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010CECH METHODS AND THE ADJOINT FUNCTOR THEOREM
by Renato BETTI

CAHIERS DE TOPOLOGIE

ET GtOMeTRIE DIFFERENTIELLE
CATÉGORIQUES

Vol. XXVI-3 (1985)

RESUME. Dans ce travail, on montre que des r6sultats ciassiques
relatifs a la th6orie de la forme et aux extensions de Cech

peuvent 6tre generalises et appliqu6s dans le cadre des categories
bas6es sur une bicat6gorie. Dans ce contexte, la condition

de Cech donne un th6orbme sur les foncteurs adjoints.

INTRODUCTION.

It is known that to any topological space X a Cech system

can be associated. Here HPol denotes the homotopy category of

polyhedra, Cov X is the (small, cofiltered) category of numerable cov-

erings of X and refinements, and Vx is the functor nerve.

Cech systems allow one to extend simplicial homology. The n-th
homology group is defined by

As Dold remarks ([9], p. 366), the Cech process for extending
functors applies to many situations. Lee and Raymond [14] study the
Cech methods of extending set-valued functors from categories
of triangulable spaces and homotopy classes of maps to functors defined
on more general topological spaces. Calder and Siegel [7, 8J, and Frei
[10] study Cech extensions at the level of continuous maps.

Cech systems are relevant in shape theory. With the terminology
of Mardesic and Segal [15], the system B)x is an HPol-expansion of the
topological space X, i.e., for any polyhedron P there is a natural iso-

morphism

The shape category relative to the embedding HPol -&#x3E; HTop can
be calculated by
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and the notion of expansion thus allows one to generalize the Cech
procedure to abstract situations.

The crucial point of the various Cech methods rests on the fact

that there is a weakly cofinal functor from Cov X into the comma cat-

egory (X HPoI) of "polyhedra under X " (see Dold [91, p. 356, and
Mardesic and Segal jl5], p. 328).

The above property is assumed here as the starting point in

defining the Cech condition. As a consequence, many facts relative to

Cech extensions and to shape theory can be obtained as results of

general category theory.
Moreover, in this setting, a double generalization is allowed. First,

the Cech methods are considered with respect to an arbitrary family
of small diagrams (as in Tholen [19, 20]). Second, everything works

equally well for categories enriched in a bicategory. This extra generality
is free of charge, but the main point is that Cech methods provide an
adjoint functor Theorem in the enriched case (Cech condition = solution
set ).

The main application of the adjoint functor theorem we have in
mind regards locally internal categories over a topos E. In [4J it is
shown that these categories can be considered as enriched in the

bicategory Span E and that many notions of locally internal category
theory become standard notions of enriched category theory. The

adjoint functor Theorem applies to this situation.

We begin by describing completions with respect to suitable fam-
ilies of indexing modules. Then the Cech condition is introduced and
discussed. Special attention is paid to the Sets case. Finally, we

deduce the adjoint functor Theorem as a generalization of known
results in shape theory.

1. THE COMPL.ETION PROCESS.

We shall assume that B is a bicategory such that :

(i) it is locally small-complete and cocomplete, and local colimits
are preserved by compositions on both sides ;

(ii) it admits right Kan extensions and right liftings.

Condition i in particular means that for any pair u, v of objects
in B the hom-category B(u, v) is small-complete and cocomplete.
When B is the bicategory Span E , however, only finite limits and co-
limits exist in any hom-category. In this case we shall consider only
limits indexed over one-object categories enriched in Span E ( internal-
limits in the terminology of [4J, reminiscent of the fact that such cat-

egories are exactly categories internal to E ).

Condition ii means that compositions on both sides with arrows
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of B have right adjoints. Namely, for any f : u -&#x3E; v the right adjoint to
the functor

is the (right) Kan extension, and it is denoted by homu(f, -). The right
adjoint to the functor

is the (right) lifting, and it is denoted by hom,(f, -).

In order to fix the terminology, we recall the main notions relative
to categories enriched in a bicategory, to modules and limits indexed

by modules (see Kelly [13] for the notions of enriched category theory.
Enrichments in a base bicategory can be found in [1]. Other descrip-
tions are in Street [17J, in [4J and in [5J).

A B -category X consists of objects x, y, ..... For any object x
there is an underlying object ex in the base bicategory B. Homs are

provided by arrows X(x, y) : ex - ey and compositions and identities

by suitable 2-cells

subject to associativity and unity laws.
One-object B -categories are denoted simply by the name of their

only underlying object. In the case when B is a symmetric monoidal 
category V (regarded as a one-object bicategory) the above definition

gives the usual notion of a category enriched in V.

A B-functor F : X - Y is a function on the objects which preserves
the underlying objects; its effect on the homs is given by 2-cells

compatible with identities and compositions.

A module cp : X --+-&#x3E; Y of B-categories assigns a component

to every pair of objects, endowed with an action of X on the left and
of Y on the right, in the sense that there are given 2-cells satisfying the
usual axioms of associativity, unity and mixed associativity :
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A morphism a -&#x3E; B of modules

is given by a family of 2-cells a (x, y) -&#x3E; B(x, y) which is compatible
with the actions. 

Under our assumptions on the base bicategory B , all the B -categ-
ories with a small set of objects, and modules, constitute a bicategoy
B -mod, where the composition of the modules cp : X +&#x3E; Y and Y : Y-+-&#x3E; Z
is defined as follows : (Y o cp) (x, z) is the coequalizer lim Y (y, z). cp (x, y)
of the two actions

It is easy to check that the hom is a module X +-&#x3E; X which is
the identity under composition.

A functor F : X -&#x3E; Y gives rise to two modules F*: X +&#x3E; Y
and F* : Y l- X defined by

A calculation shows that F* is left adjoint to F* in the bicategory
B -mod.

Given a functor G : I -&#x3E; X and a module 1V : v -+-&#x3E; I, the limit of G

indexed by Y is an object {Y, G} (if it exists) which represents the
right lifting homI (Y , G*) of G* through Y :

Definition. A family J of modules u -+&#x3E; I whose codomains are small

categories is said to be admissible if :

(i) representables I( i, -) : ei -+&#x3E; I are in J ;
(ii) whenever cp : 1+ K is such that (P(I, -) : ei -f.-;. K is in J for

every i, the composite cpo W with any 6 in J is again in J.

An admissible family corresponds to what is called a "family of
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coverings" in [3]. Here we follow the terminology of Tholen [20].
Observe that any functor F : I -&#x3E; K, regarded as a module, sat-

isfies the assumption in ii above. Hence compositions of the type F. Y
are again in J, whenever Y is in J.

A category X is said to be J- complete if it admits all limits ind-
exed by the modules of J. A functor is called J- continuous if it pre-
serves the J-indexed limits.

Example. The classical construction of pro-categories by Grothendieck
and Verdier is obtained by taking E = Sets and J = trivial modules into
small cofiltered categories.

For categories indexed over a base topos E (see Johnstone and

Joyal [10J) one should consider B = Span E and J = all modules into

one-object categories which are cofiltered when regarded as internal

categories.
This case is an instance of the following basic example.

The Span E case. Span E is the bicategory whose objects are those of
E and whose arrows u -&#x3E; v are "spans" ( h, k ) of maps of E :

The 2-cells ( h, k) -&#x3E; (f, g) are defined to be those maps p such that

Composition in Span E is given by pullback and (l.u, lu) is the identity.
A map f of E becomes the arrow (1, f) of Span E. Such arrows

are characterized (up to isomorphism) by the property that they have
a right adjoint. For this reason, in a general bicategory, an arrow f

having a right adjoint f° is called a map.
It is easy to check that categories internal to E become exactly

one-object categories enriched in Span E. Moreover [4J shows that

locally internal categories are enriched categories X which admit
restrictions along maps. This fact means that, given a map f : u -&#x3E; v

and an object x of X over v, the module fo.X(-, x) : X -+-&#x3E; v is repre-
sentable :

Restrictions along maps are limits indexed by maps. The family J
of all maps is admissible, hence the locally internal categories are

exactly the complete ones with respect to this J.
Another example, in the case B = Span E , depends on the

fact that, for a locally internal category regarded as a Span E -category,
the property of being strong tensored is implied by J-completeness
with J = all modules into one-object categories (see [41, where this

property is referred to as internal completeness).

Suppose an admissible family J is given. To each category X we
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associate a new category P°X which is the free J-completion.

Definition. The objects of P°X over u are diagrams of the type :

where cp is in J. The homs are defined by right liftings. Composition
and identities are defined by the universal property of liftings :

Remark. The composite module G*.F exists even if X is not small :

Moreover, given any module B: u -+-&#x3E; x, the right lifting hom£G. Y, B)
exists and is isomorphic to homi (Y, G*. B). Hence

As a consequence we have that two objects (F, (p) and (G, Y) are isomor-
phic in P°X iff F. cp = G. Y

A 
A functor F : I+ P°X gives rise to a module F: I -+-&#x3E; X defined

by F(-, x) = Fi. cpl, where

is the object Fi of P°X.
When X is small, P°X classifies modules into X.

Theorem. POX is J-complete. Moreover any functor G : X -&#x3E; Z into a

J -complete category Z can be extended (uniquely up to equivalence)
to a J-continuous functor G’ : P°X + Z.

Proof. The proof follows the original one by Grothendieck and Verdier.
It can also be obtained by suitably adapting to the enriched case the

proof of Johnstone and Joyal [10], or that of Tholen [18]. We repeat
it in its main lines, in order to fix terminology and to underline
the role of admissible families and the generalization to the enriched
case.

To assign F : I -&#x3E; P°X means to assign the objects
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of POX, and to specify the effect on arrows :

By considering together all the objects of the categories Ji we get a
new (small) category J. Namely, the objects of J over u are pairs ( i, a)
where a is an object over u in Ji. The homs are given by :

By also considering together the functors Fi we can define a fully
faithful functor F : J -&#x3E; X whose effect on objects is Fl a ) = Fi (a).

So far we have defined the functor part F of the limit {Y, F}.
Now we define a module A : I -&#x3E; J by A(!, -) = Ul. cpi, where Ui: Ji -&#x3E; J
is the functor which takes a into (i, a).

The functoriality of Ui depends on the functoriality of Fi. The
module properties of A can be checked directly ;

To check that (F, A. Y) is the limit {Y, F} , we observe that

Fi = F.Ui hence (by the previous remark) the objects Fi and (F, A (i , -))
are isomorphic in P°X.

A calculation gives the result. The crucial point of this proof is

to show that the module A (j, -) is in J for each i (so A. Y is in J). By
def inition,

Hence also A (i, -) E J.
There is a fully faithful Y : X -&#x3E; Pox given by

Let us now consider a functor G : X -&#x3E; Z. If Z is J-complete, then
G’(H, cp) = {cp , GH} defines a J-continuous functor :

The functor G’ extends G and is uniquely defined (up to equival-
ence). q.e.d.

Remark. With the notation of the previous theorem we have F = F.A.
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Hence, when X is small, the limit {Y, F} can be computed as F.Y.
Moreover the object (K, (p) of P°X is isomorphic to the limit of the dia-

gram

iff K. cp = F.Y .
Another consequence of the construction given in the proof of

the theorem is that each object (F, Y) of P°X is a limit. Namely,
(F, Y) = {Y, YF} .

2. THE Sets CASE.

When B = Sets and J = all modules, then

For a general J we have the following situation.
Any module y: 1 -+-&#x3E; I can be identified with a functor (p : : 1-&#x3E; Sets.

Consider the category el cp of elements of cp : its objects are pairs
(fya) with a e cp i, its arrows (i , a) -&#x3E; (j, 6) are arrows h : 1 -&#x3E; j of I

such that cp h(a) = B. Now, for any (F, cp) we have a canonical decomp-
osition F = F. T*

cp

where F(j , a) = Fi and T cp : el cp -&#x3E; 1 is the trivial functor.

Hence, if we suppose that J is closed under the formation of the

categories of elements, we have a more classical description of
Pox :

where (j,B) varies in el 1P and (1, a ) in el cp .

3. THE CECH CONDITION.

In [2 1 the shape category of an arrow is defined in any bicategory
with enough colimits (following Bourn and Cordier [6]). The aim was
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to show that basic properties of shape categories rely on a module
calculus which is also relevant in dealing with the inverse system ap-
proach. An attempt was made to consider the Cech condition in B-cat.
Here we introduce the Cech condition relative to an admissible family
of modules.

Definition. The functor G : A -&#x3E; X satisfies the Cech condition relative
to J if there exist ci : x -&#x3E; P°A and the natural isomorphisms Fx.cpx - G*.x
where (Fx , cpx) denotes o(x) j .

In other words, G* is of the form a for a functor a : x -&#x3E; P°A.

When A is small and J consists of all modules into small categories,
then any G satisfies the Crech condition. The reason for this is that P°A
classifies modules u .-r- A. In the Sets case this corresponds to the
fact that, when A is small, also (x j G) is a small category.

Remark. When B = Sets, the previous condition amounts to

for each object a, where the colimit is taken along el ëp. In other words

In the classical case, this means that the embedding HPol -&#x3E; HTop
satisfies the Cech condition relative to the class of small cofiltered

categories. In a more abstract way it means that F is an A-expansion
of x in the sense of Mardesic and Segal [15].

The Cech condition still allows a description of the shape category
ShG of the functor G :

Moreover, if G is shape adequate (i.e.,

then it can be proved (as in [21) that each object x , regarded in

Sheets the limit fF.(p , D.Gl } of the composite
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indexed by F.cp .
11

Cech extensions. Suppose that Z is a J-complete category. Given 0 :

X -&#x3E; PoA, any F : A -&#x3E; Z can be extended to X by

where (X, cp) denotes o(x).
The effect of F o on the arrows is defined by the counit

of the limit IT , FXI . 
In the classical case, this is the Cech extension

Theorem. Given G : A -&#x3E; X and 0: X -&#x3E; po A, then o- = G* iff, for any
F : A -&#x3E; Z into a J -complete category Z , the functor F is isomorphic
to the right Kan extension RanGF of F along G . 

o-

Proof. In one direction y the proof is an obvious generalization of the
classical result that Cech extension = Kan extension for homotopy
functors (Dold [9J, Lee and Raymond [14]) :

Conversely, let us denote by Bea the category whose objects over
u are arrows u -&#x3E; ea and whose homs are right liftings :

It is easy to’ see that Bea = P° ea relative to the admissible family of
all modules. Hence it admits small limits indexed by any module. We

use the categories Bea as codomains of representable functors

It is easy to check that

Hence :

entails

4. THE ADJOINT FUNCTOR THEOREM.

By generalizing a result of Stramaccia [16] relative to the classical



255

case of directed sets, Tholen [20] proved, for B = Sets, that the Cech
condition = Pro-adjointness. This is still the case in our general setting.
Moreover it can be shown in a precise way that the Cech condition is
a solution-set condition.

We denote by G : P°A + P°X the extension of G : A -&#x3E; X.

Theorem. The functor G : A -&#x3E; X satisfies the Cech condition relative
to J iff G has a left adjoint.

Proof. The proof follows the original one by Stramaccia [16]. Suppose that
G has a left adjoint A. Then, for each object a we have :

We have also :

where: Ax = (K, T) - Hence K.cp = G*.x and G satisfies the Cech
condition relative to J.

Conversely, suppose that G satisfies the Cech condition and a :
X -&#x3E; PoA is such that 8 ri G*. Take an object (F, cp) in P°X :

For each object i in I, consider the object

The assignment i l-&#x3E; R( i) amounts to a functor A’ : I + P°A because G
satisfies the Cech condition, and the limit {cp , h’ I provides an object
(K, Y ) = A(F, cp ) in PoA. 

This functor A: POX- P°A is the required left adjoint to G. Indeed,
by a direct calculation we have that A’ = G*.F because G satisfies the
Cech condition and moreover, K. Y = A’.cp because (K, w) is the limit

fy , NJ. Hence K. Y= G*.F.Y. So for any object

in P°A we have :

We are now in a position to prove the Adjoint Functor Theorem.
It generalizes a result of Giuli [11], relative to reflective subcategories.
For suitable classes of diagrams it is also contained in Tholen [20].

Theorem. Let A be 3-complete. Then G : A -&#x3E; X has a left adjoint iff :

0) it satisfies the Cech condition relative to J , and
OJ) it is J -continuous.



256

Proof. If G has a left adjoint, it preserves any limit. Moreover, it sat-

isfies the Cech condition relative to the admissible family consisting
of representables (hence it satisfies the Cech condition relative to

any J).
Conversely, we show that there exists the right Kan extension

Ran GI of 1 along G, and it is preserved by G. Consider Q(x) = (F,cp ) for
a given object x . By a calculation involving the universal properties
of liftings, we have that hom A(G*.x, 1) exists and is isomorphic to

hom Ie cp, F*). Now we know that :

Hence

It is now enough to observe that Ran 1 is preserved by G because it
is a limit. q.e.d.

Remark. The theorem provides a variety of "adjoint functor theorems",
depending on various completeness assumptions on A.

When B = Sets and J = all modules into small categories, it gives
the classical Freyd Theorem.

When B = Span E and J = modules into one-object categories,
it extends the Freyd Theorem to locally internal categories and internal-
completeness.

Example. When J is the admissible family of adjoint pairs of modules,
the theorem becomes simpler. In this case J-complete categories are
the Cauchy-complete ones (see [3], or Street [18]).

Under the assumption that A is Cauchy-complete the proof
is reduced to an easy calculation. F.(p is left adjoint to Y.F*, hence F. (p
is representable. So
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