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LOGICAL OPENS OF EXPONENTIAL OBJECTS

by Oscar P. BRUNO

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFTRENTIELLE
CATEGORI QUES

Vol. x x vr-3 (1985)

RESUME. Soit X = A et Y = B, avec A = C°°(Rp)/J, B = C°°(Rn)/I,
deux objets repr6sentables dans le topos de Dubuc. L’ensemble des
sections globales de 1’exponentielle Yx est identifi6 6 1’ensemble

Z(I, An) C An de zeros de 1’ideal I dans An et est ainsi muni d’une

topologie C°icompact-ouvert. Dans cet article, on étudie les ouverts
de Penon de 1’objet Yx. On montre qu’ils coincident avec les ouverts
C’,°°-CO de Z(I, An) dans Ie cas o6 J a des extensions d6termin6es

par des lignes (Definition 0.3) ou bien si I = {0}. On donne un

exemple d’un ouvert de Penon qui n’est pas C°°-CO en prenant
1’ideal J de fonctions a germe nul.

INTRODUCTION.

Let X = C°°(Rp)/J, Y = C°°(Rn)/I be two representable objects in
the Dubuc topos D (see Section 0) where J has line determined exten-
sions (0.3). The main result in this paper (Theorem 1.11) says that the
global section functor r establishes a bijection between Penon open sub-
objects of Y X and open subsets of r (Yx) in the Cp°-CO topology.
We show also that when I = {0}, we can assume J arbitrary (1.12).
However, the restriction on J (of having line determined extensions)
is seen to be unavoidable in general.

We precede the article with a Section 0 where we recall all these
notions and fix the notations.

SECTION 0.

Let D denote the Dubuc topos (see [3, 4]). We recall that D is
the topos defined by the following site :

i) The category B , dual to that of finitely generated C°°-rings
Cl(R9)/1 presented by an ideal of local nature (see [4] and Remark
below).

ii) The open cover topology (see [3] and Remark below).

0.1. Remark. i) Let U be an open subset of Rn (in most of the cases
U = F;e) and I C C7U) an ideal. Then I is of local nature (or of local

character, or germ determined) iff for every f E C°°(U), f E I iff
there exists an open covering {Ua}a of U such that

ideal generated in
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We remark that if I C C7R) is an ideal of local character and U is
an open subset of Rn, Il U may not be of local character. If I C C°°(U)
is any ideal, there exists a smallest local nature ideal I which contains
I. In fact, f E I iff there exists an open covering {Ua} of U such that
f l Ua E II lb. I is called the local nature closure of I.

ii) We recall that the generating covers of the open cover topology
are families of the form

where {Ua} is an open covering of Rn and jUa are the maps correspond=
ing to the restriction morphisms. The coverings of an arbitrary

are obtained by pulling-back these covers (see [3]). It can be seen then
that they are families of the form

where L6. is a covering of the set of zeroes of I, Z(I).

0.2. Remark. Let We recall that the

(cartesian) product of X and Y in B is

where this notation should be understood as follows : since we consider
the elements of C°°RP) (resp. C°°(Rn), C°°(Rp+n)) functions of the variables

the ideal J is an ideal in the variable x : J = J(x). Now J(x, t ) is

the ideal generated in C°°(Rp+n) by the functions of J(x). On the other
hand, the symbol + means the local nature sum, i.e., to sum and take

local nature closure.

Recall that if H &#x3E;-&#x3E; F is a subobject of F in a topos, then H

is said to be Penon open iff the following formula holds internally :

(see [6, 1]).
Let Top2 be the topos of sheaves over the site of Hausdorff top-

ological spaces with open coverings, Zar be the topos of sheaves over

the site given by the category d ual to that of finitely presented k -al-

gebras with coverings B[a-1i ] &#x3E;-&#x3E; B where ai = 1 and k is an algebraical-
ly closed field ; and let D be the Dubuc topos already presented. It

has been proved by J. Penon (see [5]) that if either E = Top2 or E = Zar
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or E = D and F is representable, then a subobject of F is Penon open
iff it is representable and represented by : in the first case an open.
subset of F, in the second a Zariski open. and in the third, if F = C )/I
by a subobject of the form C°°(U)/IlU where U is an open subset
of Rfl We study here Penon opens of YX where

are representables (I and J of local character). In some cases we will
need to assume that the ideal J has line determined extensions :

0.3. Definition (see [2J). An ideal J C C°°(Rp) is said to have line deter-
mined extensions iff it satisfies the following condition: for every n E N
and f E C°°(Rp+n), f E J(x, 6 iff for every fixed a E F;e, f(X, a) E J.

We recall from [2J that a large class of finitely generated ideals
(including those generated by a finite number of analytic functions)
have line determined extensions and there are some examples of non-

finitely generated ideals which also have line determined extensions.
As a matter of fact, these ideals are characterized as universally closed,
i.e., CT-CO closed ideals such that the extension J(X, 7) to C°°(Rp+n)
for all n is C°°-CO closed.

0.4. Definition. The C°°-CO topology in C°°(Rn) is the topology for which
a sequence f k of elements of C°°(Rn) converges to f E 17(Fl) iff

fk and all its derivatives converge uniformely on compacts to f and its

respective derivatives.

A result which is closely related to the notion of ideal with
line determined extensions is the following :

0.5. Theorem (Calderon-Reyes-Qué, see [7J). L et C, D be closed subsets
of RP and Rn respectively., and let

be the ideals of all flat functions on C, D and CxD respectively.
(Recall that a function f E C°°(Rk) is said to be flat on a closed subset
K of Rk iff f and all its derivatives vanish on K). Then

Finally we recall a well known lemma. By the way we remark that
it is this lemma which implies that the congruence associated in the
standard way to any ideal I C C’°(Rn) is a COO-ring congruence (see
[4]).
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0.6. Lemma. a) For every n+p-variables C°°-function h : Rn+P-+ R
and for every integer m ? 0 there exist COO-functions

such that the equality

holds for every

where Xk = xk1..... XkpP. Of course we have

b) We will use this Lemma in the following particular case : If
h e Coo(Rn) then there exist functions ei E C°°(R2n) such that, for every
y1, y e R we have

SECTION 1.

We prove first some auxiliary results (1.1 to 1.5).
Let B = C 7W )/I, A = C 7RP)/J be any two C°°-rings in BOp and

Let r : D -*Sets be the global section functor r(F) = Hom(l, F).
We have

1.1. Proposition. F(Yx) = Z(I, An), wh ere

(Notice that the last definition makes sense since smooth functions may
be evaluated in COO-rings.)

1.2. Definition. The C°°-CO topology on A is the quotient topology det-
ermined by the CY-CO topology of CTR9) (see 0.4).

The COO-CO topology of An is just the product topology, and we

give the subspace topology to Z(I, PP).

Recall that the quotient map C°°(RP) -&#x3E;-&#x3E;- A is open, thus it follows :

1.3. Lemma. If a sequence hk of elements of A converges to h E A

in the C°°-CO topology, then there exist a sequence ifk) C Ct(RP)
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and f E C°°(Rp) such that

i) [fk] = hk and [f]=h.

(The brackets mean "equivalence class of".)

ii) fk converges to f in the C°°-CO topology of 17(RP).

1.4. Lemma. L et X, Y be as above and i : H &#x3E;--&#x3E; Yx be a subobject
of Yx. Then H is Penon open iff it satisfies the following conditions :

a) For every representable sheaf T = C°°(Rk)/K E B , arrow q :
T -&#x3E; Yx and s,, E Z(K) C Rk , so : 1 -&#x3E; T, if q 0 So factors through HJ then
there exists a neighborhood V of so in Rk such that qo jv factors
through H (where

is the map corresponding to the restriction). In other words, if "q (s-o) E H "

then there exists a neighborhood V of S. E Rk such that

b) If T - C°°(Rk)/K is any representable sheaf and q, h are arrows

q : T -&#x3E; Yx, h : T -&#x3E;H , and there exists a sequence sr of elements of
Z(K) converging to so E Z(K) such that qo sr = i o h o sr, then q o so
factors through H. (Notice that this condition is vacuous if the ideal J
is C°°-CU closed since in this case we have q o so = i o ho so .)

Proof. Kripke-Joyal semantics (see [1]) tells us that H is Penon

open iff for every T E B and for every q : T -&#x3E; YX, h : T-&#x3E; H there exists

a covering of T

such that (qo fi, i o h o f J verifies the formula7(h = q) and qo f 2 factors
through H. We must prove that this K-J statement is equivalent
to the statement of the Lemma.

Statement of the Lemma implies K-J statement : Assume H verifies the
statement of the Lemma. Because of the sheaf axiom on H it suffices
to show that for every so E Z(K) either

i) there exists an open neighborhood V of So in Rk such that q,,
factors through H, or

ii) There exists an open neighborhood V of So in Rk such that for
s E V n Z(K) we have i o h o s # q o s.

So, take so E Z(K) and assume that point ii is not verified. It follows
that there exists a sequence sr of points of Z(K) converging to so such
that for every r E N, q o sr = i o h o sr. We remark that this does not
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imply q o so = i o h o so, but in virtue of b it follows that q o so factors

through H and so, by a, we have that so verifies point i.

K-J statement implies statement of the Lemma : a) Take q : T + YX and
consider the following commutative diagram

With this data we may consider the arrows

By K-J statement, there exists a covering

such that (q o fl, i o q1 o a o f1) verifies the formula 7 (q = h) and q o f2
factors through H. Since Ti, Tz 2 is a covering So : 1 -&#x3E; T must factor
either through Ti 1 or through T2. But it cannot factor through Ti 1 since
this would imply that

verifies the formula 7 ( q - h), which contradicts the commutativity of (1).
b) Immediate. 0

1.5. Lemma (see [5]). Let F be an object in the topos D.

a) The correspondence R -&#x3E; F(R) from the set of subobjects of F
to the set of subsets of F(F) has a right adjoint E , i.e., for every
S C F(F), there exists E { S )  F such that for every R  F we

have

Moreover F (E(S)) = S . In fact, for S C F(F) , E(S) is defined by the
following rule : an arrow f : T -&#x3E; F ( T E B ) factors through E(S) iff
I’(f) : r(T) -&#x3E; reF) factors through S.

b) If H &#x3E;-&#x3E; F is Penon open, then E(r (H)) = H.

Proof, a) It must be seen that the sub-presheaf defined is actually a
sheaf. This is easily done.
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b) It must be seen that an arrow f : T -&#x3E; F factors through H iff
it factors through E( T(H)). Now =&#x3E; is immediate. To see = assume

f : T -&#x3E; F factors through E( r (H)). This means that for every global
section so : 1 -&#x3E; T, f o so factors through H. Now use 1.4 a and the sheaf
axiom on H. 0

1.6. Proposition. L et W be a C°°-CO open subset of Z(I, An). Then

E(W)  Y X is Penon open. ,

Proof. We use 1.4. Let us see that E(W) verifies 1.4.a. Take arrows as
in the commutative diagram

T = C°°(Rk)/K(s). It follows that q o so E W. Now q is represented by an

[f] = ([fi], ..., [fn]), and so q 0 so is represented by [f(so’ x)] E W.
So, since W is open, it follows that [f(s, X) ] E W for every fixed s in
a certain neighborhood V’ of so in Z(K). Then, calling V C F%fl an

open set such that V’ = V n Z(K) we have that q o iV factors through
E(W), where

is the arrow corresponding to the restriction morphism. Let us now see

that E(W) verifies 1.4.b. To do this, take arrows q : T -&#x3E; YX, h : T-&#x3E; E(W)
and a sequence sr of elements of Z(K) converging to

Let

represent h and q respectively. The equality q o sr = i o ho sr means that

for every r E N, or, in the other words,

Now g(so, x) + (f(sr,x)- grr, -x)) Coo-CO converges to F(so,-x) as r -&#x3E; °°.

Then
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converges to [f(so, x)] . But we know that [-f(s-., x)] = ho So is in W.

So, [g(so, x) E W or, in other words, qo so factors through E(W). 0

In order to prove the converse of 1.6 (in the case that J has

line determined extensions) we need two lemmas.

1.7. Lemma (Clueing Lemma). If a sequence fe of elements of C°° (Rp )
and f E C°°(RP) are such that for every compact set K C RP and every
d E N there exists LK d E R such that

in K for I a  d and e &#x3E; Qo for certain eo E N then there exists

such that

and F (x, sd belongs to the ideal generated by ffk : e E N} Ufft for

every fixed so E R.

Proof. We may assume f = 0. Take cp E C (R) such that

Let us call

We have that

It is easily seen that

00

is C and has the required properties. 0

1.8. Lemma. a) Assume J has line determined extensions. Let hk be
a sequence of elements of Z(I, p(1) Ccv-CO converging to h e Z(I, An).
Let N C C°°(R) be the ideal of all functions vanishing at 1/e and
0 (1, E N), and let S = CooCR)/N. (We call S the generic convergent
sequence). Then there exists a subsequence hke of hk and an arrow

where 1/e: l -&#x3E;S and 0 : 1 -&#x3E; S are the arrows corresponding to eval-
uation at 1/e, and 0 respectively.

b) L et J be any ideals of local character] and I -t 01 . Let tk
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be a sequence of elements of Z ({0}, An) = An C°°-CO converging to
h E ,gn. Then, there exists a subsequence hkg of hk and an arrow

where R = C°°(R) is the line.

Proof. We prove only point a. Point b follows similarly although more
directly. By 1.3, there exists a sequence (fk) C C°°(Rp)n and f E C°°(Rp)n
such that t k C°°-CO converges to f and [fk] = hk, [f] = h . Let us take

a subsequence fkg of fk such that

in E -Z, e ] for every a such that I a l )e. Thus, by 1.7, there exists an
F E CO:CRP+ 1) such that

We will show that this F defines an arrow F : S -&#x3E; YX . As it happens,
such an arrow is a zero of I in

(Recall that + means "local nature closure of the sum"). So, we must
show that

is a zero of I. Take g E I. We have that

(this is the Coring structure in a quotient of this type, see [4]). And

and for every

iF(X, s)) = g((fke(x)) E J. Now from 0.6.b, it follows that g(Tkk), g(f)
satisfy the hypothesis of 1.7 (because lk9v, 1 do). Call G E C°°(Rp+1) the
function given by 1.7 :



320

and for every fixed So E R, G(x, so) E J. Since J has line determined

extensions, it follows that G(x, s) E J(X, s). On the other hand,

is a function flat on Rp x(f 1/ k : k E N U {0}). So, by 0.5,

So

It is immediate to verify that the arrow F just defined verifies

1.9. Propositivn. Assume J has line determined extensions and let
U be a Penon open subobject of Y X . Then r (U) is a COO -CO open sub-
set of Z(I, An).
Proof. Suppose r (U) is not C°°-CO open in Z(I, An). This means that
there is a sequence hk of elements of Z(I, An)Br (U) C°°-CO converging
to a certain h E r(U). By 1.8.a, there exist a subsequence /TkZ of hk
and an arrow

F : S = CX’(R)/N -+ Y X such that F o 1/e = hkQ, and F o 0 = h .

Now, since U is Penon open, we have from 1.4 that there exists an

open neighborhood V of 0 E R such that F o jv factors through U. This
is a contradiction. 0

1.10. Proposition. L et J be any local character ideal and I = {0} C C°°(Rn).
Let U be a Penon open subobject of YX = C°°(R)x. Then r (U) is a

coo-Co open subset of

Proof. Similar to the proof of 1.9 (use 1.8.b instead of 1.8.a).

From 1.5, 1.6 and 1.9 it follows :

1.11. Theorem. Let

and let us assume that J has iine determined extensions. Then the

mapping U t-+ r(U) from the set of subobjects of YX to the set of

subobjects of Z(I, An) determines a bijection between the set of Penon
open subobjects of YX and the set of C°°-CO open subsets of Z(I, An).

Example. An easy instance of 1.11 is DD (D = C°°(R)/(X2)). One may see
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that its open subobjects "coincide" with usual open subsets of R.
As it was said in the Introduction the hypothesis on J of having line
determined extensions is essential : it cannot be avoided in general
(see Example 1.14 below). However Theorem 1.11 holds in some cases
for ideals J not having line determined extensions. This is the case

for instance, if the ideal I is {0}.

1.12. Theorem. L e t

where J is any ideal of local character . Then the mapping U l-&#x3E; r (U)
from the set of subobjects of YX to the set of subsets of A2 determines
a bijection between the set of Penon open subobjects of YX and
the set of Cf-CO open subsets of PP.

Proof. Follows from 1.5, 1.6 and 1.10.

1.13. Examples. i) Consider RR in the Dubuc topos, where R = C%R)
is the line. In this case, Theorem 1.12 just says that r establishes a

bijection between the set of Penon open subobjects of RR and the set
of C°°-CO open subsets of C°°(R). This was conjectured by M. Bunge at
the workshop which took place in Aarhus in June 1983 and answered

independently by I. Moerdijk and the author.

ii) Let A = C°°(R)/J where J is the ideal of all f E C1R) such that
f vanishes in a neighborhood of 0 E R. RA is the internal ring of germs
at 0 of smooth one-variable functions. By 1.12, the Penon topology
of RA "coincides" with the CACO topology on f(R)/f which is the

set-theoretical ring of germs at 0 of smooth one variable functions.

1.14. Example. Let cw E C°°(R2) be a function vanishing in

and different from zero everywhere else. Let I C C7R’) be the ideal

generated by w, and J C CY(R) be the ideal of all smooth functions

vanishing in a neighborhood of 0 E R. Let

We have that
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Our example is E(V) &#x3E;-Y (see 1.5) : E(V) is Penon open in Yx while it

is easily seen that r(E(V)) = V is not C7-CO open in r (YX). In order to

see that E(V) is Penon open we need the following lemma, whose proof
we omit.

1.15. Lemma. Let V, C, X, Y be as above and

be such tha t for certain s o c R F (so, x) I e V, but there exis ts a se-

quence s r of points of R , 5r -&#x3E; 50 as r -+ - such that [F (sr, x) ] e r (yX)Bv.
Then there exist a sequence xr of real numbers xr-&#x3E; 0 as r -&#x3E;°° and

ro E N such that for r &#x3E; r 0 we have F (sr, xr) / C. 0

Let us now see that E(V) is Penon o en. We use 1.4. Let us see
first that E(V) verifies 1.4.b. Take T = C°°(Rk)/k, a pair of arrows :

q : T -&#x3E; YX9 h : T -&#x3E; E(V) and a sequence sr of elements of Z(K) converg-
ing to So E Z(K) such that

Let us assume that q and 0 h are represented by

respectively. It follows that q o sr, i o h o sr are represented by

We have

then

Since closure(J) is the ideal of all flat functions at 0 E R and [g(So?xl! E V
it follows that f(so, x) E V, as the reader may check (use that w (f(so, x) )
must vanish in a neighborhood of 0 E R).

Now, let us see that E(V) verifies 1.4.a. Take T = C°°(Rk )/K, an arrow
q : T - Yx and So : 1 -&#x3E; T, so E Z(K) such that q o So factors through
E(V), i.e., qo SoE V. We have thatq is represented by an element

and so, q o s o is represented by

We must show that there exists an open neighborhood W of So in R
such that q o jw factors through E(V). Now, by 1.5, the condition
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means

Assume that such W does not exist. This means that there exists a

sequence sr of points of Z(K) C Rk converging to so and such that

By 1.15, it follows that there exists a sequence xr of real numbers
which tends to zero as r -&#x3E; °° such that F( sr, x,) i C (i.e., w (F( sr, Xr)) # 0)
Now, we know that w(F) E K(s, x) + J(x, s) and so, since the functions

of J vanish in a neighborhood of 0, there exists a neighborhood W of
(so, 0) E Rk+1 such that in W, w (F) = an element of K(s, x). For some £ &#x3E; 0

is contained in W, and so we should have w(F(sr, x)) = 0 for x E (-E, e )
and every r &#x3E; ro for some ro E N. This is a contradiction. 0
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