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ACTIONS, FUNCTORS AND THE BAR CONSTRUCTION
by A.D. EL MENDORF

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CAT#GORIQUES

Vo1 . XXVI-4 ( 1985 )

RESUME. Sous de légères hypotheses, les actions d’une cat6gorie
interne G sur un objet E sont 6quivalentes aux foncteurs de G
vers une cat6gorie interne C (E) ne dependant que de E. Par exem-

ple, G peut 6tre une cat6gorie topologique ou elle peut etre interne
a une quelconque cat6gorie localement cart6sienne ferm6e telle

qu’un topos. La "bar construction" peut alors 6tre d6finie en

termes de foncteurs au lieu d’actions.

The categorical bar construction was introduced by May in [ 8],
§ 12, in the context of topology, and generalized to internal categories
by Meyer in [9, 10, 11 and 12 ]. Both make essential use of actions

of categories, defined below, which they describe in the language of
0-graphs. In [ 9] , Meyer attributes to this author [ 4] the observation
that actions of a topological category G are equivalent to continuous

functors from G to the category of topological spaces. However,
this is only true when G has a discrete object space. In this paper we
establish a correspondence between actions and functors which is suf-

ficiently general to apply to all topological categories (strictly speaking,
categories internal to the category of weak Hausdorff k-spaces)
as well as the more general setting of [ 12] . The crucial ingredient is
the existence of an internal hom-object in the comma category K/B
(called (K! B) in [7], II.6) where K is the ambient category and B is
the object element for the acting category. This condition is satisfied
when K is the category of k-spaces and B is weak Hausdorff [1, 2, 6],
as well as in any locally cartesian closed category K such as a topos
[ 5] , Theorem 1.42.

I would like to extend my thanks to L. Gaunce Lewis for many
stimulating discussions and for sending me a copy of [ 6], to S.B. Nie-
field for a most enlightening conversation, and to K.R. Edwards for

helpful criticism.

We begin by establishing a framework in which we can define
the notion of an action of an internal category (e.g. a topological
category). Although not the most general possible, the following hypo-
theses are convenient and satisfied in all the examples of interest.

Conventions 1. Throughout, K will be a fixed category which has pro-
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ducts and pullbacks, and B will be a class of objects in K for which :

a) if A E B and B E B , then AxB E B, and

b) K/B is cartesian closed [7], p. 95, for all B E B .

For example, by [2] or [6], we could take K = category of k-spaces,
B = weak Hausdorff k-spaces. Or we could take K to be any locally
cartesian closed category and B all objects in K. When we write K/B,
we will always assume that K and B E B satisfy these conventions.
We will write the internal hom-functor of K/B as

Notations 2. Suppose A E B , B e B , y and g : A -&#x3E; B. There are functors

defined by

with the last defined by the pullback diagram

It is an easy exercise that g* is left adjoint to g*.

Notations 3. Let Mi and M2 be objects of K/B x B with structure maps
(Ti, Si) : Mi -&#x3E; BxB. We define an object M1DM2 in K /BxB by the

pullback diagram 
’ 

-

with structure map (T 1 oT2, S, o 5i). It is easy to see that this is func-
torial in both M 1 and M,. If M is an object of K/B x B and (E, f )
an object of K/B, we will consider the object MDE of Kit defined as
a pullback as above and with structure map To f . Again, this is functorial
in both variables.

The motivation here is to think of Mi and M2 as consisting of
"arrows" between "elements" of B, with source given by Si and target
by T1 . Then MID M2 consists of composable pairs of arrows. The
intuition for MDE is to think of E as a family of objects (the "fibers")
parametrized by the "elements" of B ; MDE then consists of ordered

pairs of an arrow and an element of the source of the arrow.
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The following basic observation is due to May in the topological
setting.

Lemma 4. The product Ml CI M2 turns K/BxB into a monoidal category
([71, Chap. VII ; the unit is A : B BxB ). A monoid in this category
is precisely an internal category in K with object element B ([5],
Cha pter 2). 0

In particular, this "box product" is associative (up to natural iso-

morphism) and it is easy to see that there is a natural isomorphism

Definition 5. Let V1 be a monoid in K/BxB, so M is the morphism ele-
ment of an internal category G with object element B. Let I : B -&#x3E; M

and 03BC : MOM -&#x3E; M be the monoid structure maps, and let E be an object
of K/B. An action of G on E consists of a map Z : MDE -&#x3E; E for which

. the following two diagrams commute :

b) Associativity :

Our main theorem is the following :

Theorem 6. For every object E of K¡8 there is an internal category
C(E) with object element B such that actions of G on E correspond
naturally and bi jectively to internal functors from G to C (E) w hich
are the identity on B . (Such an internal functor is simply a morphism of
monoids in K/BxB.)

In the topological case, C(E) is the category whose objects
are the fibers in E over the points of B, with morphisms all continuous

maps between fibers, topologized precisely so that Theorem 6 holds.

The actions considered here are left actions, but Theorem 6 ad-
dresses right actions as well. This involves the use of EDM, which is

defined just as one would expect from Notations 3. It is easy to

see that right actions by G are the same thing as left actions by G°p,
the internal category obtained from G by reversing source and target
maps. , 

’
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Corollary 7. Right actions of G on E correspond naturally and bijectiveiy
to internal functors from C9P to C(E) which are the identity on B . 0

We may also consider bi-actions. This involves internal categories
G and H with object elements B and A, morphism elements M and N

respectively. A G-H bi--action on an object E of K/BxA consists
of maps : MOE - E and to : EDN -&#x3E; E such that Z is a left action, 77 is

a right action, and

commutes. It is a simple exercise to see that G-H bi-actions are the
same thing as (G x /-pp )-actions. (The structure map is the diagonal in
the displayed diagram.)

Corollary 8. There is a natural bi jection between G-H bi-actions on E

(where E is now an object of K/BxA) and internal functors from GxHoP
to C(E) which are the identity on BxA. 0

The special case G = H is of particular interest in the bar

construction, as we will see below.

Our first step in the proof of Theorem 6 must be to produce the
category C(E), which in the case of a topos is due to Benabou ;
see [5], Ex. 2.38, and for locally internal categories [51, p. 340. Since
we are also considering weak Hausdorff k-spaces, which do not form
a topos, our situation is more general than these, although the construc-
tions are much the same.

Lemma 9. Let 1T, and 7T2 be the projections from BxB to B . Then

Proof. This follows from the diagram

in which the squares are pullbacks.
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Corollary 10. There is a natural isomorphism

Proof. We have

In the topological case, the space FBxB(rr2*E,TT1*E’) is precisely
the space E.E’ of Booth, Heath and Piccinini [3].

Notations 11. We will write M(E) for the object FBxE3(TT2*E, fii*E) of
K/BxB.

Theorem 12. There is an internal category C(E) with object element

B and morphism elem ent M(E).

Proof. The unit map I : B -&#x3E;M(E) corresponds to idE under

We define the evaluation map E : M(E)DE -+ E to be the map correspond-
ing to idm(E) under

and the product 03BC : M(E) 0 M(E) - M(E) to be the map corresponding
to E o (10E) under

We must now verify the commutativity of the unit diagram

and the associativity diagram

We first observe that E is the counit at E of the adjunction
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so by standard properties of counits ([71, p. 80, Thm. 1), if

corresponds to due K/8 x B (M, M(E)), then oc= E o (ex 01). In particular,
c o (IC71) = idE. The left hand triangle in the unit diagram now commutes,
being adjoint to the outer pentagon in

The right hand triangle is adjoint to

and therefore commutes.

Next, we use another instance of a = E 0 601) with oc = E o (1C1E )
to conclude that

This implies the commutativity of the following hexagon, which is

adjoint to the associativity diagram :
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Proof of Theorem 6. Let M be the morphism element of G, so M is

a monoid in K/BxB. A functor from G to C(E) which is the identity
on B is precisely a map of monoids from M to M(E), i.e., an element

a of K/BxB(M, M(E)) for which

and

commute. We associate to a the corresponding element Z of K/B(MOE, E),
and must show that functors correspond to actions. The unit diagram
(a) of definition 5 is adjoint to (c) above, so these two conditions are

-equivalent.
We next observe that

commutes, being adjoint to the trivial diagram

Consequently,

commutes, since the square is simply the triangle with and- applied to
it. Therefore

The equivalence of (b) and (d) now follows from the following expanded
version of (b) :. 



336

The lower triangle is adjoint to (d), and the upper is the formula just
derived. 0

The following theorem shows that there is no real loss of generality
in restricting ourselves to functors which are the identity on objects.

Theorem 13. Let G be an internal category with object element B E B,
let q : B -&#x3E; A with A E B, and let E E K/A. Then internal functors from
G to C(E) which are q on objects correspond naturally and bijectively
to internal functors from G to C(q*E) which are idB on objects.
Proof. It is easy to see that if M is a monoid in K /AxA (such as M(E))
then (qxq)*(M) is a monoid in K/BxB. Next, the diagram of pullbacks

shows that

for any M. Consequently

so by the Yoneda lemma,

Letting M be the morphism object of G, functors from G to C(E)
which are q on objects are maps of monoids from M to (qxq)*M(E), and
the theorem follows. 0

We conclude with some observations about the bar construction.
Given an object E of K/BxB and an internal category G with object
element B and morphism element M, Corollary 8 tells us that G-G
bi-actions on E are equivalent to internal functors Z : Gx GOP-&#x3E; C(E).
Given such data, we may follow Meyer [12] (see also [9, 10, 11] )
and define the bar construction B*(G, Z) as a simplicial object of K .

The n-th object Bn(G, Z) is the pullback
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i.e.,

where T : BxB -&#x3E; BxB is the interchange map. If we consider A: B - BxB,
it is easy to see that

as objects of K (but not of K/B). The boundary maps are given by :

where

are the action structure maps. Degeneracies are all of the form A*(1D1D1).
When E = CxD for C and D objects of K/B with a right G -action

on C and a left G-action on D, this reduces to

with structure maps essentially as given by May in [81, §7. In this split
case, by [12], Cor. 4.6, B*(G, Z) is the nerve of an internal category
[G, Z], so we may iterate by considering actions of [G, Z] and so on.
The condition Z must satisfy in the split case involves the following
lemma.

Lemma 14. L et C and D be objects of K/B, so CxD is an object of
K/BxB. There is a natural inclusion map

Proof. The desired functor corresponds to the product ECxED of evaluation
maps under

The following corollary is now a straightforward consequence of

Theorem 6, Corollaries 7 and 8, and Lemma 14.

Corollary 15. I f Z : GXGO P - C(E) is an internal functor which is

idBXB on objects, the associated action splits as E = CxD with a

right action on C and a left action on D iff there are internal functors

X : G +C (D) and Y: G°P+ C(C) such that Z = Lo (XxY). 0
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