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A CONVENIENT SETTING FOR HOLOMORPHY

by A. KRIEGL and L.D. NEL*

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVI-3 (1985)

RESUME. On montre que les applications Fa-holomorphes entre

espaces localement convexes convenables (= bornologiques, s6par6s
et Mackey complets) donnent un cadre pour l’holomorphie qui a
plusieurs propri6t6s int6ressantes. (a) La classe de ces espaces
est assez grande pour contenir a peu pres tous les espaces particu-
liers importants, en particulier les espaces de Fr6chet. Elle est
aussi assez restreinte pour que tous les espaces soient tonnel6s.

(b) On v6rifie qu’une fonction f: E - F entre ces espaces est Fa-

holomorphe en composant avec les formes linéaires 9- : F -&#x3E; C, ou
en composant avec les courbes holomorphes h : D -&#x3E; E, ou en

composant avec les inclusions lin6aires de Banach Ea + E. (c) La
Fa-holomorphie (notion introduite par L. Fantappi6 il y a plus de
50 ans et oubli6e par la plupart des auteurs) se reduit dans des
situations particulieres importantes à d’autres notions moins bonnes
mais plus 6tudi6es. (d) La cat6gorie CLC form6e des espaces pr6-
cedents et des applications lin6aires Fa-holomorphes (= applications
lin6aires continues) est (co-)complete et admet une loi exponentielle
[ E®F, G] = [E, [F, G]] qui 6tend celle connue pour les espaces de
Banach. (e) Les applications Fa-holomorphes entre ces CLC-espaces
admet aussi une loi exponentielle. Mais de plus il y a un plongement
plein dans une trbs bonne cat6gorie Holo (espaces holologiques)
6 structures initiales et finales et avec une loi exponentielle
(WxX, Y) = (W, (X, Y)). L’espace de Fr6chet classique H (Q , C)
apparan comme espace d’applications holologique canonique.
(f) On a une cat6gorie CHV (espaces vectoriels holologiques conve-
nables) qui est isomorphe à CLC mais enrichie pour admettre des
lois exponentielles externes pour des espaces holologiques non

vectoriels. Ceci fournit de nouveaux outils pour 1’etude de

l’holomorphie. (g) La th6orie de la Fa-holomorphie d6velopp6e ici
a une analogie avec la th6orie de la diff6rentiabilit6. Nous r6affir-
mons que "holomorphie = diff6rentiablit6 infinie + C-lin6arit6 de
la d6riv6e".
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INTRODUCTION.

Several concepts of holomorphy have been used in order to develop
the theory in infinite dimensional setting. As will be noted explicitly at
the end of Section 2, most of these concepts display pathological be-
haviour which renders them inadequate as general framework and at
best suitable as ad hoc assumptions for specialized results. Although
the special results obtained via these concepts constitute significant
advances, an appropriate unifying framework still appears to be lacking
in the theory. We hope to show that this can be remedied.

There are of course notable exceptions to our remark about the

neglect of Fa-holomorphy. One such is the study of [Pizanelli 71]
which brought to light several relations as well as contrasts between

Fa-holomorphy and other notions. It should also be pointed out that
in the book [Colombeau 82] the good behaviour of Fa-holomorphy is

indirectly indicated through the study of Silva holomorphy in the ext-
ended sense, a concept which may seem quite different from Fa-holo-
morphy at first glance but reduces to it in our setting.

In Section 1 we assemble some facts about the useful ancillary
concept of G-holomorphy to prepare for the further development of
Fa-holomorphy in Section 2. Fantappi6’s concept is the weakest one
for which the chain rule works and it emerges as the clear choice to
achieve the features mentioned above. However, to realize its full

potential, one must apply Fa-holomorphy to functions between suitably
complete spaces. Among numerous possibilities, c°°-completeness
(equivalent to Mackey completeness and weaker than sequential com-
pleteness) turns out to be the appropriate one for our purposes.
For Fa-holomorphic maps between CLC -spaces pleasing simplifications
take place. One can now test f: E -&#x3E; F for holomorphy not only by
composing with linear functionals Q : F -&#x3E; C (the celebrated technique of
functional analysis) but alternatively by composing with holomorphic
curves h : D+ E or by composing with linear Banach inclusions EB -&#x3E; E.
These are powerful tools which frequently reduce study of a general
map f : E -&#x3E; F effectively to the simpler situation where either F = C

or E is a Banach space or a space of scalars. Sometimes the reduction
is all the way to the scalar situation.

As another important simplification we show that (also in the

infinite dimensional situation) holomorphy is nothing but smoothness

plus C-linearity of the derivative. Accordingly, the complex theory
can in large measure be reduced to the real theory. This approach is

the more valuable in view of the recent advances of smoothness theory
in [ Frolicher 82], [Kriegl 82, 83], [Fr6licher, Gisin &#x26; Kriegl 84] and
[Nel 84c]. In fact, the present study was prompted by these papers :
we wondered whether a parallel theory can be developed in the complex
case. Thus we began this study fore-armed with several conjectures
suggested by the smooth case in conjunction with category theoretical
considerations. These conjectures generally turned out to be true, al-
though the proofs of certain crucial steps are quite different in
the holomorphic case.

Reflexiveness with respect to the external duality
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used in the studies of [Hogbe-Niend 77 ] and [ Colombeau 82] plays an
important role in holomorphy. In Section 3 we point out that in the

present setting this external reflexiveness is equivalent to reflexiveness

with respect to a canonical internal duality. One just has to choose the

"right" category of ("convenient") bornological vector spaces : an iso-

morph of CL C.

in the last Section we study an intrinsic holomorphy structure

("holological spaces") : a very pleasant category in which all canonical
formalisms and closure properties that one could reasonably wish for
are in fact present. From the associated category of vector spaces
we carefully construct the subcategory of CH V ("convenient holological
vector spaces") so as to be a nice category in which all spaces are nice

(Mackey complete and functionally separated). It is reassuring to find
that this CH V is also isomorphic to CL C . Thus CLC emerges as pre-
cisely the Mackey complete linear part of holomorphy. Three different

types of structures become unified and new tools for the study of

holomorphy become available. All of this is quite analogous to the
smooth case.

PRELIMINARIES.

Our standard reference for locally convex spaces will be [Jarchow
81] and the abbreviations we will use are :

Ic locally convex
lcs locally convex separated topological vector space
nbh neighborhood
E’ vector space of continuous linear functionals on an lcs E

B(E, F) vector space of bounded linear maps from E to F supplied
with the Ic-topology of uniform convergence on bounded
subsets

D open unit disk (h e C l l k l l} in C.

Next we want to mention the basic concepts developed in [ Kriegl
82 ] for R-lcs and how they relate to C-1 cs : For this one should be
aware that a C-Ics can equivalently be described as an R-lcs with a

continuous linear transformation J satisfying J2 = -1 (that represents
the multiplication with the imaginary unit i ). Hence we can use all

concepts developed for R-lcs equally for C-lcs by considering just the
underlying R-lcs.

An important thing is the von Neumann bornology on an Ics. That
is a the family of so called bounded sets, i6e., those subsets that are
absorbed by every 0-nbh. For bornologies we refer to [ Hogbe-Nlend 77 ].
All constructions and definitions developed in [Kriegl 82] in terms of
the bornology depend only on a basis of the bornology, and most often
the basis formed by all (closed) bounded disks was used. But if a set
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is disked in the underlying real vector space of a C-lcs, then it need
not be disked in the C-lcs. Nevertheless the C-disked (closed) bounded
sets form again a basis (since the C-disked closed 0-nbhs form a basis
in every C-Ics). Hence in the following constructions for a C-lcs it

does not matter whether one uses R-disks or C-disks.
One important construction associated with the bornology is the

normed space EB formed by the vector subspace of the lcs E generated
by the bounded disk B and supplied with the Minkowsky-functional for
B. This space is C-normed iff B is C-disked. And B is called a Banach

disk iff EB is complete (hence a Banach space).
In [Kriegl 82] the coo-topology on an lcs was defined to be the

final topology generated by the smooth curves and was proved to be

equal to the final topology with respect to the inclusions EB+ E
for bounded disks B (i.e., the Mackey-closure topology, cf. [Hogbe-
Nlend 77]).

Furthermore in [Kriegl 82] the concept of coo-completeness was
developed and proved to be best-adapted to differentiation theory. A
lcs was called c°°-complete iff (for example) every smooth curve

has an antiderivative and it was proved that this is equivalent to

the existence of a basis for the bornology that consists of Banach disks
B (this is Mackey-completeness, cf. [Hogbe-Nlend 77 ] ; or locally com-
pleteness, cf. [Jarchow 81, p. 196]).

We should mention also the concept of b-compact subsets (cf.
[Hogbe-Nlend 77] ), that are those subsets of an lcs which are compact
in one of the normed spaces EB.

Finally smoothness of a map between lcs was defined in [Kriegl
83 ] as having all compositions with smooth curves again smooth.

1. G-HOLOMORPHY.

For the definition of G-holomorphy we have to assume that all

straight lines have an open intersection with U.

1.1. Definition. Let E and F be lcs, U a subset of E, such that the
trace of U on all finite dimensional subspaces is open (i.e., U is

finitely open), f a map from U to F. Then f is called G--holomorphic
(after [GAteaux 19]) : =&#x3E; for all z e U, v E E the GAteaux derivatives

exist.

If E is one-dimensional this already gives the appropriate concept
of holomorphy :

1.2. Pcoposition [Bochnak &#x26; Siciak 71, p. 811. L et U be an open subset
of C, F a coo-complete lcs, f a map from U to F , then :
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(1) f is G-holomorphic
=&#x3E; (2) f is continuous and ja T f = 0 for all triangles T in U

=&#x3E; (3) all complex derivatives f(n)(z) exist and

locally 
=&#x3E; (4) f has an antiderivative on every simple connected subset
(5) f is smooth (or differentiable) as a map from U C R’ into

F, and the derivative is C-linear at every point.

Remark. This was proved in [Bochnak &#x26; Siciak 71, p. 82 ] under
the stronger assumption that F is sequential complete. But sequential
completeness was only used for a lemma saying that scalar holomorphy
implies holomorphy. This we are going to prove under the relaxed as-

sumption of c°°-completeness.

1.3. Lemma [Colombeau 82, p. 115]. Let U be an open subset of C,
F a c--complete lcs, and f : U + F a map, then :

(1) f is G-holomorphic
=&#x3E; (2) for all C-linear functionals Q the composition Q, 0 f is G-

holomorphic.
Proof. (We give a proof different from [Colombeau 82] to emphasize
similarity with the corresponding statement for real differentiable curves)
The non-trivial implication is (1=&#x3E; 2). So, suppose Z o f is holomorphic
for all Q. Since e, o f =: g is a map from U to C we can use the classical

theory to deduce that g’ is holomorphic, and

is holomorphic as well. Therefore

is locally bounded. But since

we can conclude that slope f(4 .) is locally Lipschitz. And therefore
slope f (z, .) is a M -Cauchy net, hence converges in F since F is c°°-
complete. This proves that f is G-holomorphic. 0

(5 =&#x3E; 1) For F = C this is the classical Cauchy-Riemann Theorem.
So let us reduce the general case to this specific one :

f is holomorphic +O L o f is holomorphic for all Z =&#x3E; e af is smooth
and (e o f)’(z) is C-linear =&#x3E; is smooth and f’(z) is
C-linear. Kriegl 83 ] 0

This lemma is one reason for assuming all lcs to be c -complete.
But it should be mentioned that c"-completeness is not necessary for

this equivalence.
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1.4. Example. There exists a non coo-complete lcs where nevertheless

every scalarly holomorphic curve is already holomorphic. Furthermore
there exist different topologies and bornologies on certain vector spaces
having the same holomorphic curves.

To see this consider any lcs with countable algebraic dimension,
i.e., there are linearly independent points ei for i E N having as linear
hull the whole space.

Let us first show that scalarly holomorphic curves c into such a

space are holomorphic in some finite dimensional subspace : For
this choose linear continuous 9,n : E -&#x3E; C with

Then cn:= en o c is holomorphic into C. Now consider A :=In E N l cn 4 ol
and suppose that this set is infinite. For every n E A the set

is finite (by the identity Theorem for holomorphic maps). Hence UnEAZn
is countable; on the other hand it has to be equal to -ID 2 since every
c00 is a finite linear combination of ei and therefore § (c(k)) = 0 for

n sufficiently large. So we can conclude that S¿n 0 c = cn = 0 for
n 2: N. From this it follows that the image of c lies in the subspace
generated by {enl n  N} (Otherwise

then apply im ).

There are even infinitely many metrizable non-isomorphic lcs with

countable algebraic dimension (take the space of finite sequences in

any eP). And there is a most natural finest lc-topology on such a space
induced by CN , which is the only c -complete bornological topology
on a countable dimensional vector space.

This shows that unlike the case of real smooth functions neither
the topology nor the bornology is determined by the holomorphic curves.
And for two Ic-structures on a vector space having the same holomor-
phic curves it might well be that one is coo-complete and the other not.

1.5. Lemma. Let E be a coo-complete lcs, bn E E, the

(1) Irnbn l n E N} is bounded for all 0 r  1
=&#x3E; (2’ E n=0 knbn converges (and 1B l-&#x3E; En=0knbn is holomorphic) on D.

Proof. (l=&#x3E; 2) Let an be bounded, then Ekn =0kna is a M-Cauchy sequence
for IXI l  1 and therefore converges in E (it even converges uniformly
on compact subsets of D, since
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and hence the same is true for the series formed by taking derivatives
of the summands. From this it is easy to see that the power series

represents a holomorphic curve). Let now an := rnbn be bounded,
then by argument above 

represents a holomorphic curve defined on A=: T/r 1 . Since this is
true for all 0  r  1 this part is proved.

(2 =&#x3E;1) Suppose B 1-+ I IFcfnbn is holomorphic, then

is holomorphic on D and by the classical theory it converges absolutely,
hence the summands have to be bounded, i.e., {rne (bn) l n E N 1 is
bounded for 0  r  1. Consequently the same is true for {rnbn I n E N . 0

Another difference from the behaviour of smooth curves into R-
lcs is :

1.6. Lemma. Let c : D -&#x3E; E be a G-holomorphic map, then there
exists a bounded disk B such that c is locally G--holomorphic from D
into EB. 
Proof. (As for finite order real differentiability we can proceed as
follows :) By the mean-value Theorem it is enough to use for B
the closed disked hull of the values of c, c’, c" on some nbh. 0

Remark. It would be very nice to know whether this EB can be chosen
to be complete even for non c°°-cornplete lcs E, since this would show
that the Banach disks and the holomorphic curv es determine each other.

1.7. Theorem [Taylor 391. Let U be open in C, f : U -&#x3E; B(E, F" a n)ap
such that for all z E E the composition evz 0 f is holomorphic, then f
is holomorphic.

Proof. With evz we denote the functional defined on any function space
which maps a function f to f(z) . We will give a proof different from

[Taylor 39], since we want to stress again the connection to the real

theory. We have to prove that f is smooth and the R-derivative is C-
linear. Since evzo f : U -&#x3E; F is holomorphic, it is smooth from U C R2 
into FR and the derivative (evzo f)’(k) is C-linear. The real theory
[Kriegl 83J gives us that f: UR-&#x3E; B(ER, FR) is smooth. Since

is a closed subspace of B(ER, FR) and f takes values in this space it is
smooth into this space. Finally evZ o f’ = (evz o f)’ is C-linear, and
hence so is f’ itself. 0
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The next less simple case is when E is of finite dimension and
therefore isomorphic to Cn.

1.8. Proposition (Hartogs’Theorem, cf. [Bochnak &#x26; Siciak 71, pp. s4J).
L et U be open in Cn, F be a c°°-complete lcs, and f : U-&#x3E; F a map, then

(1) f is G-holom orphic
=&#x3E; (2) e o f is G-holomorphic for every continuous C-linear func-

tional Q
=&#x3E; (3) all higher directional derivatives f(n)(Z)(V1’ ..., vn) exist and

locally.

Proof. (1 =&#x3E; 2) f G-holomorphic =&#x3E; k l-&#x3E; f(z + k v) is holomorphic
(1.3) - k l-&#x3E; t(f(z + kZ)) is holomorphic for all 9, =&#x3E; e o f is G-holo-morphic. 

(2 =&#x3E; 3) Since both statements can be checked with the continuous
linear functionals this is essentially Hartogs’ Theorem. 0

1.9. Definition. Consequently we will use the term holomorphic instead
of G-holomophic in the case of a finite dimensional domain.

Let us turn now towards the case where E is an arbitrary lcs.

1.10. Proposition. Let E and F lcs with F coo-complete, U be finitely
open in E and f : U -&#x3E; F a G-holomorphic map, then :

(1) f has all G-derivatives of arbitrary order and these derivatives
can be calculated by the formula :

[Bochnak &#x26; Siciak 71, p. 94].
(2) These C-derivatives are multilinear [ Dineen 81, p. 551.

for v E {v l z + hve U for all l k I  11 [Dineen 81, p. 55J. 0

Remark. The set described in (3) is open (resp. finitely open, resp. c -
open) if U is it.

But nevertheless G-holomorphy in this general setting is too weak
a concept, since if we try to prove the chain rule, we recognize that the
first function makes a holomorphic curve out of the straight line,
with which we start, and we do not know what the behaviour of the
second G-holomorphic function on this curve is like.
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An example showing that the chain rule fails for G-holomorphic
maps is obtained by every G-holomorphic map between Banach spaces
which is not holomorphic (e.g., a linear non-continuous map), then (2.12)
shows that it is not Fa-holomorphic, i.e., there is a holomorphic curve
into E, such that the composition with it is not holomorphic.

2. Fa-HOLOMORPHY.

But as in the case of R-differentiability, we can take this as a
motivation to define a stronger concept of holomorphy as follows :

2.1. Definition. Let E and F be c°°-complete lcs, U a subset of E open
in the c"I-topology, and f a map from U to F, then f is called Fa-holo-

morphic (after [Fantappie 30 ], cf. [Pizanelli 72]) :=&#x3E; f o c is

holomorphic for all holomorphic c: D - U C E.

One could equally define a map f to be Fa-holomorphic when f o c
is holomorphic on c (U) for all locally defined holomorphic curves c

into E.
It should be mentioned here that for metrizable Ics among others

the cOO-topology is the original one.
Furthermore we will show later (2.5) that although the definition

above makes sense for subsets whose inverse images under holomorphic
curves are open it does not lead to a nice theory.

Obviously every Fa-holomorphic map is G-holomorphic, since

straight lines are holomorphic. Although the converse is true for finite

dimensional domains it is not true for general Banach spaces [ Pizanelli
72, p. 184] : To see this take any linear, non-continuous map between
Banach spaces. Then it is obviously G-holomorphic with f’(z)v = fey) ,
but f is not Fa-holomorphic, since by (2.6) it would then be continuous.

Since the definition of Fa-holomorphy is quite similar to smooth-
ness in the real case, one can translate many of the theorems on smooth
functions between real lcs to such Fa-holomorphic functions between

complex lcs and use essentially the analogous proofs to verify them.
However the propositions on maps between finite dimensional spaces
have often different proofs, like Boman’s Theorem and the correspond-
ing Hartogs’ Theorem.

2.2. Proposition. L et E and F be coo-complete lcs, U be a c°°-open sub-
set of E and f : U -&#x3E; F a map, then :

(1) f is Fa-holomorphic
=&#x3E; (2) Q o f is Fa-holomorphic for all continuous linear e .

Proof. This is an immediate consequence of (1.3). 0
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2.3. Theorem (Hartogs’ Theorem). Let Ek and F be lcs with F

c°°-complete, Uk c°°-open in Ek and f : U, x U2 -&#x3E; F a map, then :

(1) f is Fa-holomorphic
=&#x3E; (2) f is separately Fa-holomorphic (i.e., the maps f(., y) and

f(x, .) are Fa-holomorphic for all x E U 1 and y E U2).

Proof. This can be reduced immediately to the classical theorem by
testing with continuous linear functionals and pairs of holomorphic
curves. 0

It should be mentioned that a coo-open subset of E lx E2 need not
be open in i°Eix C°°E2 except when one factor is finite dimensional!

It can be deduced easily from this theorem that a function on
a product is Fa-holomorphic iff its associated function into the function

space of Fa-holomorphic maps defined on the second factor and supplied
with the Ic-topology of pointwise convergence is Fa-holomorphic. But
the problem with this topology is that the hom-space is not f-complete,
and hence not internal. So we have to find an lcs-topology on this func-
tion space which is coo-complete and for which the same exponential
law is true. The existence of such a structure (proved in 2.14) will

show that two lcs may have the same holomorphic structures, in the
sense that the identity is Fa-holomorphic in both directions, but not
a bornological isomorphism. See also the example (1.4).

Let us next inspect the G-derivative of Fa-holomorphic maps
more closely.

2.4. Proposition. Let E and F be Ics, U coo-open in E and f : U -&#x3E; F

a Fa-holomorphic map, then f’ : 1JxE + F is Fa-holomorphic and C-
linear in the second variable.

Proof. As in the smooth case we consider the coo-locally defined Fa-

holomorphic map 0,, z, v) 1-+ z + kv. By (2.3) the composition with f
is holomorphic and hence so is

The C-linearity is already a consequence of G-holomorphy (1.2). 0

Now let us show that this proposition breaks down if we assume
U to have only open inverse images under holomorphic curves :

2.5. Example. There exists a Fa-holomorphic map defined on a

(non cOO-open) subset that has open inverse images under holomorphic
curves and the derivative of f is not Fa-holomorphic any more. Let
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and f : U -&#x3E; C be defined by

Let us show first that U is open in the sense mentioned above

although it is not open in C2 and furthermore that f is Fa-holomorphic :
For this let c : D -&#x3E; C2 be a holomorphic curve. If c (0) E U1 B {0} 
(resp. U2) then it is obvious that c E U1 (resp. U2) locally. This shows at
the same time that in these cases f o c is locally holomorphic.

So suppose now that c (0) = 0. If at least one coordinate of
c is locally identical to 0, then c lies on one ax is, hence is locally
in U and f o c = 0 is locally holomorphic. So it remains to consider the

case where

with x and y holomorphic and unequal to 0 at 0, say

Since the zeros of a holomorphic curve are isolated we conclude that

x(k)# 0 locally for k # 0. On the other hand

since

Hence c(X) E Ul locally for X 1 0 and f o c= 0 is holomorphic.
Now let us show that the derivative is not Fa-holomorphic any

more : It is easy to see that

and

where

Hence the derivative along the x-a)xis k l- (k , 0) in direction (v, w) =
(0, 1) is k l-&#x3E; l/ k for k # 0 and 0 for X = 0. This is obviously not holo-
morphic. 0

A central result is the following :

2.6. Theorem. Let f be a multilinear map between c°°-complete lcs,
then :

(1) f is Fa-holomorphic
=&#x3E; (2) f is bounded on images of compact sets under holomorphic

curves

=&#x3E; (3) f is bounded.

Proof. Let first f be linear, and restrict furthermore to the situation
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where E is a Banach space and F = C. Then this proposition is due to
[ Sebastiao e Silva 53]:

(1 3) Let f be a Fa-holomorphic non-bounded (i.e., non-continuous)
map, then there exist xn -&#x3E; x ( = 0 without loss of generality) with

I f(x J - f (x))  e ( = 1 without loss of generality). The sequence n!(xn-xn-1)
is bounded (by using a subsequence and x-1 := 0), hence

is an entire curve into E. (Use (1.5) and an/n! -&#x3E; 0.) Since f o c has to
be holomorphic it admits a description

On the other hand

(by the linearity of f). Hence

contradiction.

(3 =&#x3E; 2) is trivial.

(2 =&#x3E; 1) Let c : D -&#x3E; E be holomorphic, then

is holomorphic, hence

is locally bounded. Therefore

i.e., f 0 c is holomorphic and (f 0 c)’ (0) = f (c’(0)).

Now let E and F be arbitrary : Since scalarly bounded sets are

bounded it is enough to show that £ 0 f is bounded. Since Eborn is

ultrabornological (Eborn= limg EB and the EB can be choosen to be Banach

spaces since E is c -complete) it is enough to show that e, o f is

bounded on Banach disks, i.e., e o fl EB : EB-&#x3E; C is bounded. But since E

is assumed to be a Banach space this is a consequence of the special case.

Let us now show it for multilinear maps (or use the fact that all

three statements can be checked in each variable separately (2.3)) :
(1 =&#x3E; 3) Let f be Fa-holomorphic =&#x3E; f is partially Fa-holomorphic

=&#x3E; f is partially bounded, i.e., f(Z1, ..., zi , ..., zn) is bounded in zi
(2.6)
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for all the other coordinates fixed. This implies that f is bounded. (The
map 

is a bounded multilinear map into B(En, F), the space of bounded linear

maps with its pointwise convergence, but since En is e°°-complete this
gives the same bornology as the uniform convergence on bounded sub-

sets, hence f is bounded (cf. [Kriegl 82] ] and [Kriegl 83] ).)
(3 =&#x3E; 2) is again trivial.
(2 =&#x3E; 1) since a bounded linear map commutes with the formation

of difference quotients and M-limits, it is Fa-holomorphic. 0

Remark. The example (1.4) shows that unlike the smooth case it is
essential to have some kind of completeness of the lcs under considera-

tion. This is another reason for assuming all spaces to be c°°-complete.
Nevertheless it has to be mentioned that f-completeness is still

a concept stronger than necessary for the preceding theorem. The above
proof works if E were such that its bornological coreflection E born
is ultrabornological (e.g., E is ultrabornological) and F could be totally
arbitrary.

A consequence of this theorem is :

2.7. Proposition. The category of Fa-holomorphic maps between coo-
complete lcs is equivalent to the category of Fa-holomorphic maps bet-
ween c -complete bornological les. Hence every categorical internal
statement we prove for the first category is equally true for the second.

Proof. The functors that provide the equivalence are the inclusion func-
tor and the bornological coreflection ( )born (cf. [Jarchow 81, p. 276]

under the name ( )bor ). One composition is just the identity, the other
is only a change of topology leaving the bornology and hence the holo-
morphic curves unchanged. 0

Here we should mention some facts on holomorphic functions bet-
ween Banach spaces that show that G-holomorphy is much closer to

holomorphy than is true for the relationship of real G-differentiability
to smoothness :

2.8. Proposition. L et E and F be Banach spaces, U be an open set in
E and f : U -&#x3E; F be a map, them

(1) f is Fa-holomorphic
=&#x3E; (2) f is G-holomorphic and continuous
=&#x3E; (3) f is G-holomorphic and locally bounded
=&#x3E; (4) f is G-holomorphic and at every point the first derivative

ts bounded

=&#x3E; (5) f is locally a convergent series of homogeneous continuous
pol ynom ials

=&#x3E; (6) f is C-Frechet differentiable
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=&#x3E; (7) f is G-holomorphic and in every component of U there is

at least one point where all G-derivatives of f are continuous multilinear.

Proof. (1 +4) (due to [Sebastiao e Silva 53 ]). Since f is Fa-holomorphic
so is its derivative (2.4) and by (2.6) it is bounded.

(4 =&#x3E; 5) (due to [Zorn 46]). By (1.7) and the assumption z l-&#x3E; f’(z)
is G-holomorphic and therefore

is bounded, which shows that all derivatives are bounded. The rest follows
from (1.10.3).

(5 =&#x3E; 2) (due to [Taylor 37]). From (5) it can be concluded by a
Baire category argument (cf. [Dineen 81, p. 68J) that these polynomials
are locally uniformly continuous, and hence the corresponding series con-
verges uniformly on this nbh (use (1.10.3)) and represents therefore a
continuous map.

(2 =&#x3E; 6) is first mentioned in [Graves 35J and first proved in

[ Taylor 37].
(3 =&#x3E; 6) is due to [Hille 48J.
(6 1 ) is the chain rule for Frechet-differentiable maps.
(2 =&#x3E; 3) is obvious for normed spaces.
(3 =&#x3E;4) by the representation of f’ as an integral in terms of f

(1.10.1).
(2 =&#x3E; 7) (due to [Zorn 45 J). He considers the set

Uo := {z E U l f is locally bounded around z} 

and shows that this set is open and closed in U. 0

2.9. Definition. It is therefore reasonable to use the term holomorphic
instead of Fa-holomorphic for maps between Banach spaces.

This generalizes immediately to :

2.10. Proposition (For parts see [ Pizanelli 72 1 and [Colombeau 82]). L et

E and F be c°° -com plete lcs, U be d’ -open in E and f : U -&#x3E; F a

map, then :

(1) f is Fa-holomorphic
=&#x3E; (2) for all e E E’ and B a Banach disk the map 9, o f lEB : EB -&#x3E; C

is holomorphic
=&#x3E; (3) f is G-holomorphic and cOO-continuous
Ç=7 (4) f is G-holomorphic and bounded on b-compact subsets
=&#x3E; (5) f is G-holomorphic and at every point the first derivative

is bounded
=&#x3E; (6) f is c -locally a convergent series of homogeneous bounded

polynomial
=&#x3E; (7) f is G-holomorphic and in every coo-component of U

there is at least one point where all derivatives are bounded multilinear.
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Proof. (1 =&#x3E; 2) By (1.6) every holomorphic curve is locally holomorphic
into some EB and by (2.2) it is enough to test with functionals.
Hence all these statements can be reduced to corresponding ones about

Q,o f l EB . Now the equivalences follow , from the corresponding ones

in (2.8). 0

Remark. The last equivalence can be reformulated in the following way :
The set of points in a c°°-open set where a G-holomorphic function is

locally Fa-holomorphic is c°°-clopen. And the same is true for the lcs

topology instead of the c°-topology (cf. [Pizanelli 72]), since an open
connected set is c°° -connected (qua polygonially connected (use radial

nbhs)).

In the real case the finest lcs topology coarser than the topology
generated by the smooth curves is the bornological coreflection. It
is perhaps surprising that this remains true for holomorphic curves

even though they generate a weaker topology than the smooth curves.

2.11. Corollary. Let E be a c°°-complete lcs. Let us denote by hE

the final topology with respect to all holomorphic curves c : D-&#x3E; E .
Then the finest lcs topology coarser than hE is just the bornological
coreflection of E.

Proof. Given a topology on a vector space E with the property that

the vector operations are separately continuous (as it is the case with

hE), then there exists a finest lcs topology coarser than this topology.
A 0-nbh basis is given by all open absolutely convex sets. As an lcs-

topology it is initial with respect to the continuous linear functionals,
which have obviously to be continuous for the given topology. So consider
the initial topology generated by all linear functionals continuous for
the given topology. This is a coarser lcs-topology but has to be finer
than the finest locally convex one. Hence it is the finest one.

It only remains to show that the linear functionals continuous
with respect to hE are the bounded ones. This follows from (2.6). 0

There is a difference to the smooth case. Namely it is important
that the lcs under consideration be c°°-complete. Otherwise the conclu-
sion is wrong as example (1.4) shows.

And there is another important difference. The topology of every
real Frechet space is final with respect to the smooth curves. This is
no longer true for complex lcs and holomorphic curves (see example
(2.5) and also [Ancel 83] for a similar statement).

We now want to provide another tool for carrying over the real

theory to the complex case. The main clue consists in the equivalence
of Fa-holomorphy to smoothness between the associated real vector

spaces plus an algebraic condition, which amounts to saying that the

Cauchy-Riemann equations should be fulfilled. We will follow this

approach, since it stresses the fact that holomorphy is only an algebraic
refinement of smoothness, and since that way we are not bored by
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recycling proofs of the real theory. Of course, in doing so we will
make strong use of the theory already developed for smooth functions
(cf. [Kriegl 82 and 83]).

Let us start right away :

2.12. Theorem (cf. [Nachbin 74, p. 71]). L et E and F be COO -complete Ics,
U be coo-open in E , and f : U -&#x3E; F a map, then :

(1) f is Fa-holomorphic
=&#x3E; (2) f : ER Z U -&#x3E; F R is smooth and f’(z) is C-homogeneous

for all z.

Proof. (1= 2) Let c : D + U C E be holomorphic =&#x3E; c is smooth and

c’(z) is C-linear (1.2). Hence f o c is smooth and

is C-linear as composition of two C-linear maps, i.e., f o c is holomor-

phic (1.2).
(1 =&#x3E; 2) By [Kriegl 83, Chapter 3J it is enough to show that all

real G-derivatives exist and are e-continuous : But since f is G-holomor-

phic they have to exist (1.10), and they are c°°-continuous (2.10.2) since
they are Fa-holomorphic (2.4) as well. 0

Now we are able to prove the chain rule for Fa-holomorphic maps :

2.13. Theorem (Chain rule). L et E, F, G be c9’-complete lcs, U and V
be c°°-open in E and F, f : U -&#x3E; V C F and g : V - G be Fa-holomorphic
maps, then g o f is Fa-holomorphic and

Proof. Since f and g are Fa-holomorphic, they are smooth between the

underlying real Ics, hence the chain rule follows from the correspond-
ing one for smooth maps (cf. [ Kriegl 831 ). 0

As a consequence we can prove the exponential law for the

category of Fa-holomorphic maps :

2.14. Theorem. The category of Fa-holomorphic maps betB-veen c°°-
-complete lcs is cartesian closed.

Proof. We consider H(E, F), the space of Fa-holomorphic maps from E
to F, as an lcs-subspace of C°° (ER, FR) defined in [Kriegl 83]. It is

obviously closed, since it is defined by the algebraic equations

Therefore H(E, F) is coo-complete if F is.
Now we have to show that for a map f : E1 x E2 -&#x3E;, F the following

are equivalent : f : Ei x E2 -+ F is Fa-holomorphic =&#x3E; ft: El -+ H(E2 , F)
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exists as a Fa-holomorphic map.
(1 =&#x3E; 2) f (z) - f(z, .) is holomorphic, hence rt has values in the

right space and is smooth as such. Furthermore (fT)’(z) = (a1 f) T (z)
and is therefore C-linear. Hence ft is Fa-holomorphic by (2.12).

(1 = 2) Since ft is Fa-holomorphic it is smooth into H(E2, F)
and hence into C OO(E2, F). Therefore f is smooth on the product.
Furthermore since the derivative of f is just the sum of its partial
derivatives and

it is C-linear. 0

See [Kriegl 83] for several results that follow quite easily
from this, e.g., that the composition map is Fa-holomorphic.

For the next theorem we have to define FV for every 0-nbh V in
the lcs F (cf. [Jarchow 81, p. ]). With Fv one denotes F modulo the
kernel of the Minkowsky functional on V. Supplied with this functional

Fv is a normed space. 

2.15. Theorem [Colom bea u 74, p. 146]. L et E and F be c -complete
les, U be c"-open in E and f : U -&#x3E; F be a map, then :

(1) f is Fa-holomorphic
=&#x3E; (2) f is Silva holomorphic in the extended sense (after [Sebastiao

e Silva 57]), i.e., for every Banach disk B and 0 -nbh V , the map f IE B:
EB -&#x3E; Fv is locally holomorphic between normed spaces

=&#x3E; (3) f is G-bolomorphic and continuous from c°°E into c°° *F
=&#x3E; (4) f is Silva holomorphic with respect to the bornology formed

by the b-com pact subsets of E , i.e., for every b-com pact disk B

there is another one K such that fl E B: EB -&#x3E; FK is holomorphic.

Proof. This was proved in [Colombeau 74, p. 146] under the assumption
of sequential completeness. Let us sketch how to obtain the same

result for c"-completeness.
(1 =&#x3E; 2) is obvious.
(2 1) Use property (2) in (2.10) and define V:= £-1 (D) for the

linear functional 9, we test with. Then Fv = C and the projection F + Fv
is just Q .

(3 =&#x3E; 1) since cooF -+ F is continuous.
(1 =&#x3E; 3) since f is R-smooth, hence carries the generating family

of c°° E into the generating family of c°° F.
(1 =&#x3E; 4) since by (2.12) we have to consider only R-smooth func-

tions for which this was proved in [Kriegl 83, § 3]. 0

We have used coo-completeness so far without giving definite reasons
for doing so. Now we will show that this is really the appropriate
concept :
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2.16. Theorem. L et E be an lcs, then :

(1) E is coo-complete
=&#x3E; (2) E is h-closed in every lcs it is contained
=&#x3E; (3) every holomorphic curve c into a surrounding lcs having

all c (n)(o) E E lies completely in E (and is therefore holomorphic into E )
=&#x3E; (4) every power series E°° 0knan with aIl an e E that converges

scalarly (i.e., the images of the finite subsums under linear continuous
functionals converge in C) converges in E (and defines therefore a holo-
morphic curve) 

=&#x3E; (5) L et bn be bounded in E , then EN-OX bn converges in E
for all X e D (and defines therefore a holomorphic curve into E ).

Proof. (1 =&#x3E; 2) since E is coo-complete iff it is c°°-closed in every lcs
it is contained.

(2 =&#x3E; 1) Let xn be Mackey-convergent towards x with xn E E and

x E F. Then by choosing a subsequence we might assume that 2ne3n(xn+1 -xn)
is bounded. Now consider

where cn M := cos(3nÀ) is an entire map. This series converges in F

(that can be assumed to be f-complete) since

And we call the limit c (X). Furthermore since cnCni 3-k/2) - 0 for

n ? k we have that c (TTi-k/2) E E. Finally from (2) we conclude that

x=c(0) E E.
(1 5) is Lemma 1.5.
(5 =&#x3E; 4) Let E°°n=0 knan be scalarly convergent, i.e., E°°n=.kn e (an)

is convergent in C. Hence Z (rn an) is bounded for all 0  r 1 by
(1.5), and therewith so is rnan . Therefore by (5) the series converges
in E for k  r l.

(4 - 3) Let c be holomorphic into F (without loss of generality
coo-complete), then

and by assumption c (n) (0) E E. Now e, o c converges and hence by (4)
the sum converges in E, i.e., c (D) C E.

(3 =&#x3E; 1) Let xn be Mackey-convergent towards x with xn E E
and x E F which can be assumed to be (c°°-) complete without loss of

generality. Then without loss of generality n!(xn+1- xn) is bounded, hence

represents a holomorphic curve c in F. Since c (n) (0) E E it follows
from (3) that x = c(l) E E. V
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2.17. Remark. There are natural statements similar to the ones above

but slightly weaker like :

(1’) Every curve c : D-&#x3E; E which is holomorphic in a surrounding
lcs F has all derivatives in E (and is therefore holomorphic into E).

(2’) Let c : D -&#x3E; F be a holomorphic map in a surrounding lcs, with
CIDE(0)) C E, then c (0) E D.

(3’) Every holomorphic curve c in E has an antiderivative.
(4’) Every scalarly holomorphic map (curve) is Fa-holomorphic.
Furthermore there are three important properties that depend

also on some form of completeness :
(6) Let f be linear and commuting with convergent power series,

then f is bounded.

(6’) Let f be linear and Fa-holomorphic, then f is bounded.

(6") Every Fa-holomorphic map with domain in U is R-smooth.

All these statements are true under the assumption of c°°-com-

pleteness :

(1 =7 1’) since the derivatives are M-limits of certain difference-

quotients.
(2 =&#x3E; 2’) is trivial since C-1 1 (E) is closed.

(1’ =&#x3E; 2’) Let c : D -&#x3E; F be holomorphic with c (k) E E for all k # 0,
then Cl (À) := kc (k) is holomorphic, and has values in E. Hence by (1’),
Ci(0) = c (0) c E.

(2’ =&#x3E; 1’) Let c: D - E C F be holomorphic, then

is holomorphic, and c1 (DB{0})C E. Hence C’(0) = c1(0) E E by (2’).
(3 =&#x3E; 3’) Let c : D -&#x3E; E be holomorphic, consider an antiderivative Cl

in the completion of E. Then

(by assumption). Hence c 1(0) C E by (3).
(2’ =&#x3E; 4’) Let c be scalarly holomorphic, then c is holomorphic into

the completion. Then c is holomorphic into E, since c(n)(D) E E by (2’).
(4’ =&#x3E; 2’) Let c be holomorphic into a surrounding lcs F with

values in E, then by the Hahn-Banach Theorem c is scalarly holomorphic.
Hence c is holomorphic into E by (4’), and therefore e(n)(0) , E.

(1 =&#x3E; 6’) was shown in (2.6) and is true for ultrabornological spaces
instead of c°°-completeness.

(6 =7 6’) since there are more Fa-holomorphic curves then conver-
gent power series.

(6’/B1’ =&#x3E; 6) since in this case every Fa--holomorphic curve defined
on D is a convergent power series.

(6’ =&#x3E; 6") since the proof of (2.12) and all other necessary results
are still valid under this assumption.
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But unlike the case of R-smooth maps they do not characterize
ccc -completeness. And indexed we give now an example that proves all
these properties (together) being strictly weaker than c°°-completeness :

2.18. Example. There exists a non c"-complete lcs E that nevertheless
fulfills (1’), (2’) (3’), (4’), (6’) and (6"). Let

as subspace of CN. Since E includes the finite sequences it is M-dense in
CN hence not c°°-complete.

Now let us consider a curve c : D -&#x3E; E that is scalarly holomor hic.
Then all prn 0 c =: en are holomorphic. Suppose A := { n I en t 0 has

density 1 0. Let 
, , 

If n E A then Z, is finite. Hence UnE AZN is countable. Let X. E 1 2 DBUZn
n

Then cn (ko) # 0 for all n E A, which is a contradiction to c (k0) E E.
This shows that (4’) (=&#x3E; (1’) =&#x3E; (2’)) as well as (3’) is fulfilled.

Since E is ultrabornological as has been proved by Valdivia (6’)
is true, and together with (1’) this implies that (6) is true.

It should be mentioned that there is a relationship to T(aylor) S(eries)
completeness as defined in [Dineen 81, p. 128]. He calls a topology T on
H(U, F), for E and F lcs and U balanced open in E, TS-complete iff
for every sequence of continuous n-homogeneous polynomials Pn for
which Zn°°=0l pn l q  °° for every T -seminorm l lq the series E°°n n= 0 Pn

converges to an element in H(U, F).
Let us show now that : H(D, F)co is TS-complete =&#x3E; F is e-com-

plete. First mark that (continuous) n -homogeneous polynomials from C
into F are exactly h /+ Anan- And the seminorms in the co-topology are

with 0  r  1 and q a seminorm of F. Hence

iff l rn l) is bounded for all 0  r  1, i.e. rrial is bounded.

Hence the TS-completeness is equivalent to (3) (=&#x3E; e-complete).

We will now give reasons why Fa-holomorphy behaves better than
other concepts of holomorphy. Let us first mention those different

concepts we are going to discuss :

2.19. Definition. (1) S-holomorphy in the restricted sense (after [Sebas-
tiao e Silva 56]), i.e., G-holomorphic and b-locally bounded. (That is

for every B and z there exists an c &#x3E; 0 such that f (z + E B) is bounded.)
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For this concept see especially [ Colombeau 82 and 74] and [Lazet 73J.
(2) Hy-holomorphy (cf. [ Dineen 81, p. 60J), i.e., G-holomorphic

and continuous on compact subsets.
(3) T-holomorphy (after [Taylor 37] , cf. [Zorn 45 ] and [Pizanelli

721), i.e., G-holomorphic and continuous in the lcs-topology. For

this concept see e.g. [Dineen 81] under the name of holomorphy.
(4) H-holomorphy (after [Hille 48]), i.e., G-holomorphic and locally

bounded.

2.20. Remark. As we have already stated in Theorem (2.8) in Banach

spaces these concepts are all equivalent to Fa-holomorphy. But in gen-
eral they are all different, although we obviously have the simplications

(for (H =&#x3E; T) see [Dineen 81, p. 59]). Examples that the converse direc-
tions are wrong can be found at the following sources (for this and
what follows let E and F be coo-complete lcs, U an open subset of E
and f: U -&#x3E; F a map ; let us furthermore denote with kE the topology
generated by the compact subsets of E) :

(Fa,T =&#x3E; S) [Colombeau 82, p. 100] .
(F a,S:=:; Hy) Use an lcs E for which kE = E but E born # E like a

strong dual of a non-Schwartz Fr6chet-Montel space. Then E -&#x3E; E born
provides an example.

(Hy ==7 T) [Pizanelli 72] Take any bi-linear bounded non-continuous

map.
(T :::7 H) [ Pizanelli 72] Use the identity on non-normable space ;

or see [Bochnak &#x26; Siciak 71, p. 98] for a map

where f : e2 -&#x3E; C is a holomorphic map that is not bounded on the unit

ball, like f(x) := E nxn.
(S ==7 T) Use the counterexample to (Fa =&#x3E; T) and the fact that

(S =&#x3E; Fa) for codomain spaces with countable base of bornology [Co-
lombeau 82, p. 91].

Let us mention the most important cases where some of these

concepts coincide :
(H =&#x3E; T) for F normed [ Dineen 81, p. 58] .
(T =&#x3E; Hy) if E = kE, as is the case for duals of Fréchet-Montel

space or metrizable lcs.

(Hy ++Fa) if kE = C°° E, as is the case for duals of Frechet

Schwartz spaces or strict LF-spaces.
(H =&#x3E; S) for E normed (trivial).
(S =&#x3E; Fa) if F has a countable base of bornology [ Colombeau

82, p. 91] .

2.21. Remarks. The counterexample for ( T =&#x3E; H) shows already that
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H-holomorphy is definitively not a good concept, since these maps do
not even form a category.

Although the other classes do form categories they still have
severe drawbacks, and most of the special situations where some of
the theorems were proved to be still valid are those where the spaces
under consideration force these concepts to be equivalent to Fa-holo-

morphy :
The most common used concept is that of T-holomorphy. But. as in

the case of real smooth functions it has essential disadvantages, since

many naturally occuring maps are multilinear and bounded (hence Fa-
holomorphic) but not continuous (hence not T-holomorphic). The
most important example of such a situation is ev : E’xE -&#x3E; C. For non-
normable E there does not exist an lc-topology on E’ making ev cont-
inuous. This shows at the same time that Hartogs’ Theorem cannot

be true for this class in full generality since obviously ev is separately
continuous and linear, hence separately T-holomorphic (even H-holomor-
phic) but not T-holomorphic. And consequently it is not possible to
achieve cartesian closedness for such a category.

That the points where a G-holomorphic map is locally T-holomor-
phic is not closed can be seen as follows [Pizanelli 72J : Let f :e 2 -&#x3E; C
be a holomorphic map that is not bounded on the unit ball and

be defined on C(N) x e2, then g is G-holomorphic and continuous on

a 0-nbh but not on the whole space.
That the continuity of the derivatives of a G-holomorphic map

is not sufficient to imply T-holomorphy of the map can be easily seen
as follows. Take an arbitrary Fa-holomorphic map defined on a bornolo-

gical lcs. Then at every point the derivative is continuous. But the map
need not be T-holomorphic.

Now one possibility to get rid of at least some of these drawbacks
is to use the concept of S-holomorphy as it has been studied in [Lazet
73]. There multilinear bounded maps are S-holomorphic. But for
normed domain spaces this is obviously equivalent to the bad behaved

T-holomorphy.
Furthermore one has the following counter-examples. Most of

them are also counter-examples for T-holomorphy :
- In [Colombeau 82, p. 125]) a counter-example was given that

shows that Hartogs’ Theorem is no longer true : Let

Then f is G-analytic, separately S-holomorphic but not locally bounded.
But, in [Lazet 73, p. 26J it was proved that the theorem is true if
the codomain has a countable base of bornology (but this implies already
Fa-holomorphy).

- In [Colombeau 82, p. 121J a counter-example is given that Zorn’s
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first Theorem is false in this setting : Let tn be a strictly increasing
sequence in [0, 11,

and finally

Then F is G-analytic and bounded in a 0-nbh, but not bounded in any
nbh of t l-&#x3E; 2. In [Lazet 73, p. 28J it is proved that the theorem becomes
true if the codomain has a countable base of bornology (but then S =&#x3E; Fa).

- Furthermore [Colombeau 82, p. 100] showed that the derivative
f’ : U -&#x3E; B(E, F) of a S-holomorphic map f need not be S-holomorphic
any more (although the derivatives f (n) : UxEx ...xE -&#x3E; F are).

- Finally it is still not possible to test the holomorphy via the
continuous linear functionals [ Colombeau 82, p. 117] , since any Fa-

holomorphic map into an lcs with countable base of bornology (like C)
is already S-holomorphic.

It is important to mention that the concept of S-holomorphy
depends only on the bornology of the domain space and is quite easy
to generalize to convex bornological spaces (cf. [Lazet 73J). The
above examples show that if we are concerned with maps between lcs,
then it is not a good idea to use for S-holomorphy the von Neumann

bornology. If one uses instead the bornology of b-compact subsets,
then one obtains exactly Fa-holomorphy. Or more general : S-holomorphy
in the extended sense is equivalent to S-holomorphy on the associated
Schwartz cbs [Colombeau 82, p. 90J.

Another possibility to get rid of these disadvantages is to use

the concept of Hy-holomorphy. This corresponds to the differential
calculus developed in [Seip 79 and 81J for maps between real lcs using
the continuity of all derivatives on compact subsets. Since we do

not know any non trivial example of a Fa-holomorphic map between
bornological lcs that is not Hy-holomorphic we cannot decide which

of the nice properties of Fa-holomorphic maps fail to be true for Hy-
holomorphic ones (cf. [Colombeau 82, p. 425]).

Let us describe a bit the problems in finding counter-examples
to this equivalence :

First we want to prove that Hy-holomorphy for bornological lcs
is equivalent to G-holomorphy + boundedness on compact subsets (for
a counter-example in non-bornological lcs, cf. [Dineen 81, p. 61]). So let
f be G-holomorphic and bounded on compact sets ; then the same is
true for f’, since

For fixed v and compact K the set
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is compact as well, and therefore { f’(z)v z E K} is bounded. Now
consider

Since ( t, x, y) l-&#x3E; x + t(y-x) is continuous,

is compact and therefore f’ is bounded on this set. Hence f’(x + t (y-x))}
is equicontinuous. Let now V be an arbitrary closed disked 0-nbh in

F, then there is a 0-nbh W in E such that (f’(x + t(y-x)) W C V. Therefore

i.e., f is continuous on K.
Now one reason for the above mentioned difficulties is that every

Fa-holomorphic (hence bounded) polynomial is Hy-holomorphic (since
it is obviously bounded on compact sets as well). Another reason is
that (2.2) is equally true for Hy-holomorphic mpas : Let t . f be

Hy-holomorphic for all L, then e (f (K)) is bounded for all compact K,
hence f(K) is bounded for all compact K and by the statement above
is f Hy-holomorphic.

Now Fa-holomorphy is equivalent to G-holomorphy + continuity
on car, and Hy-holomorphy is per definition equivalent to G-holomorphy +
continuity on kE. Hence if c°°E = kE (like in a metrizable space), then
Fa-holomorphy and Hy-holomorphy coincide.

The easiest example with c°°E # kE is a uncountable product Cr.
But for this space the Fa-holomorphic functionals are continuous trölicher
&#x26; Kriegl 83J and therefore Hy-holomorphic, i.e., Fa-holomorphy and
Hy-holomorphy are equivalent for such a domain space as well.

The other class of spaces we know with c-E i kE are the duals
of non-Schwartz Fr6chet-Montel spaces [ Frolicher &#x26; Kriegl 83].
But [Dineen 77, p. 163 conjectures that for such spaces again Fa =&#x3E; Hy,
and for the standard example of such a space (cf. [Jarchow, p. 233])
he even proved this.

3. REMARKS ON CONVENIENT BORNOLOGICAL VECTOR SPACES.

The "natural reflexiveness" E = E’x of certain Schwartz spaces
plays an important role in holomorphy (see [Colombeau 82]). In this

section we point out that this external (ad hoc) reflexiveness is

equivalent in our setting to a canonical reflexiveness: E = E**, where
E* = [E, cJ is the dual space with respect to an internal hom functor.
The background to be provided for this is relevant also for the next

section.

We have seen in the preceding sections that Mackey complete
bornological separated locally convex C-vector spaces (henceforth called
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convenient locally convex spaces) provide a useful setting in which to

pursue the study of holomorphy. Let CLC denote the category formed
by these spaces and continuous linear maps between them. As is well

known, a linear function u between such spaces is bornological (i.e.,
carries bounded sets to bounded sets) iff u is continuous. Moreover, in
2.6 we saw that u is bornological iff u is Fa-holomorphic. Thus the categ-
ory CLC emerges as the meeting point of a number of important
concepts. We elaborate on this in the remainder of the paper, building
larger categories with canonical formalisms also for non-linear bornolo-

gical maps and for non-linear Fa-holomorphic maps, but whose linear

parts coincide with CLC.

Let us begin by recalling the isomorphism between CLC and
a certain category of bornological vector spaces. Borno will denote the

category of bornological spaces and bornological maps (sets structured
with postulated bounded subsets and functions which preserve bounded-
ness). The scalar field K (real or complex) carries the obvious bornology,
so the vector operations are bornological maps. One now forms in the
usual way the category B V of bornological K-vector spaces and its

subcategory SBV of functionally separated BV -spaces (i.e., spaces
having enough bornological linear functionals to separate points ;
such spaces are called regular in [Hogbe-Nlend 77]). Note that "subcateg-
ory" means "full subcategory" in this paper. Important among SB V -spaces
are the canonical function spaces e°° (X ; E) (X E Borno , E E SBV )
formed by all bornological maps f : X -&#x3E;E and carrying the natural

bornology.
By a convenient bornological vector space [Nel 84b] is meant a

Mackey closed bornological vector subspace of some canonical function

space e°° (X ; K). The category CBV of these spaces is fully embedded
into the category of complete SBV-spaces which plays a prominent role
in [Hogbe-Nlend 77]. The essential difference between CBV and

complete SBV -spaces lies in the fact that every CBV space carries
the initial bornology induced by its linear functionals. This has far

reaching consequences, as the following shows.

3.1. Theorem [Nel 84c]. The ca tegories CL C and CB V are isomorphic. 0

The isomorphism 3.1 facilitates the study of CL C in several ways.
To begin with, it provides a simple way of seeing that CLC is a

nice category. This is not readily established directly : the genesis
of CLC makes it a reflexive subcategory (Mackey complete) of a co-

reflective subcategory (bornological) of a reflective subcategory (separ-
ated) of LC:= {locally convex spaces}. Thus neither its limit not its
colimit constructions are in general formed as in the parent category
LC (where this is simple) and the latter does not even have the wanted
internal hom spaces [ E, Fl. The genesis of CBV on the other hand is
in a sense prototypical of how "nice" categories for functional analysis
are formed. Let us elaborate on this, since it will serve also as

preparation and motivation for the parallel holomorphic enrichment of
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CLC to follow in Section 4.

Let XV be a category of K-vector spaces, formed over some cart-
esian closed topological category X in the usual way : X-spaces struc-
tured with vector operations which are X-maps and so on. Such
XV are extremely nice categories (see properties 1.0 through 1.15 in

[Nel 84b]). A subcategory F of such XV is called a functional analytic
category if : (1) the scalar field K lies in F , (2) F is reflective, and
(3) the canonical function spaces [X ; E] (spaces of all X-maps X - E)
lie in F whenever E does. Two features are noteworthy. Firstly, all
the mentioned categorical properties of XV are inherited by functional

analytic subcategories except possibly the creation of regular factoriza-
tions by the underlying functor XV -&#x3E; X. Secondly, one readily forms
new functional analytic categories out of given ones by application of
the following result.

3.2. Upgrading Theorem [Nel 84b]. Suppose F is a functional analytic
subcategory of XV and M is a class of monomorphisms in F which cont-
ains all kernels, is preserved by all functors [X ; ] and is closed under

compositions, intersections and preimages. Then the subcategory FM of
all E which admit an M-map E -&#x3E; [X ; K] for some X is again a

functional analytic subcategory and every canonical map p E : E -&#x3E; E**

belongs to M. 0

As a standard application we may take F to be all of XV , M
to be the "upgrading class" of all monomorphisms. Then FM is nothing
but the subcategory SXV of all functionally separated XV-spaces. Thus
in particular, the above category SBV of separated bornological vector
spaces is functional analytic. But now we can upgrade it further by
choosing 

M ={Mackey closed bornological embeddings}

as upgrading class. This has the properties required of M [ [Nel 84b].
The upgraded category FM is by definition nothing but CB V , and
so the latter is functional analytic too.

A second way in which CB V facilitates the study of CL C arises
from the fact that all cartesian products, all projective limits, all co-
tensor products [X ; K] (= e°° (X ; K) here) and all internal hom spaces
[E, F] are formed precisely as in the parent category BV , where they
are transparently simple. For example, [E, F] just carries the natural

bornology, but to describe the structure of its counterpart in CLC
in Lerms of semi-norms or 0-nbhs is rather complicated.

A third way in which CB V facilitates the study of CLC stems
from the long known fact that for certain purposes bornology provides
a more natural setting than topology, as the studies in [Hogbe-Nlend
77 ] and [Colombeau 82 ] convincingly show. Let us recall in this
connection the internal and external exponential laws [ Nel 84b]
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(applicable to all X in X and all E, F and G in a functional analytic
F C XV ) :

In the case of CBV these laws provide a canonical formalism particularly
favorable for the study of integration spaces. In fact, the external exp-
onential laws can be written in more suggestive notation as

where the functors e1 and £00 generalize the ones familiar from Banach
space theory. By using these laws, one derives generalized Riesz repre-
sentations

(see [Nel 84c] for background and further references). These results are
not as readily proved in the topological context of CLC-spaces.

Let us now consider how the external duality

(studied in [Hogbe-Nlend 77J) relates to the intrinsic duality based on
the canonical dual spaces E* in CB V. Recall that for a given LC-space
E, the external dual E’ is defined to be the SBV-space formed by all
continuous linear functionals on E and endowed with the equicontinuous
bornology : polars V° of 0-nbhs are the basic bounded sets. For SBV-

spaces F the external dual FX is the LC -space formed by all bounded
linear functionals and equipped with polars B° of bounded B C F as its
basic 0-nbhs. Recall also that under the isomorphism (3.1), a CLC-space
E is transformed into a CBV-space by taking the usual von Neumann

bornology and that E* carries the natural bornology.

3.3. Proposition. For a CL C--space E the external (bornological) dual
E’ carries the same bornology as E*, with E transported to CB V
via 3.1. For a CB V-space F the external (topological) dual F" has
the same bounded sets as F* . Hence for CB V-spaces, pE : E - E** is an

isomorphism iff E = E’x.

Proof. For A C E’ we have (taking E as CBV-space when calculating
E*) the following implications. A is bounded in E* =&#x3E; for all bounded

B C E, A(B) is bounded = A° is a bornivorous disk in E - A° is a
0-nbh in E =&#x3E; A°° is bounded in E’ =7 A is bounded in E’. Conversely,
for a subset H of E’ we have : H is bounded in E’ =&#x3E; H C V° for some
bornivorous disk V in E =&#x3E; H(B) is bounded for all bounded B C E
=&#x3E; H is bounded in E*. It follows that E’ and E* carry the same

bornology. For a CBV-space F and H C Fx we have : H is bounded in
Fx =&#x3E; for every bounded B C F, B° absorbs H ++for every bounded
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B C F, H(B) is bounded =&#x3E; H is bounded in F*. This shows that Y and
F* carry the same bornology. 0

Thus for convenient bornological vector spaces one can replace
the external ’X-reflexiveness by an equivalent concept of canonical re-
flexiveness in a functional analytic category, which has the nice

properties given in [ Nel 84b]. Most of the special spaces considered in
bornological studies already lie in the smaller category CBV.

4. AN INTRINSIC HOLOMORPHY STRUCTURE.

It was established in 2.14 that the category formed by all Fa-holo-

morphic maps between CLC-spaces is cartesian closed. While this is

useful, one ultimately needs a more general category : Riemann surfaces
or complex manifolds are usually not even open subspaces of ambient

locally convex vector spaces. The category of holological spaces studied
in this section provides a comprehensive framework fulfilling these
needs. It includes all the Fa-holomorphic maps just mentioned as a

fully embedded subcategory while providing the nice stability and clo-
sure properties of a topological universe. It is favorable for holomorphic
differential calculus in the same way that the topological universe of

diffeological spaces is favorable for smooth calculus (see [Nel 84c]).
Recall that

By an affine covering for D will be meant a family (B-1i)i£I of affine

maps 03BCi (k) = ai k + B1 with ai # 0 ( E I, ai, Bi E C), such that

4.1. Definition. Holological space means a set X structured with func-
tions D -&#x3E;X, to be called (holomorphic) imprints into X, such that the
following axioms are satisfied :

4.3 a) Every constant function D -&#x3E; X is an imprint.
4.3 b) If f : D -&#x3E; X is an imprint and g : D +D is a holomorphic

map, then f o g is an imprint.
4.3 c) If f : D -&#x3E; X is a function such that for some affine covering

pi : D -&#x3E; D (i E I) all compositions f 0 B-l are imprints, then f is an

imprint.

Holological maps f : X -&#x3E; Y between holological spaces are

functions f such that for every imprint g into X, f o g is an imprint
into Y. We thus obtain the category Holo (holological spaces, holological
maps).

4.2. Proposition [Nel 84, 2.10 b ) Holo is a topological universe. 0
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Topological universes are categories of well structured sets, having
all initial and final structures, moreover with the pleasant feature that
final covering families are stable under pullbacks. They have canonical
mapping spaces (X, Y) with exponential law

I

The inverse of t is denoted (g+(w, x) = g(w) (x) ). There is always
an evaluation map ,

In all topological universes the formation of initial structures, final
structures and canonical mapping space structures proceeds in the "same"
predictable way [Nel 84]. So a reader familiar with these structures

from the study of special topological universes such as bornological
spaces or convergence spaces should quickly feel at home with holo-

logical spaces. We state for convenient reference how products and
hom spaces are formed in Holo.

4.3. Proposition (cf. [ Nel 84J). (a) The holomorphic imprints into a

holological product WxX are those functions h : D + WxX for which the

projections compose to give imprints prl 0 h and pr20 h into W

and X respectively.
(b) The hom space (X, Y) in Holo consists of all holological maps

X -&#x3E; Y and its holomorphic imprints are all functions h : D + (X, Y)
such that for every imprint (g, b) into DxX , the composition h+ 0 (g, b)
is an imprint into Y (or equivalently, such that h is a holological map
DxX -&#x3E; Y). 0

We will suppose every open subset Q of C to be the holological
space having all holomorphic maps D -&#x3E; Q as its imprints. Notice
that all imprints become holological maps under this convention and

every holological space carries the final holological structure induced

by its imprints.
The structure defined for C is such that the arithmetical oper-

2tions of addition, subtraction, multiplication are holological maps
CxC -&#x3E; C. So we can routinely form the associated category HV of
C-vector spaces over Holo. Note that in this section [X ; F] denotes
the canonical mapping space in HV. Every HV -space E carries an

intrinsic bornology : A C E is bounded means e-(A) is bounded in C for

every holological linear functional 9, . Cle2rly, every holological linear

map is bornological with respect to the intrinsic bornologies. Bornolo-

gical concepts, particularly Mackey convergence and Mackey complete-
ness for HV -spaces, will always be with reference to this intrinsic

bornology unless explicitly otherwise stated.

We now come to the central concept of this section. We define a
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convenient holological vector space to be a HV-space which admits holo-
logical embedding into some function space [X ; C ] in such a way
that it is also a Mackey complete bornological subspace. CHV denotes
the subcategory of HV formed by these spaces. The two main objec-
tives of this section are to show :

(a) that CHV is a functional analytic subcategory of HV ,
(b) that CLC is isomorphic to CHV (hence to CB V).

To attain (a) is a lengthy matter. We were not able to succeed via

applications of the Upgrading Theorem alone (as in the case of CBV)
because we could not show Mackey closed embeddings (see below) to
be closed under composition in the absence of Mackey completeness.
So we had to do some upgrading from scratch, patterned after the

proof of the Upgrading Theorem. This ad hoc upgrading requires all
spaces in sight to be both functionally separated and "derivative com-

plete". Therefore we upgrade HV in stages, carefully contrived to

let all spaces have these desired properties while keeping the resulting
category functional analytic.

We dispose of the first stage quickly : a routine application of
the Upgrading Theorem is all that is needed to form the functional

analytic category SHV of separated HV-spaces (see the discussion in

Section 3).
The next stage is similar in approach, but technically more com-

plicated. A space E in SHV is called derivative complete if there exists
a map 

in SV, necessarily unique, such that

Let DHV denote the subcategory of SHV formed by all spaces E which
admit holological embedding into some function space [X ; cJ as a der-
ivative complete subspace. If E is a DNV-space, every holological map
f : D -&#x3E; E has an intrinsic derivative defined by f’ (k) := Slope(f)(X, k).

4.4. Theorem [Nel 84c]. DHV is a functional analytic subcategory
of HV. 0

Some clarification is needed here since the proof of 4.4 was given
for the smooth case in the setting of diffeological spaces. These spaces
are defined just like holological spaces : just substitute R for C and
"smooth" for "holomorphic" in the definition. Now 4.4 was derived by
purely categorical argument from four purely categorical properties
[Nel 84c, 1.1, 1.4J which hold in Holo too, by well known classical

results (the known analytic proofs of these categorical facts are how-

ever quite different in the two cases). The proof of 4.4 (which occupies
Section 2 of the cited paper) then draws on properties like completeness
and the external exponential law for SHV : it applies verbatim to the
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’present context (it was written with such application in mind). One

could formulate without problem a result in an abstract category yield-
ing a smooth and holomorphic version of 4.4 as special cases, but this

does not seem worth while for such a relatively small, transient part
of the theory.

We now embark on the final stage of upgrading towards a functional
analytic subcategory of DHV in which all spaces are Mackey complete.
Note that in this section E* denotes the canonical dual space formed
in HV. When E lies in a functional analytic subcategory, then so does
its dual E* [Nel 84b 1 

4.5. Proposition. Every canonical function space [X ; cJ in HV is Mac-

key-complete.

Proof. Take a Mackey Cauchy sequence (f J in [X ; cJ. Then there is
a bounded set M C [X ; C]and a positive double sequence enm convergent
to 0 such that f n - fm = fnmbnm, with br, in M. For each)¿ in [X ; C]*,
e(fn) is a Cauchy sequence in C whose convergence gives a function

Identifying points x E X with the linear functionals p x, we thus have

also F°° (x) = lim nfn (x) for all x. We have to verify two things :
(a) that the function f 00: X -&#x3E; C is holological, and
(b) that fn is Mackey convergent to f 00.

For (a) we compose with imprints h into X and note that

To get the required holomorphy of f°° o h it is enough (by classical
scalar variable theory) to show the preceding limit to be uniform on

compact disks Q C C. To this end we note that

Since the continuous function l bnm o h l attains a maximum value on
Q at j (say) we can use sup. l bm (h(03BC)) l to conclude uniform Cauchyness
on Q. Towards (b), we note first that by the classical theory of
dual pairs, applied to [X ; C] and [X ; C]*, we can replace M by its

bipolar M°°, a bounded weakly closed disk containing M. Put :

to get a positive sequence convergent to 0 with Enm/6m 1. The

sequence aim := ( fm - F°°)/6 m can be verified to lie in the bounded disk
M°° and (b) follows at once. 0

4.6. Proposition. Every space E in SHV carries the initial holological
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sfructure induced by its linear functionals Q E E*.

Proof. For a function h: D -&#x3E; [D ; cJ we have the following equivalences:
h is holological d hl : DxD - C is holomorphic =&#x3E; h++(, X) and h++(03BC,)
are holomorphic for all X, =&#x3E; h++(, h) is holomorphic for all À
=&#x3E; p (k c h is holomorphic for all X (where

p: D -&#x3E; [(D, C) ; C ], p (X) (f = f0) ).
We conclude that [D ; cJ carries the initial holological structure ind-
uced by the linear functionals of the form Q = p (k). But [X ; C]
carries the initial structure of the family

where h varies through the imprints into X ; this follows because
such h form a final covering and the functor [ ; C] transforms finality
into initiality. It follows that [X ; C] carries the initial structure ind-
uced by the maps p CB)o [h ; C] (X E D, h E (D, X)). Since every SHV-

space is embedded into some [X ; C], the result follows. 0

The next batch of lemmas prepare the way for the proof that
CHV is functional analytic. They are mainly concerned with M-closed

embeddings in SHV , i.e., holological embeddings m : E -&#x3E; F of which the

image m (E) is Mackey closed in F.

4.7. Lemma. Every kernel k : E -&#x3E; F (equalizer) in SHV is an M-closed

embedding. 0

4.8. Lemma. If n o m is a composition of M-closed embeddings and
n is bornoiogically initial, then n o m is an M-closed embedding. 0

4.9. Lemma. If m o n - j o k is a pullback diagram in SHV and
m is an M-closed embedding, then so is k.

Proof. A subset is Mackey closed iff if it is closed with respect to
the associated Mackey closure topology [ Hogbe-Nlend 77] and j (qua
bornological linear map) is continuous under this topology. Therefore the
preimage of a Mackey closed subspace under j is Mackey closed. The
stated result now follows by straight-forward verification. 0

4.10. Lemma. If m : E -&#x3E; F is an M-closed embedding, then so is

4.11. Lemma. If a is a bounded sequence in a Mackey complete
SHV-space F , then Z°°n=0k nan is a Mackey convergent series in F for

all À in D and the sum f().) defines a holological map 0 -+ F.

Proof. One uses the argument in the proof of Lemma 1.5 in conjunction
with 4.6. 0
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4.12. Lemma. If m : E - F is an M-closed embedding between DHV-spa-
ces and F is Mackey complete, then m is bornologically initial.

Proof. Suppose contrariwise that there exists A C E such that m (A) is

bounded in F while A is unbounded in E. Then we can choose an unbounded

sequence an in A such that for some functional w E E* we have

Use 4.11 to define the holological map f : D + F by

Since

lies in E and f(k) is the Mackey limit of the sequence m (sk(À)) in

F, it follows by the assumed M-closedness that f (k) = m (h(k)) for

unique h (k in E. Since m is a holological embedding, h : D -&#x3E; E is holo-

logical and we conclude that for every functional v E E* the series

is convergent to (v o h)(k) and lv(cn) l 1/n is a bounded sequence.
But for every u E F* we have

By comparing coefficients and cancelling we conclude that an = c,, .
But this means l w(an) li-/n is a bounded sequence, a contradiction. 0

4.13. Theorem. CHV is a functional analytic subcategory of SHV.

Proof. In view of 4.4 it is enough to show CHV is a functional analytic
subcategory of DHV. (1) The scalar field C obviously admits a Mackey
closed embedding into [1 ; C]. (2) Let us show CHV is reflective in
DHV. Take any space E in DHV. Its bidual E** admits by definition a

regular monomorphism into [E* ; C] [Nel 84b], so E** lies in CHV
(4.5, 4.7) ; in particular, E** is Mackey complete. Similarly, E* lies
in CHV . Let R(E) denote the intersection (in DHV ) of all Mackey com-
plete subspaces of E** which contain the image p (E). Thus we obtain
a factorization

of p E , say PE - m o pE where m : R(E) -&#x3E; E** is a Mackey closed

embedding. By 4.5, 4.12 and 4.8, R(E) lies in CHV . Now consider any
map u : E -&#x3E; F in DHV, with F in CHV . Since C is reflexive in DHV
[Nel 84b I and PF is a natural transformation, every k in F* extends
over PF. Hence PF is always bornologically initial. It follows that F is

isomorphic to R(F) and PF : F -&#x3E; F** is an M-closed embedding. By
Lemma 4.9, the pullback of PF and u** yields maps k : G -&#x3E;E** and j
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such that u** - k - PF o j and k is an M-closed embedding. By the un-

iversal properties of pullbacks and intersections, u must factor throughj
and m must factor through k.. say m = ko h. Then u := j o h furnishes

the looked for map such that u o pE = u . For uniqueness, suppose we

also have v o pE = u. By forming the kernel w : W R(E) of v and u,
by applying 4.12 and 4.8, we deduce that w is an isomorphism and

v = u . Thus CHV is reflective.

(3) Suppose F is CHV . Then p F is an M-closed embedding as we have

seen, hence by 4.10 the same holds for [ X ; pF] : [X ; F] -&#x3E; [X ; F**],
where X is any holological space. But

by the external exponential law of functional analytic categories. Since
every dual space H* lies in CHV, we have [X ; F**] in CHV . It now

follows, by 4.12 that [X ; F I lies in CHV. 0

In the smooth case, where R is the scalar field, Mackey complete-
ness is equivalent to derivative completeness (for S HV-spaces). In the

complex case it follows as in the smooth case (cf. 4.5 in [Nel 84c])
that Mackey complete implies derivative complete. But the converse

fails, as Example 2.18 shows.

4.14. Theorem. CHV = CLC - CB V.

Proof. There is, by 2.6, an obvious faithful functor CLC + HV which
restructures every CLC-space E into a HV -space by specifying its im-

prints D -&#x3E; E to be all holomorphic functions in the classical sense. By
2.6 this functor is in fact full. Therefore the old space and the new

space have the same linear functionals and the same bounded sets.

Thus E, qua HV -space, is functionally separated. Moreover, the

SHV -space E is again Mackey complete, since this depends only on
the bounded sets. Let us show E is embedded into some [X ; Cj. As
noted in the proof of 4.13, every linear functional u : E -&#x3E; C extends

over p E . By 4.6, pE must be an embedding. Since E** = [ E*, cJ
is embedded into [E* ; cJ, we arrive at an embedding of E into some

[X ; cJ, automatically Mackey closed by Mackey completeness of E

and bornologically initial by 4.12. So we have a functor CLC -&#x3E; CHV.

In the reverse direction, there is an obvious functor which restructures E

into a CLC-space via its linear functionals, the Mackey completeness
deriving again automatically from the common bounded sets. In view
of 4.6 it is readily seen that the two functors are mutual inverses. 0

4.15. Proposition. A function f : E -&#x3E; F between CLC-spaces is Fa-holo-

morphic iff it is holological between the corresponding CHV-spaces. 0

Let us now show that the basic cotensor products of CHV over

Holo reduce to well-known spaces.
Let H(Q, C) (Q open in C) denote the Fr6chet space formed by
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all holomorphic maps f : Q -&#x3E;C and equipped with the seminorms

where Q varies through compact disks contained in Q.

4.16. Proposition. Under the isomorphism CLC=CHV, the Frechet
space H (St, C) in CL C corresponds to the canonical ma pping space
(cotensor product) [Q ; cJ in CHV.

Proof. The two CHV-spaces in question have, by definition, the same

underlying vector spaces. Let us check their holological structures.

For functions f : D -&#x3E; H( St, C) we have :
f is holomorphic b3 for all h E F ,

exists in H( Q, C) =&#x3E; for all k and r ,

=&#x3E; f+ : Dx Q -&#x3E; C is holomorphic (2*) =&#x3E; f: D -&#x3E; [Q; C] is a 1-lolo-map.
Statement (2*) follows from (1*) by the Hartogs’ Theorem ; (2*) implies
(1*) by an argument based on continuity of the partial derivatives
and local compactness of D, which shows the limit to be locally uniform
in the remaining variable. 0

4.17. Holological Hartogs’ Theorem. L et W and X be holological spaces,
E a CHV-space and f: W x X -&#x3E; E a function,. Then f is holological
iff f is holological in each variable separately.
Proof. For the non-trivial implication, assume that f is separately holo-
logical. The imprints (g, h) : D-&#x3E; WxX form a final covering hence
likewise the family g x h : DxD -&#x3E; WxX, where g and h vary through im-
prints into W and X respectively. For every X and 11 in D and every
linear functional u we have that

and similarly u o f o (g x h)( 03BC) are holological maps. By the classical

Hartogs’ Theorem all u o f o (g x h) are holological, hence (initially
so are all f o (g x h), hence (f inality) so is f. 0
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