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PARTIALL Y-ADDITIVE MONOIDS

by Antonio BAHAMONDE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFF#RENTIELLE
CATÉGORIQUES

Vol. XXVI-3 (1985)

RÉSUMÉ. Les monoxides partiellement additifs (pams) ont ete intro-
duits par Arbib et Manes pour fournir une approche algébrique à
la s6mantique de la recursion dans 1’Informatique th6orique. Dans
cet article, les pams sont pr6sent6s comme des G-algbbres,
ob G est une th6orie alg6brique dans la cat6gorie des ensembles
et applications partielles. Ensuite, on definit une topologie naturelle
sur un pam, proche de la topologie de Scott pour les treillis conti-
nus. Les axiomes des pams sont alors classif ies selon leur
naturalit6 topologique ou alg6brique. On étudie aussi les sous-struc-
tures, surtout lorsque 1’ensemble sous-jacent est ferme. Enfin, on
obtient des relations entre structures de pam, ordres et topologie.

1. INTRODUCTION.

This paper deals with the algebraic and topological foundations
of Partially Additive Monoids (pams). These structures were introduced

by Arbib and Manes [1, 2, 3J in the denotational semantics of program-
ming languages setting. In this introductory section we outline the mot-
ivations for the concepts of the paper.

In the denotational semantics of programming languages, we asso-
ciate a suitable partially defined function fp : D-&#x3E; D with each program
P, where D is a space of states. This process exploits some algebraic
properties of the family of maps fP . The sum of those partial functions
arises in a very natural way as follows.

Given a predicate B, and statements Si and S2, assume that we

already have a partial function interpretations

Then define two partial functions pT, PF : D- D, where P T(d) = d
with domain of definition {d I p(d) = T} , y and PF(d) = d with domain
{d 1 p(d) = F } . Theref ore, the partial functions fl pT and f zpF have

disjoint domains ; thus we can define a partial function

given by
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Thus, f3.PT+ f2p F is a natural partial function interpretation for
the statement "if B then Si else 52" . The iterative statements provide a
motivation for countable sums. The reason for restricting the sums to
the countable case has to do with computability.

On the other hand, pams include a wide kind of countable-chain-

complete posets, as shall be shown in § 6 below.

Pams are sets endowed with a partial operation E on countable

(i.e., finite or denumerable) families of elements which satisfies, among
other things, generalized commutative and associative laws. Our primary
concern is to present pams as G-algebras, where G is an algebraic
theory in the category of sets and partial functions, since 7- is a partial
operation. However, in the literature two concepts of pams are

considered. So, an additional topological criterion (the limit axioms )
is specified in a, 2, 3] (throughout the paper pam means this kind
of structures), but this is not the case in [ 9] (here we call them

pamÚ, 2) or positive partial monoids). Our G-algebras here correspond to
pams without the topological requirements ; that is to say, we just
capture the algebraic structure of pams in our algebraic representation.

In the third paragraph, by means of the results obtained in
the second, we associate with each pam a topology in a very natural

way. In a certain sense this topology generalizes the Scott topology
of continuous lattices [11, 6, 12 ]. Here the limit axiom of pams appears
in its topological naturalness.

The algebraic representation of pams here presented has been

very useful in order to provide the category of pams with a tensor

product [4J following the Guitart’s construction on algebraic categories
[7]. On the other hand, a new approach to the information theory can
be given from this representation of pams [5]. Here the topological
aspects play a suggestive role in characterizing sequentially continuous
information measures.

§ 4 is devoted to studying the pam-substructures (sub-pams),
mainly when the underlying set is closed. In § 5, we study a particularly
regular class of pams in the topological sense. We call them continuous

pams following Scott.

A first draft of this paper was written while the author was visit-

ing the University of Massachusetts at Amherst. It is a pleasure to
acknowledge the Department of Mathematics of this University. In
particular, the author would like to thank E.G. Manes who introduced
him to this subject and made many useful suggestions which led to
this version of the paper.

2. PAMS AS ALGEBRAS.

In this paragraph we will present partially-additive monoids (pams)
[1, 2, 3] as algebras over an algebraic theory in the same way as groups
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or vector spaces are. That is to say, pams are sets endowed with some

operations that satisfy some equations. These operations are partially
defined and then we will take the category of sets and partially
defined functions, Pfn, as the base category.

A morphism f : A - B in Pfn (partially defined function) is a tot al
function f : DDf+ B, where DDf (domain of definition of f ) is a

subset of A. If g : B -&#x3E; C is a morphism in Pfn, the composition gf : A-&#x3E; C

is defined by

If f , g E Pfn(A, B), we define f  g to mean that

(2.1) Definition [1, 2, 3 J. A partially-additive monoid (pam) is a pair
(A, EA), where A is a non-empty set, and L A is a partial operation on
countable (i.e., finite or denumerable) families in A subject to the

following axioms.

(1) Partition-associativity axiom : If the countable set I is parti-
tioned into (Ij l j E J) (i.e., OJ I j E J) is a countable family of pair-
wise disjoint sets whose union is I), then for each family Ki ) i é I) in A,

in the sense that the left side is defined iff the right side is defined,
and then the values are equal.

(2) Unary sum axiom : For one-element families the sum is defined
and E a - a.

(3) Limit axiom : If (xi 1 1 E I) is a countable family in A and if

EA (xi l e F) is defined for every finite F C I, then ¿ A (xi ) 1 1 E I) is
defined.

We use the notation

And we drop the A from EA when no confusion arises.

Notice that from the partition-associativity axiom, any subfamily
of a summable family is summable. And since the unary sum axiom
ensures that some sums exist, it follows that the empty sum is defined
and provides an additive zero which we denote la (or simply ± when
no confusion arises). Moreover, since (Ij ) j E N) is a partition of the

empty sets if each Ij is empty, we infer that i is even a denumerable
zero. 

Let (xi l E c I), (yj I j E J) be countable families in A, and let
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: : I -&#x3E; J be a bi jection such that

The partition-associativity and the unary sum axioms ensure that

in the sense that the left side is defined iff the right side is defined,
and then they are equal. That is to say, E is countable commutative.

A pam satisfies the following "positivity property" :

That is why pams are called positive partial monoids in [9]. To see

this, let i E I and set y = 2Xxj I j E I-{i}). Then

(2.2) Some examples [1, 2, 3J. The basic example (alluded to in
the introduction) is the set Pfn(A, B) with the sum defined for families

(fi lie I) such that their domains of definition are pointwise disjoint
as f ollows :

It is possible to give the same definition when the family is overlap-
summable ; that is to say, if whenever a E DD fi n DD fj , then fia = fj a.
Endowed with the overlap-sum, (Pfn(A, B), Z°% is a pam too. 

Let Rel(A, B) be the set of relations from a set A to a set B.

That is, functions f: A -&#x3E; PB, where PB is the set of subsets of B.

Rel(A, B) has a pam structure in which every countable family is sum-

mable : def ine

let (L, ) be a complete lattice, then (L, sup) is a pam, where

SUP(li i i c 1) is the supremum of L’ = t Ii l i E I 1 Actually, we only
need partially ordered sets (posets) L for which some countable

subsets of L have a supremum. We shall not bother to spell out this

now, as it will arise naturally in § 6.

(2.3, Let A be a set. A family (xi l i e I) in A can be seen as a

function x : I -&#x3E; A such that x i := xi . Two families in A, x : I -&#x3E; A,
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y : J + A are said to be equlvalent iff there exists a bijection
Y : I -&#x3E; J such that y Y= x. Note that this defines an equivalence relation
RA in the set of countable families in A, CF(A), such that

and (A, E) is a pam (2.1).

Let us now remark that for any countable family x : I -&#x3E; A
there exists a bijection Y : I -&#x3E; I, where T C ’N (where N is the set of
natural numbers), and a partial function x: N -&#x3E; A, where DDX = I, such
that xi = x Yi for all 1 E I. Thus, we always can take partial functions
from N to A as representative elements of the equivalence classes in

CF(A)/RA. That is, to say,

For this reason, in order to compute sums of countable families
in A, throughout this paper, we consider such families as partial func-
tions from N to A.

A partition of a family x : N -&#x3E; A is a family of families

where (yj I j E DDy) is the unique morphism in Pfn(N, A) defined by
the commutativity for all j E DDy of the diagram

where lI (DDyj l j E DD y ) means a subset of N isomorphic to the dis-

joint union (coproduct in Pfn) of the sets DDyj , and in j are the natural

injections.

(2.4) Taking account of these remarks we are going to introduce an

algebraic theory in Pfn in order to capture pams(l, 2) as algebras of
this theory.

Definition ([8J, p. 32). An alge9faic theory in extension form in a categ-
ory H is a triple T = (T, 1l, ( ) where T is an object function, assigning
to each object A of H another object T A, 1l is an,,assignment to each

object A of H of a map nA#: A -&#x3E; TA, and with ( ) assigning to each

f : A -&#x3E; TB an "extension" f : TA -&#x3E; TB, subject to the following three
axioms :
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Let GA = Pfn(N, A)/RA be for any set A the quotient set alluded
to in (2.3) above. Denote by [f] the equivalence class of f e Pfn(N, A).
Define

where " a" denotes the element of A and the one-element family.

As in (2.3), if ( fi l i E I) is a family of families in A, we will de-
note by  fi lie Iu the family in A given by the universal property of
the coproduct, where

Note that if fi Rp gi for all E 1, then

On the other hand, if x : DDx -&#x3E; A is a family in A, then

Given f : A -&#x3E; GB in Pfn, define f1r: GA -&#x3E; GB as follows. Let

[(xi l i E I)] E GA such that xi E DDf for all i E I, and let yi be

any representative element of fXi E GB for all 1 E I. Then define

# Conversely, if there exists i E I such that xi $ DD f , then
f [(xi l 11 E 0] is undefined.

(2.5) Proposition. G= (G, Ti, ( ) #) is an algebraic theory in Pfn.
Proof. The proof is straightforward and can be safely left to the reader.

Corollary ([8J, (1.3)). G : Pfn -&#x3E; Pfn is a functor, n ; 1pfn -&#x3E; G i11 a
natural transformation, and for each set A the map pA = (1GA#) :

GGA -&#x3E; GA defines a natural transformation p : GG -&#x3E; G.

Moreover, the triple (G, q, w) is an algebraic theory in Pfn in monoid

form ; that is to say, for every set A,

(2.6) Let (A, ZT be a pam. Then ¿ A can be seen as a morphism in Pfn,
EA : GA -&#x3E; A, but not every partially defined function from GA to A
defines a pam structure on A. The next aim is to characterize such

morphisms.
Moreover, an additive map f : (A, Z4) -&#x3E; (B, 2;8) [1, 2, 3J is a total
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function f : A -&#x3E; B such that f ¿ A /- G f. In diagram

Note that if we constrict f E A and raG f to DD E 4, then we have
the equality of the two maps above.

Definition [8]. An algebra of an algebraic theory T = (T, n, w) in a categ-
ory H is a pair (A, 6), where A is an H-object and : TA -&#x3E; A is an
H -morphism such that

A morphism of T -algebras f : (A, 6) + (A’, å ’) is an H -morphism

The category of T-algebras of H will be denoted by H T .

Definition. A pair (A, ¿ A-y is a pam(l, 2) (positive partial monoid in [9] ),
provided that it meets the partition-associativity and the unary sum
axioms.

Proposition. A pair ( A, ¿A) where EA GA - A is a Pfn-morphism is
a pam(1, 2 ) iff it is a G-algebra.

Notice that if f : (A, EA) -&#x3E; (B, ZB is a morphism of G-algebras
and is total, then it is an additive map of pams(l, 2). But the opposite
is by no means true, just look at the identity map from (Pfn(A, B), ¿dl )
to (Pfn(A, B), Zov) (2.2).

(2.7) Let A be a set. Define " " in GA by

The relation " " is well defined in GA and is actually the least order
in GA that makes the canonical projection p;q : Pfn(N, A)-&#x3E; GA monotone
(isotone).

Proposition. A pair (A, E A ), where E A: GA -&#x3E; A is a Pfn-morphism, is
a pam iff it is a G-algebra such that DD £A is a countable-chain-com-

plete subset of ( GA,  ) (that is, every countable chain in DO LA has
a suprem um in DD ZA ).
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Proof. Just notice that the limit axiom is equivalent to the following
property in a pam(1, 2) : if (xi ’ lie N) is a family such that

is summable (its class belongs to DDEA ), then (xi ) i E N) is summable.

(2.8) In general, let (A, EA) be a pam, and let a, b E A. Define

a  b iff there exists c E A such that a + c = b .

This relation is reflexive and transitive, but in general, it is not anti-

symmetric (a counter-example can be found in [3]). Anyway, the sum

of the empty family Z 0 = ± A is the minimum, because if a  L A then
there exists b E A such that a + b = lA, and therefore a = b = L A (2.1).

Let A be 6 set. The " " relation defined above for the free pam
(GA, 03BC A) over A coincides with the one defined in (2.7).

(2.9) The category Pfn is isomorphic to the category of pointed sets
Set*. Therefore it has equalizers, coequalizers, products, and coproducts.
Moreover Pfn has a factorization system (E, M), where we take for
E the class of all partially defined surjective functions, and for
M all injective functions. Thus we have the following

Proposition. The category of G-algebras, Pfn G has small colimits
([81, p. 276), and is a regular category ( [8], p. 239).

Let us recall that a regular category is a triple (H, E, M ) where
H is a locally small category with small limits, (E, M) is a factoriza-
tion system in H, and H is E-cowellpowered. Therefore, in particular,
Pfn has a factorization system (EG, MG) where a map of algebras
f e G (resp. M6) just in case f c E (resp. M) as Pfn-morphism.

Anyway, some of these results can be extended to the category
Pam of pams and additive maps (2.6).

Proposition. The category Pam has : 

(I) a factorization system (E*, M*), where E* (resp. M*) are the

surjective additive maps (resp. injective additive maps).
(ii) a zero object : ({ 01, sup) where {0} is the one-element poset.

(iii) products [9].

Proof. (iii) Given a family ((Ak , E k) l k c K) of pams, their product
is the pam (A, E) as follows. As a set, let A = TT (Ak l k E K) be
the cartesian product of the sets A . Given a family (xi l i E I) in A,
x i= ( x ik k E K), say that ( xi , l i E I) is summable in A iff for each
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there exists xk = E k(x iki l e I), and then define x =E(Xi l iEI)
by x - (x k l k E K).

(ii) Let (A, Z) be a pam. The only additive maps

are given by

3. NATURAL TOPOLOGY OF PAMS.

(3.1) Let (A, 1) be a pam. A sequence (an l n E N) in A is said to be
an ascending chain iff

That is to say, iff there exists a sequence (not necessarily unique)
(Xi l i E N) in A such that

Therefore (xi 11 E N) is a summable family in A.

Let a = E (x i l iE N); th8 set of all such sums will be called the set
of Arbib-Manes limits of (tan) ([2] , p. 599 ; [3]), in symbols AM-lim( a n) .
Notice that this is nonempty but may have more than one element.

In Pfn(A, B), f E AM - lim( fn ) iff f is the least supper bound of
the ascending chain (fn). Therefore, f is unique.

(3.2) If (an l n E N) is such that an = a for all n E N, then a E AM-lim(an).
If a E AM-lim(an ) and (anKl k t N) is a subsequence, of (an), then :

a E AM-lim(ank). To prove this, let ,

then define

thus

Proposition. If the AM-lim (an) is one-element for every ascending chain
in a pam (A, E), then A is a poset with the "’’ relation defined in (2.8).

Proof. Let a, b E A such that a  b and b  a . Then (a, b, a, b, ...)
is an ascending chain ; let cue AM-lim( a, b, a, b, ...). Therefore
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so that a - c = b.

(3.3) Let (A, EA), (B, fi) be pams. A total function f : A -&#x3E; B is said to
be AM-continuous ([2J, P. 599 ; [3]) iff

for every ascending chain ( an) in A. Note that f must be monotone

(isotone).

Of course, once we have a definition of convergence and continuity,
we must wonder if there exists a topology in which these notions make
topological sense. We are going to define such a topology in an arbitrary
pam. That topology shall make topologically continuous the AM-contin-
uous maps. The opposite shall hold in a special kind of pams that will
be called continuous pams following Scott.

(3.4) Definition. Let (A, E) be a pam. A subset U C A is called additive-

open iff it satisfies the following two axioms :

(AO.l) y E U whenever x E U and x  y.
(AO.2) if E (xi l i E N) E U, then there exists n E N such that

It is clear that the family of additive-open subsets of A is a top-
ology T A in A, and in this topology the AM-limits of ascending chains
are topological limits.

Proposition. Let (A, ¿) be a pam, and let (an l n E N ) be a sequence
in A that converges to a in T A : (an) + a. Then if b  a, (an) -* b.

TA TA

Proposition. Let U be a subset of A. The following statements are

equivalent :

(1) U is additive-open.
(ii) If (x i lie I) is summable, then E (xi l i E N) E U iff there

exists n E N such that E (xi l i = 0, ..., n) E U .

Proof. If x  y and x E U, then there exists c E A such that x + c =y.
Therefore (xi li E N), where

is summable, and for n = 0,
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Proposition. Let C be a subset of A. The following statements are

equivalent :

(1) C is additive-closed.

(ii) C satisfies :
(ii.1) x  y, y E C implies x E C .

(ii.2) E (xi l i= 0,..., n)E C for all n implies E (xi liE N) t C.
(iii) E(xi l i = 0 , ..., n) E C for all n iff E (xi 11 E N) E C.
(iv) No sequence in C can converge to a point of the complement

of C .
(v) C contains every topological limit of any ascending chain

(a j 1 i c N) with ai E C for all i E N.

(3.5) Proposition. L et (A, EA), (B , E6) be pams, and let f : A - B be
an AM-continuous function. Then f is additive-continuous.

Proof. Let U C B, U E TB, and a E f- U. Then, if a  b, fa  fb E U ;
therefore, b E f 1U.

Moreover, if E (xi l i E N) E r1 U, as

2

we have that

But AM-limits are additive limits, so there exists n E N so that

(3.6) Now we are going to achieve the same topology in another way.
Let (A, EA) be a pam. We have the maps

Let us call SA = EA P A. Then DDSA C Pfn(N, A) f ulf ills :

(i) g E DDSA whenever 9  f E DDSA .

(ii) If D C DDS A is a countable directed set, then

In Pfn(N, A) we have the well known Scott countable topology ’rs ,
where U C Pfn(N, A) is said to be a Scott countable open (U E TS)
whenever it satisfies the following

(SO.l) g E U whenever f E U and f  g .
(SO.2) If D is countable directed, and sup(D) E U, then D n U # Q.

Thus, DDS A is closed in this topology, and U C DDSA is a Scott
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countable open in the relative topology iff it satisfies (SO-1) and (SO.2)
for all f, g and D in DDS .

Theorem. Let (A, E4) be a pam. Then the additive topology -14 its the
quotient topology given by S : DDSA A.

Proof. Let U C A such that (SA)-1 U = V is an open in DDSA, and

let a e U. Then there exists a family

If a  b there exists c E A such that a + c = b. Then

Moreover, if E (xi l i E N) E U, the family (xi l 1 E N) is in V. Let

D is countable directed in DDSA, then there exists n E N such that

(xi l i = 0, ..., n ) E V, and

Thus L E T A.

then

As xI E U, xj E U, hence (xj ) 11 E J) E V.
Let D = {fi l 1 E If be a countable directed set in DDSA such that

Then E A(Xj l j E J) E U and there exists a finite subset J’ C J such that
E A (x j l j E J’) E U. Then, as J’ is finite and D directed, there must exist

and so SAfk E U and fk E V.

So the additive topology TA in A is the largest topology for A such
that the sum is continuous.

Corollary. If f : (A, EA) -&#x3E; (B, ¿8) is additive, then it is additive continuous

Proof. The following diagram is commutative, where

is continuous.
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Then f SA is continuous and so is f because the topology in A is the

quotient one given by S .

(3.7) Let (A, ) be a poset such that (A, sup) is a pam (2.2). Then A
is w-chain-complete (w is the first infinite ordinal), that is, every
countable chain has a supremum. Therefore all countable directed sub-
sets D of A have a supremum ([10], p. 55).

Proposition. Let (A, ) be a poset such that (A, sup) is a pam.
Then the Scott countable topology (3.6) coincides with the additive

topology. Moreover, the relation (2.8) is the given one.

Corollary. The additive topology of (Rel(A, B), U) and (Pfn(A, B), E °v)
(2.2) is the Scott countable topology.

Proposition. In the pam (Pfn (A, B), E di), where E d1 is the disjoint
sum (2.2), the additive topology is the Scott countable topology,
and then the additive topology of (Pfn(A, B), E"’).
Proof. It is routine to prove that the Scott countable topology is cont-
ained in the additive one. To show the opposite let us remark that
f E Pfn(A, B) can be seen as a subset of AxB, namely

and the directed or disjoint union and difference of such sets can be

interpreted as an element of Pfn(A, B). Actually the directed (resp.
disjoint) union corresponds with the supremum (resp. sum) in Pfn(A, B).

Thus if D = { fn I n E N} is a directed subset of Pfn(A, B) such that
II D c U, where U is an additive open, define

Then the family (gn l n E N) is disjoint-summable and

so there exists n E N such that

Thus, the additive topology is quite a natural one at least in these
basic examples of pams.
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(3.8) Proposition. Let A be a set. The additive topology of the pam
(GA, 03BC A) (§ 2) is the quotient topology given by PA : Pfn(N, A) -&#x3E; GA

Moreover, p A is open.

Proof. is straightforward.

(3.9) Let (A, EA) be a pam. Then the diagram

is commutative. Moreover,

so DD E is closed in GA and its relative topology is the quotient one
given by p A : DDS A -&#x3E; DD EA. Therefore ¿A: DD E -&#x3E; A is an identification
and gives once more the additive topology of A.

Corollary. L et f : (A, EA) -&#x3E; (B, ¿B) be a morphism of G-algebras. Then
DD f C A is additive closed.

4. SUBPAMS.

(4.1) Let (A, EA) be a pam. A subobject of it in Pam is said to be a

subpam of (A, ZA).
Given that Pam has a factorization system (2.9) subpams can be

identified with subsets S of A endowed with a pam structure (S, r.S)
such that the inclusion S C A is an additive map. That is,

is commutative.

If and (H, EH) are subpams, we def ine
to mean that S C H, and
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is commutative.

(4.2) Given a pam (A, ¿ A), we define Sub(A) to be the set of all subsets
Z C DDZ A such that

(i) Z is closed in DD EA (equivalently in GA) (3.9),
(ii) if [f] E Z, then [(¿Af)J E Z,

(iii) if f1 , gi E Z and E A fi = ZAg, for all 1 E I (where I is countable),
then fi l 1 E I&#x3E; E Z implies that gi i E I&#x3E; E Z.

Sub(A) is ordered by inclusion and is closed under arbitrary
intersections. Note that the intersection of the empty family is DDE .
Therefore, Sub(A) is a complete lattice.

Theorem. There is an isomorphism of posets between Sub(A) and the set
of subpams of (A, EA).
Proof. If (S, ES) is a subpam, then DDES e Sub(A) since it is closed in
GS and therefore in GA. The conditions (ii) and (iii) are fulfilled by
DOES due to the unary and the partition-associativity axioms (2.1).

On the other hand, any Z E Sub(A) gives rise to an evident

subpam 

where (Zy i) is the image factorization of the composition Z C DDEA -&#x3E; A.

Corollary. The ordered set of subpams of a given pam (A, LA) is

a complete lattice.
Moreover, the forgetful functor U : Sub(A) -&#x3E; P(A) (where P(A)

is the complete lattice of all subsets of A , and UZ = EA(Z) ), has a

left adjoint ACL (algebraic closure) given by

where Ell is just defined for one-element families or infinite (x j ) I E N)
where xi = ± A for all 1 e N but at most one.

(4.3) Proposition. Let C C A. Then C is closed iff Z - (EA)-1 C E Sub(A).

Proof. Z is closed since Z A is continuous. Conditions (ii) and (iii) follow
from the unary and partition associativity axioms.

Conversely, if Z = (EA)-1 C E Sub(A), then C is closed since the

additive topology is the quotient one given by ¿A (3.9).

Let C be a subset of A, define
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If C is closed, then

Actually, Str(C) is then a complete lattice.

Corollary. Let CL(A) be the set of closed sets in TA. The functor

is the right adjoint to (TCL)U : Sub(A) -» CL(A) , where TCL is
the topological closure functor from P(A) to CL(A).

(4.4) Let I : CL(A) - P(A) be the inclusion functor. Then I is right adjoint
to TCL : P(A) -&#x3E;CL(A). Thus, we have the diagram

where

Therefore,

and then

Furthermore, since the topological closure of any subset contains

J-A, we have that

Hence, if we call

we have that

In this sense we can say that the algebraic and topological closures
commute.

(4.5) Definition ([8], p. 147). An optimal lift of an inclusion i : S C A
is a pam substructure (S, ES) such that whenever we have a diagram
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g is additive iff ig is.

Optimal lifts, when they exist, are unique.

Proposition. L et C be a closed subset of A. Then the inclusion C C A

has an optimal lift : the structure given by (EA-1C (4.3).

But optimal lif ts do not need to be closed. To see this let us con-

sider (A, sup), where A = {0, 1, 2} (0  1 2). Then S = 10921 is
not closed (since 1  2, but 1 / S). Nevertheless, (S, sup) is an optimal
lift since there exists sup(X) E S for all X C S.

The remainder of this section is devoted to relating the topologies
of subpams.

(4.6) Let (S, ES) be a subpam of (A, EA ). Then, the additive topology
in S given by Es, Ty S, contains the relative topology in S as a subset of

A, Trel· To see this, let C C A be a closed set, then

is a pullback, and then H is closed in DDES (equivalently in DDEA).
Hence, SnC is closed in TES, because (¿ S )1 (SnC) = H is closed.

Proposition. Let Z., Z 1 E Sub(A) such that UZo = UZl = S. If Zo C Z I ,

then TZ C T7 ’
1 0

Proposition. Let C be a closed subset of A . The subpam structure

Z = ( EA)-l C (4.3) induces the relative topology ; that is

Proof. If C 1 is closed in TZ , then its pullback over E A/Z : Z - C,
Z1, is closed. Therefore

is a pullback, and then C1 1 is closed in A.
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5. CONTINUOUS PAMS.

In this paragraph we shall introduce a special kind of pams in
order to get the opposite of (3.5). We call them continuous pams follow-
ing Scott. These pams satisfy a very natural axiom given below.
Of course, the basic examples given in (2.2), and the free pam (GA, 03BCA)
for all A, are continuous pams.

(5.1) Definition. A pam (A, Z) is said to be a continuous pam provided
that whenever

then í (Xi l i E N)  a. 

Equivalently, given a family (xj ) i E I) in A and a E A, we

have E(xi l ie F) E a for all finite subsets F of I iff E (xj ) lie I)  a.

(5.2) Proposition. Let (A, r) be a pam. The following statements are

equivalent :

(i) (A,Z) is continuous.
(ii) The sets Ra = {b b $ a} are in T A eor all a E A .

(iii) l b = {cl cbl is the topological closure of {b} for all b E A.
That is, l b = {b}-

(iv) a 5 b iff b E U whenever U E TA and a E U.

Proof. The statements (ii) and (iii) are obviously equivalent.
(i) implies (ii) : Let (xi ) i EN) such that (xj ) i E N) E R a . If

then E( xi l i E. N)  a.
(ii) implies (iv) : Let a, b E A such that b E U whenever U ETA and

E U. if a $ b , then a E Rb , but b £ R b .

(iv) implies (i) : Let (xi ) i E N) be a family in A such that

If E (xi l iE N) E U, U E TA, then there exists n E N such that

hence a E Ll, and E (xi l i E N)  a.

Corollary. L et (an n e N ) be an ascending chain in a continuous pam
(A , E). Then (an) q b iff b  a for every a E AM-lim (an).

tA 

Proof. It is due to (3.4), and (iv) above.
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Corollary. Let (an l n E N) be an ascending chain in a continuous pam
(A, E), and a, b E AM-lim (a9. Then a  b and b  a.

(5.3) Proposition. Let (A,Z) be a continuous pam. Then the following
statements are equivalent :

(i) (A, E) is a T.-space.
(ii) (A, Z) (2.8) is a poset.

(Ili) The AM-limits are unique.

Proof. By (5.2) and (3.2).

Remark. The partial order " " defined on a To-space by

is called the specialization order ([61, p. 123).

If (A,Z) is a continuous pam that fulfills any of the equivalent
statements above, the partial order defined in (2.8) is the specialization
order ; that is to say, the additive topology determines the partial
ordering by means of a purely topological definition.

Corollary. Let (A, E) be a continuous pam that fulfills any of the equi-
valent statements of the last theorem. Let (an l ne N) be any ascending
chain in A. Then the AM-limit of (an) is

(5.4) Theorem. L et (A, EA), (B , EB) be continuous pams and posets, and
let f : A -&#x3E; B be a function. The following statements are equivalent :

0) f ts additive-continuous.

(ii) f is A M-continuous (3-3).
(iii) f preserves sup of countable ascending chains.
(iv) f preserves sup of countable directed sets.

Proof. The equivalence of (iii) and (iv) is in ([10J, p. 56). The statements
(ii) and (iii) are the same because of (5.3). And (ii) implies (i) was

proved in (3.5).
To prove that (i) implies (ii), we shall need the following

Lemma. If f: A - B is additive continuous and B is a continuous pam,
then f is isotone.
Proof of the Lemma. Let a, b E A such that a  b and let U E TB
so that fa E U. Then a E f -1 U E T A, hence a  b E Fl U ; that is to say
fb E U. Thus fa  fb by (5.2.iv).

(i) implies (ii) : Let (an l n E N) be an ascending chain in A. Then
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Hence

and Lhen

because ( fan) is an ascending chain in B by the lemma and in virtue

of (5.2).
On the other hand, due to the lemma

Therefore

(5.5) Let A, B be sets. Then (GA, B-lA) (§ 1) and all the pam examples
given in (2.2) are continuous pams.

6. COMPARISON BETWEEN THE ORDER AND THE SUM IN A PAM.

We now return to compare the order and the sum in a pam (A,E ).
What we are going to study is the question arisen in (2.2). That

is, some posets (L, :) are pams endowed with sup ; we shall describe
the posets thereby obtained. Conversely, we shall characterize the pams
which come from such posets.

To this end we shall build a new algebraic theorey in Pfn : PN .
In a certain sense the construction of (L, sup)-pams from PN -algebras
is parallel to the way we got pams from G-algebras. Furthermore, we
shall find a close relation between PN and G-algebras.

(6.1) Let A be a set. Define PNA to mean the set of all countable subsets
of A. Thus we have got a functor P N : Pfn -&#x3E; Pfn,

where

for all A’ E PNA.

Define UA : FN PNA -&#x3E; FNA by

and

It is easy to check that P N = (PN, n, U) is an algebraic theory in

Pfn in monoid form.

Moreover, if sup : PNA A is an arbitrary partial function, the
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PN-algebra equaticns (2.5) are clearly equivalent to

where the equal sign in (ii) is in the sense of the equality in the parti-
tion-associativity axiom (2.1.1) ; that is, the left side is defined
iff the right side is defined, and then they are equal.

It is a well known result that if (A, sup) satisfies (i) and (ii) above,
and sup is total, then, via

A is a poset, and sup A’ is the supremum of A’ for all A’ E PNA ([8],
p. 57). No extra difficulties arise if sup is a Pfn-morphism.

(6.2) Theorem. Let A be a set, and let sup : FkA -&#x3E; A be a PN -mor-
phism. Define

The following statements are equivalent :

0) (A, sup) is a P N -algebra.
(li) (A, : ) is a poset such that if X C A (X E PNA) has a supremum

and X’ ex, then X’ has a supremum.
(iii) (A ,) is a poset and every countable subset of A with upper

bounds has a supremum.

Proof hints. (i) implies (ii) : By (6.I.ii)

(ii) implies (iii) : If a is an upper bound of X’, then the supremum of

X’ U{a} is a ; therefore X’ has a supremum.

(iii) implies (i) : (6.1.ii) is satisfied in every poset provided that sup (Ai’)
exists whenever sup(U(A’, 1 1 E I)) exists

(6.3) Definition ([8], p. 209). Let T = (T, n, B1), T’ - (T’,n’, B1’) be alge-
braic theories in a category H in monoid form. A theory map X : T -&#x3E; T’
is a natural transformation X : T -&#x3E; T’ such that the following two dia-
grams commute :
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Each theory map X : T - T’ induces a f unctor FX : H T’-&#x3E; H T
defined by

Define the natural trtansformation oc : G -&#x3E; PN (where G is the
functor defined in (2.4)) given by

It is not hard to check that a is a theory map from G to P N . Thus we
have. a fiinrtnr -

(6.4) Theorem. L et A be a set, and let Z : GA -&#x3E; A, sup : PNA A be

partial functions such that E = ( sup)(a A). Then (A , Z) is a G-algebra iff
(A, sup) is a P N-algebra.
Proof hints. Let us consider the diagram

The commutativity of the right-most facet is equivalent to

the commutativity of the left-most facet, since aaA is an epimorphism
and the rest of the cube is commutative. The opposite is obviously true
since the identity A = A is an isomorphism.

Corollary. A poset (A , ) gives rise to a pam (A , sup) iff it is chain w -

complete and fulfills any of the equivalent statements (6.2.i), (6.2.ii),
or (6.2.iii).

This Corollary could be obtained with a straightforward proof.
But in the present approach we have additionally got an algebraic re-
presentation of these posets parallel to the one given for pams.
Moreover, the conditions here required to posets have arisen in a natural

way. 

The remainder of this paragraph is devoted to searching necessary
and sufficient conditions to ensure that a pam (A, L) is of the form

(A, sup) for a given ordering (A,  ). Notice that this ordering must be
the one given in (2.8), since in the last Corollary the pam-ordering
(in the sense of (2.8)) of (A, sup) is the original one.
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(6.5) In virtue of the Theorem (6.4), a necessary condition is that Z :

GA -&#x3E; A must be factorizable through aA.

Thus, E must be independent of the number of occurrences of an element
in a family. This idea is formalized in the next definition.

Definition. A pam (A, I) is said to be idempotent provided that

¿ ( ail i E I) = a if ai = a for all i E I and for all countable I.

Theorem. Let (A, I) be a pam. The following statements are equivalent : 

(i) (A, E) is idempotent.
(ii) There is a PN -algebra (A , v) such that Fa (A, v) = (A, E ).

Proof. Obviously (ii) implies (i). To see the opposite let us notice that
E:GA -&#x3E; A can be factorizable through aA. Let 9-: PNA + A be the only
Pfn-morphism such that 4 (aA) = E. Then (A,8 ) is a PN-algebra (6.4), and

Fa (A,v) = (A,E).
Corollary. L et (A , E) be an idempotent pam. Then (A,;; ) (2.8) is a

poset.

Let us now characterize, in the additive sense, the idempotent
pams.

(6.6) Proposition. Let (A, E) be a pam such that (A,  ) (2.8) is a poset.
The following statements are equivalent :

(I) (A, E) is idempotent.
(ii) For all x E A, (xi l iE N) x if xi = x for all 1 E N.

(iii) ( A, Z) is continuous and x+x = x for all x E A.

Proof. (ii) implies (iii) : Let x E A, if xi = x for all i E N,

To see that (A, E) is continuous, let

Then there exists a family (yi l i E N) such that Xi + yi = a, thus

where ai = a for a11 i E N ; therefore
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(iii) implies (i) : Let I be a countable set and let xi = x for all i E I.

Then E (xi lie F ) = x for all F C I finite. Then

To end the paragraph let us collect some of the results here obtain-
ed in the following Corollary.

Corollary. L et (A, E) be an idempoten t pam. Then (A, E) is continuous
and (A , ) (2.8) is a poset.
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