits one and only one differentiable groupoid structure

with Co as its base whose underlying graph is the canonical one ;
3° given any differentiable groupoid G with base B whose underly-

ing graph is sub-faithful (Definition 2.4) (more precisely a local mono-

graph or faithful), there is a canonical convection c : B -&#x3E; Co and a
canonical functor f over c from G to C, which is a submersion (more
precisely 6tale or injective) ; in particular the universal graphoid H is
identified with an open subgroupoid of C.

W e call C the universal convector.

Proof of 3°. By assumption we have a canonical factorization f of the

map TT G = (SG, a G) from G to BxB through Jm , which takes its values
in C (because of the rule of three of G) and sends the units into Co.
This gives the desired section c : B -&#x3E; Co. Since f is a submersion (over
a diffeomorphic change of base), so is N f : NG -&#x3E; NC. By Proposition
2.3, f and N f commute with the rules of three, which implies f is a
functor. 0

As a consequence any convector C in the sense of Definition 9.2

generates an open subgroupoid G of C. The open subgroupoid of C
induced on the base of G will be called the envelop of C.

Given now a convection c : B -&#x3E; Co (where B is an open subset
of M), we can identify B with its image in Co.

Definition 11.6. The open subgroupoid H of C induced on c(B) is called
the isonomy groupoid of the convection ; its a-connected component
is called its holonomy groupoid Pi. We define the total (or Godbillon) ho-
lonomy groupoid H as the saturation [19J of Hc (which may be strictly
larger).

Scholium 11.7. Now Theorem B 8 applies. So there are canonical Stefan
foliations C , Co of C, Co such that C is a local Lie groupoid over

Co. Cto is induced by C and induces it by means of a 0r 
Denoting the manifold of germs of Stefan foliations by F B ,

we have a canonical factorization

by etale maps.
According to Remark B 7a, to each leaf F defined by a convection

is associated a well defined (up to isomorphism) principal bundle HF
over F which we call the holonomy bundle, whose structural group is
the (full) holonomy group, and we have a factorization

where the first arrow is a principal bundle with connected structural

group, and the second one a normal covering whose group is the squeezed
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holonomy group.

12. EXTREMAL CONVECTIONS. HOLONOMOUS STEEAN FOLIATIONS.

Up to now we have ignored the existence properties involved in
the pullback-pushout square associated to a regular isonomy, save for
the existence of the rule of three. Of course these have to be consider-

ably weakened, as can be seen even on the trivial example of Section 2.
Let us fix a Stefan foliation F and consider the (possibly empty)

set of convections which define F, partially ordered by the morphisms.
A terminal object, when it exists, is called an extremal convections. The

germs of extremal convections define an open subset Fh of F ,
endowed with a canonical section into Co , and a groupoid induced

by C.
We do not attempt here to study to what extent this open

set may be "generic" in some sense, and shall be content with the follow-

ing criterion, which seems to cover a rather wide range of situations.
We take here k = oo .

Let G be a convection over A. The kernel of To induces on the
vertex section a vector bundle g, and we denote by p the restriction
of T 1T. The sheaf g of germs of sections of g has a canonical structure
of Lie algebra sheaf (which we considered in [16]) and p defines a mor-
phism p of Lie algebra sheaves into the Lie algebra sheaf of germs of
vector fields on A.

Now a sufficient condition for the germ of G to be extremal is

that p induce a bijection of g onto the sheaf of germs of vector fields
which are tangent to F. The proof uses the equivalence of the category
of vector bundles with the category of locally free sheaves of modules,
and the local integration of morphisms of Lie algebroids [16] .

For those Stefan foliations which admit an extremal convection,
the concepts of holonomy of Section 11 become intrinsic : we call them
holonomous Stefan foliations. The Ehresmann holonomy groups coincide
with our squeezed groups when both concepts are defined.

By lack of time and of space, we must postpone the discussion
of the invariance of these notions by differentiable equivalence to future
papers and to the thesis of my student B. Bigonnet. We just mention here
that a wide varlety of holonomous Stefan foliations and holonomy
bundles may be built up by suspension from singular foliations generated
by vector fields.
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APPENDIX A. VERSAL AND MONIC SQUARES

In order to avoid repetitions, we draw up here a list of some formal

properties of commutative squares of manifold morphisms, which are
of constant use. 

In the following, we consider two composable commutative squares
P, Q :

Definition A 1. 1° The commutative square P is called locally versal
if A’ is non empty and :
a) the set-theoretic fibre product R = AxE3B’ is a submanifold of AxB’ ;
b) the canonical map i : A’ -&#x3E; R is a submersion.

If moreover i is surjective (injective, bijective), then P is called ver-
sal (locally universal, universal).

2° P is called [regularly] monic if (u, f’) : A’ -&#x3E; AxB’ is injective
[and is an embedding].

Note that condition a implies that R is a pullback and is satisfied

whenever f and v are transversal and in particular when f or v is 3 sub-

mersion, a condition often fulfilled in the applications in view, and that
condition 2° is satisfied whenever u or f’ is injective [and is an embed-

ding].

Proposition A 2. 1° All the previous notions are stable by product of
squares.

2° Assume P is locally versal (resp. versal, resp. locally universal,
resp. regularly monic). Then if v is a submersion (resp. and is surjective,
resp. and is injective, resp. is an embedding), so is u.

3° Assume gf and w are transversal. Then if P and Q are [locally]
Luni-i’versal, F so is QP. The assumption may be dropped when Q is uni-
versal. 

4° Assume Q is locally universal. Then if QP is [locally] [uni-]
versal, so is P.

5° Assume f is a surmersion, the pair (g, w) is transversal, and
P is versal. Then if QP is [locally] [uni-lversal, so is Q.

6° a) If P and Q are [regularly] monic, so is QP.
b) If QP is [regularly] monic, so is P.
c) Assume f is surjective [and a submersion] and P is a set-theoretic

pullback. Then if QP is [regularly] monic, so is Q.

d) Assume P is regularly monic (more particularly locally universal).
Then if v is an embedding, so is u.

Corollary A 3. If Q is universal, then P and QP have the same proper-
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ties of versality (and monicity).
This applies in particular to the squares :

Proposition A2 is especially powerful in cubic Commutative diagrams.
The detailed proof is left to the reader and consists in a repeated

use of purely formal elementary properties of submersions, embeddings
and pullbacks, through the following commutative diagram :

where the three squares are pullbacks whose existence derives from the
various assumptions involved. 0

This proposition will be used throughout several hundreds of times.

Remark A 4. Let us consider two maps Z -&#x3E; A, B’ making the whole dia-
gram commutative. Then :

1° if P is monic, there exists at most one map Z - A’ making the
diagram commutative ;

2° if P is regularly monic and if there exists a set-theoretic map
Z -&#x3E; A’ making the diagram commutative, this map is differentiable ;

30 if P is versal, such a map exists locally, around any z E Z ;
4° the statement of Proposition A 2 is simplified when all the

edge maps are surmersions, a frequent situation in the applications.

Warning A 5. The above definitions and proposition have their counter-
part in term of germs of squares. Using the fact that the topology of
the fibre product R is induced by the product topology of AxB’, it is rea-

dily seen that a germ of locally [uni-]versal square admits a representa-
tive which is [uni-]versal. If moreover some of the edges are submersive
germs, the representative may be chosen in such a way that they are
represented by surmersions. However when several squares occur in a
commutative diagram, it will not be in general possible to find a re-

presentative of the whole diagram with these properties simultaneously
verified for all the squares : one has to be content with local [uni-] ver-
sality and sub mersions. This is a source of technical difficulties.
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Proposition A 6. If P is a versal square with f, v (hence f’, u too)
surmersions, then it is a pushout.

Proof. First the pullback square RAB’B with surjective edges is a set-

theoretic pushout, hence, using the fact that f is a surmersion, a dif-
ferentiable one, and we conclude by using the epimorphism property
of A’ -&#x3E; R. 0

Remark A 7. The square P is also a pushout in the category of sur-

mersions.

Remark A 8. In the category Dif there exist pullback squares which
don’t arise from the transversality condition and pullbacks which are

not universal in the present sense. It seems to us that the universal
ones are the best adapted for a wide range of applications.

APPENDIX B. STEFAN FOLIATIONS AND DIFFERENTIABLE GROUPOIDS

It is convenient to introduce first an auxiliary notion :

Definition B 1. A prefollation of a manifold X is a second manifold
structure X’ on the same underlying set (called the fine structure)
such that the identity mapping i’ : X’ -&#x3E; X be an immersion.

Trivial examples are the coarse foliation X and the discrete

one, denoted by X..
We say the prefoliation X" of X is finer than X’ if it defines a

prefoliation of X’, or equivalently if its underlying topology is finer

than that of X’.
The connected components of the fine structure are called the

leaves of the prefoliation F = (X, X’). If X is paracompact, any leaf is
second countable.

There is an obvious notion of morphisms of prefoliations.
The following "elementary operations" for prefoliations are defined

in an obvious way : product, inverse image by a map f : Y -&#x3E; X which

is transversal to the identity i’ , gluing, suspension.

A prefoliation is called an elementary foliation if it is isomorphic
to the product of a coarse one and a discrete one.

Within this framework, a (regular) foliations may be defined as a

prefoliation which is locally elementary.

Likewise, we can restate the important definition of Stefan [20] :

Definition B 2. A prefoliation F = (X, x’) is called a Stefan foliation
if for any a E X, there exists a neighborhood U of a and a regular fol-
iation U" of U which is finer than the induced prefoliation U’ and such
that a has the same leaf (with the same manifold structure) in U’ and U".
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This notion is clearly -stable by the elementary operations above

(but not by composition of identity maps!). More precisely, we note :

Remark B 2 a. Let Z be a submanifold of X. If the transversality cond-
ition holds at x E X, then it still holds on the trace of a neighborhood
of the topology of X (and the induced prefoliation is a Stefan foliation).

Any Stefan foliation is locally the product of a coarse one by the
Stefan foliation induced on a transverse subrnanifold, which admits a

singular leaf consisting of a single point.
In the subsequent proposition, an immersion j : F -&#x3E; X is called a

weak embedding if given any manifold Z and any set-theoretic mapping
f: Z -&#x3E; F, the condition " jf is of class Cl’ " implies "f is continuous"

(hence Ck). Any subset F C X bears at most one manifold structure such
that the canonical injection be a weak embedding ; if such is the case,
we say F is a weak submanifold.

By the same argument as in the regular case [4], one proves :

Proposition B 3. Any leaf of a Stefan foliation which is second count-
able is a weak submanifold. This applies in particular to any leaf of
a paracom pact manifold.

(Actually the universal property above is still valid for continuous

maps, replacing Z by any locally connected topological space.)

Definition B 3 a. A prefoliation whose all leaves are weak submanifolds
is called strict.

Corollary B 4. Given an equivalence relation on a paracompact manifold
X , there is at most one Stefan foliation on X whose leaves are the

given equivalence classes.

The importance of Stefan foliations lies in the following facts :

- To any pseudogroup G of local diffeomorphisms of X, Stefan
has associated a canonical Stefan foliation for which the orbits of G
are unions of leaves. In particular, given any family of vector fields.
on x , its classes of accessibility are exactly the leaves of a Stefan
foliation. [20]

The subsequent Theorem B 8 for differentiable groupoids in NOT
a generalization of Stefan Theorem. It completes the statement of
Theorem 4 in [15], and we sketch its unpublished proof.

First we recall briefly some basic (but not well known enough)
facts about differentiable groupoids in the sense of Ehresmann [7, 8,
15, 16, 17].

Given a groupoid G with base B, we denote by a, S the source

and target projections from G to B, w : B -&#x3E; G the canonical identification
of objects with units, y the composition law, o- the inverse law,
6 the "difference law" (y, x) I+ yx from /BG to G. For any e E B,
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we set

eGe the isotropy group, Gt (e), Bt(e) the intransitivity classes of e in

G, B. We set .

A differentiable groupoid structure on G consists in manifold struc-
tures on G and B such that :

(i) a : G -&#x3E; B is a surmersion (which implies /BG is a submanifold
of GxG) ;

(ii) w : B -&#x3E; G is differentiable, hence an embedding (which identifies
B and w(B)) ;

(iii) 6: AG -&#x3E; G is differentiable.

Considering the maps 

which are involutive, hence diffeomorphisms, one sees that is a diffeo-

morphism and B, y, 6 are surmersions, hence open maps. In particular
11 defines a differentiable isoqeny (and graph) (§ 2).

We say G is 6tale if a is etale ; this notion is equivalent to

that of van Est manifold scheme [22 J.
Ehresmann has defined a canonical 6tale prolongation, which we de-

note by SG, together with an immersive projection functor s : SG -&#x3E; G.
It consists of those germs of submanifolds of G which are bi-transverse,
i.e., transverse to both a and B, with a suitable composition law. It
admits two canonical representations into the pseudogroup of germs
of local diffeomorphisms of G, by means of germs of "local right or left
translations". The image of s is an open subgroupoid Gh of G, which
we call the homogeneous component of G.

We denote by Ga, GB the (regular) foliations defined by a, B,
and by GC (called the a-connected component of G) the union of the

leaves of Ga meeting B. It is not hard to prove :

Proposition B 5. GC is an open subgroupoid of G , contained in Gn , and
generated by any neighborhood of B in Ga’.

We observe that the local left translations are local automorphisms
of both G and GB. Moreover (Gh being open in G) they act locally
transitively in Ga. Denoting by iu the identity map Ga -&#x3E; G, this implies
that the rank of Bio’ is locally constant. Together with the symmetric
statement, this gives the ("well unknown"!) :

Proposition B 6. The rank of 11 is constant on the leaves of Ga and of GB.
This defines a canonical prefoliation G11 of G which defines a

regular foliation of both Get and G B (but not of G in general!).

An immediate consequence is that, for any e E B, the isotropy group
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of e is a Lie group which acts differentiably on Ge. Moreover this action

defines a principal bundle structure on Ge, whose base space is the

intransitivity class Bt(e), which inherits in that way a manifold structure,
immersed in B. Using right translations (which are diffeomorphisms of
the a -fibres commuting with B), one sees that tnis structure does not

depend on the choice of e in the intransitivity class. Thus we have
defined a prefoliation Et of B.

Now we can view the intransitivity class Gt (e) as the associate
bundle with fibre type Ge, and this defines on it a manifold structure

which, by the same argument, does not depend on the choice of
e. The construction of the associate bundle is described by means of
a universal square, which is the front side of the following commutative
cubic diagram :

The differentiability of the dotted arrows comes from the differen-

tiability of the diagonal arrows and the universal property of the vertical
surmersions. Now, by Proposition A 2, the universality of the front, rear,
and top sides implies the universality of the bottom side too.

This means that Gt is also a prefoliation of G, induced by a from
the prefoliation Bt of B, and the maps induced by a and w are still a
surmersion and an embedding.

We consider now the new cubic commutative diagram :

Here the differentiability of the dotted arrow comes from the

universality of the bottom side.

This completes the proof that (Gt, Bt) is a differentiable groupoid,
and the identity it : Gt -&#x3E; G is an immersive functor. Note that the sym-
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metry induces a diffeomorphism of Gt, so that a posteriori Gt is ind-
uced by 8 too.

Moreover rrt : Gt (e) -&#x3E; Bt (e)xBt(e) is a surmersion ; this comes from
the fact that, when composing with the surmersion Ge x Ge -&#x3E; Gt(e), we
get the surmersion Bt x Bt. This may be expressed using the following :

Definition B 7. The differentiable groupoid G is called a local Lie groupoid
(or locally transitive groupoid) (resp. a local Galois groupoid (or locally
coarse groupoid), resp. a local graphoid ) if rr G : G - BxB is a submersion

(resp. an etale map, resp. an immersion). We define Lie and Galois

groupoids by adding the surjectivity condition for TIG’

We open here a short parenthensis.

Remark B 7 a. For a Lie (resp. Galois) groupoid, the a -f ibres are prin-
cipal bundles (resp. Galois coverings) over B.

Given any Lie groupoid G, the kernel of z is a differentiable sub-

groupoid N on which a and f3 agree (it seems convenient to call this a

multigroup ). Now the a-connected component N’ is invariant in G, and
this defines an exact sequence of differentiable groupoids

Nc -&#x3E; G -&#x3E; G-,

where G- is a Galois groupoid which we call the condensed (or squeezed )
groupoid. For the a-f ibres, we have a sequence

Ge Ge - B,

where the first arrow is a principal fibration with connected structural

group and the second a Galois (or normal) covering.

We come back now to the situation described before Definition B 7.
We have the following universal property :

Given any local Lie groupoid L over the base C, and any differen-
tiable functor tu : L -&#x3E; G, we have a unique factorization u = itut,
where ut : L -&#x3E; Gt is a differentiable functor.

Proof. The intransitivity classes of L are open, hence closed, so that
we can assume L is transitive. Let us take any a E C, and denote
its image by e E B. The universal square :

shows that the restriction of B to L. is a surmersion, which implies



379

Then we know that the restriction oaf 6 to L. x L a is a surmersion, and
now the differentiability of the set-theoretic mapping ut follows from

the commutative diagram :

The above discussions can now be summarized by the following
synthetic statement :

Theorem B 8. The full subcategory of local Lie groupoids is coreflective
[14J in the category of differentiable groupoids and functors. Moreover
the unit of the adjunction i t : Gt -&#x3E; G defines a Stefan foliation.

Proof. Only the last statement is still to be proved. The proof we give
does not use Stefan Theorem for vector fields and is still valid in class
C 1. It is enough to prove that the prefoliation Bt of B is 0160tefan, for
G t is the prefoliation induced by a (or by (3).

Let e lie in B C G. We consider a small manifold Z through e
which is transverse to the kernel of Te rr . Then Z is transversal to the

regular foliations Ga, GB, so that there are induced regular foliations

Za, Z8 which are moreover transverse to one another. We denote by
aZ, BZ the submersions induced by a ,

We take now a small submanifold T of Z which is transverse to

Ker T aztb Ker T Sz and we set W = BZ-1 (BZ (T)), which is a submanifold
of Z. Then (locally) BZ defines a regular foliation WB of W while aZ
induces a diffeomorphism onto an open submanifold U of B, with
a regular foliation U" inherited from WB.

It is now an easy matter to check that U" satisfies the conditions
of Definition B 2 : to compare U" and Ut-, it is enough to compare
the prefoliations induced by oc on G ; the leaves of the former are unions
of leaves of Go. meeting a connected submanifold of a leaf of GB,
therefore contained in a leaf of Gt. 0

Remark B 9. 1° The identity functor it is not a differentiable equivalence
in the sense of Definition 6.9, because the condition of essential sur-

mersivity of Definition 5.7 is not fulfilled. However the square Q(it)
is clearly universal.

2° The theorem is uninteresting for pseudogroups : Gt is discrete.
3° The theorem still applies for non-Hausdorff and non countable

manifolds ; we did not use Proposition B 3. However if B is paracompact,
Bt hence Gt are strict (Definition B 3a).
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