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PRO-REFLECTIONS AND PRO-FACTORIZATIONS

by Luciano STRAMACCIA

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVI-3 (1985)

RESUM6. 5i C est une cat6gorie finirnent complete, alors la cat6-

gorie Pro- C de ses pro-objets est complete et 6quilibr6e. De

plus cette cat6gorie a une structure de factorisation pour ses

morphismes : (Epimorphisme, Monomorphisme extremal). Ce fait
est utilise pour 6tudier les sous-cat6gories pro-reflexives de C.
On definit sur C une "structure de pro-factorisation".

INTRODUCTION.

After S. Mardesic [11,1?] generalized the concept of shape for
an arbitrary category having a dense subcategory, some papers appeared
- e.g. [4, 15, 18] - showing the existence of a certain analogy between
the theory of epireflective subcategories and that of epidense ones

(hereafter called "pro-epireflective"). Since epireflections are well

studied by means of factorization structure, the natural conjecture is
that an appropriate definition of "pro-factorization structure" would
be the right tool to investigate pro-epireflections and, hence, shape
theories.

All papers quoted above suggest that there is, in general, a certain
advantage in passing from a category C to the category of inverse

systems Pro- C, the crucial fact being that pro-epireflections in
C become epireflections in Pro- C [15], Theorem 2.4. Actually,
it turns out that Pro-C inherits some kind of "pre-properties" from
the functor (meta-)category [C, SET], which become effective as soon

as C has some tiny structure enrichment. In Section 1 it will be seen
that if C has finite limits, then Pro-C has all (small) limits, is balanced,
is endowed with a nice (E, M)-factorization structure for morphisms,
and the canonical functor (1.1) 

preserves and reflects all those properties.

The fact that Pro-C is a complete (E, M)-category for morphisms,
allows us to define K-perfect factorizations [7, 171 in Pro-C for every
pro-epireflective subcategory K of C , and study their effect on

C itself. In particular, looking at the trace on C of such factorization
in Pro-C, one is led to a notion of pro-factorization structure, useful
for handling pro-epireflections.

It is worth noting that most of the results are obtained under the
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mere assumption that C is finitely complete ; cowell poweredness of
C is invoked in order to characterize pro-epireflective hulls.

Recently A. Tozzi [19, 20] ] has given some contributions on this

subject, generalizing to pro-epireflective subcategories many results

by Strecker, H errlich and others (see the references). Her "factorizations
in C with respect to Pro- C" are very close to our pro-factorizations.

1. SOME RESULTS CONCERNING Pro-C.

We will assume in what follows that C is a finitely complete
category.

Recall that the category Pro-C [1, 2, 3] has as objects all inverse
systems in C, indexed over directed sets, and described by the fully
faithful functor

where, given X = (Xa, x aa’, A) in Pro-C, then

L(X) : C -&#x3E; SET is the functor pro-represented by the inverse system
X. Any other functor F : C -&#x3E; SET which is naturally isomorphic to
sorne L(X), X E Pro-C, is called a pro-representable functor [3, 15] .

Later on we shall need a more explicit description of morphisms
in Pro-C, like the one that can be found in [12].

1.2. Proposition. For a functor F : C- SET the following are

equi valen t :

(i) F is pro-represen tabl e,
(ii) F is proper and preserves finite limits,

(iii) The functor lim.Pro-F : Pro-C + SET is representable.
Proof. The equivalence of (i) and (ii) is stated in ([14J, 10.7.6). The

equivalence of (i) and (iii) is obvious but interesting to be noted. Pro-F
is the extension of F to the pro-categories ; lim : Pro-SET -&#x3E; SET is
the inverse limit functor. 0

In view of the above proposition, the functor L (1.1) establishes
an isomorphism between Pro-C and the category 11 C, 5ET}o of
all proper functors from C to SET, which preserve finite limits

[13, 14] :

1.4. The following properties of the category C, SET } of proper
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functors and of the embedding E : { C, SETI - [C, SET], are well known;
see ( 11’3 J, pp. 149-154) :

(i) fC, SET} is cocomplete and E preserves and reflects colimits.

(ii) E preserves and reflects monomorphisms and epimorphisms.
(iii) {Cy SET} is balanced ; each epimorphism (resp. monomorphism)

is a strong and a strict one and, consequently, an extremal epimorphism.
(iv) {C, SET} is an (Epi, Mono)-category for morphisms [9].

1.5. Proposition. ]tC, SET) is a complete category and the embedding

preserves (and reflects) colimits. In particular E’ preserves (and reflects)
epimorphisms.
Proof. Let D : I -&#x3E; I {C, SE.T} be a diagram. It has a colimit F- in

C, SET} by 1.4 (i). To show that F preserves finite limits, one

can restrict to the case in which F is a coproduct in {C, SET}.
Since a coproduct is a direct limit of finite coproducts, and in SET
direct limits commute with finite limits, the proof is complete. 0

1.6. Lemma. Let m’ : : G’ -&#x3E;G be a monomorphism in {C, SET} .
If G preserves finite limits, so does G’ .

Proof. Since m’ is mono, then (lG’, lG’) is the pullback of (m’, m’ ) in
C, SET} and hence in [ C, SET], by 1.4 (ii). The assertion then
follows from ([14] , 7.6.4). 0

1.7. Proposition. The embedding E’ preserves and reflects monomor-

phisms.
Proof. Suppose m: F -&#x3E;G is a monomorphism in I{C,SET}. Let

be its (E, M)-factorization in C, SET} by 1.4 (iv). By the Lemma,
m = m ‘.t is also a factorization in 11C, SE1}. Since m is mono,
then t is also a mono in l{C, SET} ; on the other hand t is a strict epi
(1.4 (iii)) in a category havin pushouts ([9], 34 J (h)), so t is a regular
epi in {C, SET}, hence in I{C, SET} by 1.5. It follows that t must be
an isomorphism, so that m = m’.t is a mono in fC, SET}. 0

Since Pro- C -&#x3E; I {C, SET}o, we can state the following theorem

which summarizes the previous results.

1.8. Theorem. Pro-C is a complete category and the functor (1.1)
L : Pro-C = {C, SET}o is such that :

(j) L preserves and reflects limits and consequently monomorphisms.
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(it) L preserves and reflects epimorphisms.
In particular, Pro-C is balanced and inherits the morphisms (E, M )-
factorization structure from (C, SET}o. 0

1.9. Remarks. a) The fact that, for a finitely complete C, Pro-C is

complete, was already stated in ([3], 8.9.5) in a dual form, that

is, concerning the category Ind-C = (Pro-C%°. However, no one seems

to have used this result till now.

b) The effect of Johnstone and Joyal’s [ 6] concept of "continuous
category" on the subject and results above seems to be very interesting,
although not clear to me at the present state. I feel however that it
is worth to be explored and plan to do in a future paper.

1.10. Definition. A subcategory K of C is called pro-epireflective
in C if every C-object X has a K-expansion, that is, there is a K =

(Kii Pij, I) in Pro- K and a (Pro-K)-morphism e : X -&#x3E; K with every
pi : X -&#x3E; Ki a C-epimorphism, such that every time an f: X-&#x3E; H, H E K
is given, then there is a unique

2. PERFECT FACTORIZATIONS IN Pro-C.

In ( [7], VI and V2 (4)) it is stated that a finitely complete (Epi,
Extremal mono) category C has, for every epireflective subcategory
K, a related K-perfect factorization structure. A similar correspondence
holds between pro-epireflective subcategories of C and certain "pro-fac-
torization" structures, provided C is a finitely complete category, as
we continue to assume.

2.1. We need some notation. Let Q be a class of objects of Pro- C ;
then

a) E(Q) is the class of all (Pro-C)-epimorphisms which are Q-

extendable ; this means that e : X +Y belongs to E (Q) iff e is an epi-
morphism and, for every f: X-&#x3E; K, K E Q, there is some

b) P( Q) is the class of all Q -perfect (Pro--C )-morphisms. t : A -&#x3E; B
is in P( Q) iff, given morphisms u, v, e, where 

then there exists a (unique) diagonal d such that
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As usual we write E?(Q) = AE( D), where h denotes the "lower diagonaliza-
tion" operator ( [l7]y §2). 

From now on let K be a (full, isomorphism-closed) pro-epireflec-
tive subcategory of C, whence Pro-K is an epireflective subcategory
of Pro-C (see [5]).

2.2. Proposition. (i) E(Pro-K) = E( K).
(ii) P(Pro-K) = P(K. 

Proof. (ii) is a consequence of (i). As for (i) : since K C Pro-K, E(Pro-K)
is included in E(K). Let f : X -&#x3E; Y be a (Pro-C)-morphism which is K-
extendable and let g : X - K, K E Pro-K. Since

is a natural source in Pro-C [9] and since every Ki is in K, then for
every i E I, there is an

If i  j in I, look at the diagram

where

Then one has

hence

since f is an epimorphism. It follows that (0)1 gives a (Pro-C)-morphism
h : Y -&#x3E; K such that h.f = g. 0

2.3. Proposition. If K is a pro-epireflective subcategor.x of C, then it

induces on Pro-C a factorization structure (E (K), P (K)) for morphisms.
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Proof. Since Pro-K is epireflective in Pro-C [15] and since Pro-C
is a (finitely) complete (Epi, Extremal mono)-category, one can use

([7], V2 (4)) to show that Pro-C is an (E(Pro- K), P(Pro-K )), category ;
then apply the proposition above. 0

2.4. Lemma. Let e : X -&#x3E; Y be in E (K) ; then, for every j E J,X Y j
is in is m

Er (K) = E6 ) m { (Pro-C )-morphisms with rudimentary codomain} .

The converse is also true.

Proof. Let g : X -&#x3E; K, K E K ; by assumption there is an h : Y + K with

g = h.e. The assertion then follows from the fact that we can assume
that h is a full morphism ([16], 1.8). The converse depends on the fact
that e is an epimorphism. 0

2.5. Proposition. P (K) = £:.r (K), where P, =AEr.
Proof. Since Er (K) C E (K, then P(K) C Pr(K). Let m : X -&#x3E; Y be in

Pr( K and consider the following commutative square 

2.5.1.

where

For every j E J it is tj .e = mj .s. Assuming tj to be full, for every
i E I one has another commutative square

2.5.2.

Holding i E I fixed, one obtains a family of C -morphisms

which is natural in j E J. In fact, given j  jo , the morphisms tj and

yjjo. tijo : Ki -&#x3E;Yj are both representatives of .0: K + Yj and (2.5.2)
continues to commute with tj replaced by yjjo .tijo . Hence

and, since we could have assumed from the beginning that ei is an epi-
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morphism ([l6], 3.2), it follows that tij - yjjo .tijo . In other words,
ti = (t’)j : Ki -&#x3E; Y is a (Pro-C)-morphism which makes the following
diagram commutative

Now, since ei E E_,(K, by the Lemma (2.4), and m E llEr( K), then there
exists the diagonal di in (2.5.3). Observe now That, for every a E A,
di: a Ki -&#x3E; X a represents a (Pro-C)-morphism da : K -&#x3E; X a and, e

being an epimorphism, d - (da) A : K -&#x3E;+ X is a (Pro-C)-morphism and
a diagonal for (2.5.1). This concludes the proof. 0

2.6. Corollary. Every pro-epireflective subcategory K of C induces a
factorization for morphisms of the form (Er (K), £r£K)), where :

Er (K) ={Morphisms in E(K) having rudimentary domains
P rr(K)= Morphisms in £:r (K) having rudimentary codomain} . 0

The corollary does not say that (Er(K), Prr(K) is a factorization
"structure" on C ; it claims that every C-morphism f : X +Y may be
factorized (in Pro- C) as illustrated below

with

2.7. Proposition. The morphisms in Er (K) are exactly the K-expansions
of C-objects.
Proof. It is clear that the K-expansion of any object in C is in Ece ).
On the other hand, if e : X -&#x3E; K is in Er(K) and K E Pro-K, then e is
a K-expansion of X. The assertion then follows by the equality 

which means that the objects of Pro-K are exactly those which are
domain of some morphism in P(K) (this is the implication a=’ b of
Theorem 3.10 of [171, Pro-K being epireflective in Pro-C). 0

With the above notations, in the (Er (K), Prr (K ))-factorization of
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a C-morphism f : X -&#x3E;Y the first morphism e : X -&#x3E; K is the K-expansion
of X, in particular it is a pointwise epimorphism (cf. the definition
of K-expansion and [15J, under the name of "strong (Pro-K)-epimor-
phism").

2.8. Examples. (a) Let HLC be the category of locally compact
Hausdorff spaces. It is pro-epireflective in the category TYCH of Ty-
chonoff spaces. If X E TYCH, then its HLC-expansion p : X+ K is
formed by all dense embeddings of X into open sets Ki C BX, contain-
ing it. Every continuous map f : X +Y between Tychonoff spaces,
may be factorized as

where m is HLC-perfect. To see this, let

be the usual factorization of f with e dense and compact-extendable
and t perfect. Observe now that each pi is also a dense and compact-
extendable map ; then, by the construction of e as a cointersection

([17] , Th. 2.8), it follows that there exists a (Pro-TYCH)-morphism

Setting m = t.h, one has the (E(HLC), P(HLC))-factorization of f .

It is worth noting that h, and thus m, is a full morphism [16] ;
this says that, although in general f cannot be factorized through its
Stone-Cech compactification BX, it is factorizable through any

open neighborhood of X in BX :

where p 1 is dense and com pact- extendable, and qj has a perfect
"component".

(b) Let PM be the category of pseudometric spaces. PM is pro-
bireflective in TOP, the PM-expansion of a space X, 2. : X -&#x3E; K, being
formed by identity functions onto pseudometric spaces whose topology
is less than that of X. It follows that every continuous map f : X -&#x3E; Y
in TOP may be factorized as

in many ways, but where the Ki’s form an inverse system in PM, which
is uniquely determined.

2. 9. Theorem. L et A be a subcategory of C and let K be its pro-epi-
reflective hull (= the least pro-epireflective subcategory of C containing
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A). Then Pro-K is the epireflective hull of Pro-A in Pro-C.

Proof. Suppose G is the epireflective hull of Pro-A in Pro-C. Then
Pro- A C G C Pro- K. Since both G and Pro-K are epireflective in

Pro-C, they induce perfect factorizations (E(G ), P(G )) and (E(K), P(K))
in Pro- C, respectively. Now

Let 2. : X -&#x3E; K be a K-expansion of X and let

be its (E( G), P(G))-f actorization. By Proposition (2.7), G E G C Pro- K,
so there must be a morphism

It is easily realized that m and n are inverse isomorphisms, hence
e : X -&#x3E; G is a K-expansion of X. It follows that e E E(K), so

and, from Proposition (2.7), G = Pro-K. Note that Proposition (2.7) holds
in general with K replaced by any reflective subcategory of P ro--C,
in this case G. 0

3. PRO-FACTORIZATIONS IN C.

C is always a finitely complete category.
The results of the preceding section lead to the following definition.

3.1. Definition. A pro-factorization structure (for morphisms) in C is a

pair [ E, P] such that :

(i) E = E-rU Er is an isocompositive class of (Pro- C)-morphisms,
with the following properties :

a) E-elements are pointwise epimorphisms ;
b) if ( e1 : Ai -&#x3E; Yi )I is an inverse system in E , then its limit e :
A -&#x3E; Y is such that e j : A + Yj 6 Er , for all j E J.

(ii) P is an isocompositive class of (Pro-C )-morphisms with rudiment-
ary codomain (i.e., an object of C).

(iii) Every C-morphism f: X -&#x3E; Y may be decomposed as

where e E E’ and m E P.
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. Remarks. (1) We call a full subcategory K of C pro-Er -reflective
iff every C -object B has a K-expansion which belongs to Er. The

importance of condition (3.1 (i, b)) then depends on the fact that if K
is pro-Er-reflective in C, then Pro-K is E-reflective in Pro-C, in the
sense that the (Pro-K)-reflection of every (Pro- C)-object X, p : X-&#x3E;Y,
is such that pj : B -&#x3E; Yj E Er , for all j E J (cf. [15], 2.6).

12fi Note that, by arguments similar to that of Proposition (2.5),
one shows that (3.1 (iv)) implies P = A E. From this follows that every
C-morphism has an essentially unique [E,P]-pro-factorization, that

is, up to isomorphisms of the intermediate inverse system. Moreover,
E n P is a class of isomorphisms.

(3) It is clear that every pro-epireflective subcategory K of C
induces on C a pro-factorization structure for morphisms of C .
We shall call such a pro-factorization a K-perfect one.

3.3. Proposition. L et [E, P ] be a pro-factorization structure for mor-

phisms of C. If C is cowellpowered, then [E, PI may be extended to

a pro-factorization structure [E, P’ ] for C-sources ([8], 1.1).

Proof. The definition of pro-factorization structures for sources is
the obvious one. If C is cowellpowered, then every C -object admits

only a set of E’-quotients in Pro-C, depending on the fact that Er-ele-
ments are all pointwise epimorphisms (3.1 (ii)). Then all details go as

in ( [8], 1.3.2) ; P’ is formed by all compositions of P-morphisms with
products (in Pro- C). 

- 

0

3.4. Remark. Note that our [E, P’] pro-factorization for sources is

quite similar to the "(E, M)-factorization on C with respect to Pro-C "

defined by A. Tozzi, in particular see Remark 1.10, Definition 2.1 and

Proposition 2.3 of [20] .

We point out that we were led to the definition of pro-factoriza-
tion by the analysis of the intrinsic properties of Pro-C , at least
when C is finitely complete ; hence this seems to be the right way
to study pro-epireflections.

3.5. Lemma. L et C have an [ E, P] pro-factorization structure

for morphisms (sources). The following hold :

(1) Every (Pro-C)-morphism of the form f : X -&#x3E; Y may be factoriz-
ed as

where % : X - K i E Er for all i E I, and m E P .

(ii) f : X - Y E P iff for every factorization as in (i), with e1 E Er ,
i E I, e1 must be an isomorphism for all i. 

Proof. This proof may be done rephrasing that of Proposition 2.3 in [20], 
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by virtue of (3.1 (i)), (3.2 (2)), and the fact that Pro-C is closed under
the formation of inverse limits [3]. 0

3.6. Lemma. Let [F_, P’] be a pro-factorlzation structure for sources

in C. A source

is in P’ iff, for every a E A, the source ’(ma : Xa-* H k)A is in P’ ,
too. 0

3.7. Theorem. Let C be cowellpowered and have an EE, Pl - pro-factor-
ization for sources. If K is a full, isomorphism-closed, subcategory of
C, the following are equivalent : 

(i) K is pro- Er-reflectlve in C.
(ii) K is stable under P’ -sources (this means that, given

then X E Pro-K.

Proof. (i) =&#x3E; (ii). Let (m k : X -&#x3E; H k)A be as in (ii) and let

be the (Pro-K)-reflection of X. For every X E A there is a morphism
9..À. K -&#x3E; Hk such that gk.p = mk, k E A , s hence

By Lemma 3.5, it follows that e2ch pi must be an isomorphism ; then
X E Pro-K.

(ii) =7 0). Let X E C and let (fk: X+ Hk)A be a representative set
of quotients of X with all Hk in K . Let

be its pro-factorization ; then K E Pro-K by (ii). If g : X -&#x3E; M, M E K and

is its pro-factorization, then N is also inPro-K and e’ is pointwise epi.
If N = (N,- nCC’, C), then each e’ : X -&#x3E; N, must bye - an fk : X -&#x3E; Hk. It

follows that

and this completes the proof.
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3.8. Corollary. Let C be as above. Every subcategory A of C has a

pro-Er -reflective hull D (A), whose objects are all X E C such that
there exists a P’ -source with domain X and codomains in A.

Proof. That Dl4 ) is the smallest pro-Er-reflective subcategory of C
which contains A follows from the theorem and Lemma 3.6. 0

3.9. Lemma. Let K be a full, isomorphism-closed, subcategory of C,
then :

(i) K is closed under finite limits iff Pro-K is closed under limits.
(ii) If C is cowellpowered and has an [E, P] pro-factorization

structure for morphisms, then K is stable under P -morphisms iff it is
closed under P’ -sources.

Proof. Part (i) follows from a combination of (1.8) and ([3], 5.0). (ii)
follows from (3.3) and (3.6). 0

3.10. Proposition. Let C be cowellpowered with an [E, P] pro-factor-
ization structure for morphisms. A full, isomorphism-closed, subcategory
K of C is pro-Er -reflective in C iff it is stable under P -morphisms.

3.11. Proposition. Let C as above. Every subcategory A of C has a

pro-E r-reflective hull D(A), whose objects are all X E C which are

domain of some P -morphism with codomain in A. 0

The following result generalizes the analogous one ([8], 1.1 (10)),
concerning factorization structures.

3.12. Proposition. If C is cowellpowered and has an [ E, P] pro-factor-
ization structure for morphisms, then E = E(K), P = P (K), K being the
pro-reflective subcategory of C generated by all E -injective objects.

3.13. Remark. The results contained in Theorem 3.7 and P roposition
3.11 are the generalization to the pro-reflective case of the classical
one ([8, 10, 17] , see also [5] ).

The proofs of Propositions 3.10 and 3.11 are almost easy, being
obtained by diagonalization (3.1 (iv) and (3.2 (2)).

Many examples may be found illustrating the matter, at least in
the case of perfect pro-factorizations. For instance, the following
subcategories are all pro-epireflective in TOP : metrizable spaces, se-

quentially compact spaces, first countable spaces, second countable

spaces, separable spaces, finite dimensional compact spaces, etc..
We note that, because of their complex nature, pro-factorizations

seem to be less manageable than factorizations ; hence, it would be

very interesting to know the relations between the two concepts.
Indeed this is an argument for further study. By the way, recall

that, in constructing the pro-reflection of HCL in TYCH (2.8 (a)), we
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used the (dense compact-extendable, perfect)-factorization in TYCH ;
similarly, we needed the (bimorphism, initial)-factorization in TOP to
define the pro-reflection of PM in TOP (2.9 (b)).
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