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ON DISTRIBUTIVE HOMOLOGICAL ALGEBRA, I. RE-CATEGORIES

by Marco GRANDIS

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFÉRENTIELLE
CATÉGORIQUES

voz . XXV-3 (1984)

R6sum6. Cet article est le premier d’une s6rie de trois articles
consacr6e aux "th6ories homologiques distributives" (comme le
complexe filtr6 ou le double complexe) et leurs modeles cano-

niques. Ici nous introduisons les RE-cat6gories, i.e. des cat6go-
ries ordonn6es involutives g6n6ralisant les categories de rela-
tions sur les categories exactes, et nous 6tudions leur 2-cat6go-
rie RE : celle-ci est strictement complete, un fait qui simpli-
fiera notre approche.

0. Introduction.

0.1. General outline. Exact categories, in the sense of Puppe-Mitchell
[20, 18], and their categories of relations are a flexible frame for study-
ing basic homological facts. This series of three works is devoted to

studying theories with values in exact categories and their canonical

models, mostly in the distributive case. A review of results appeared
in [9].

In Part I exact categories, more precisely their categories of
relations, are generalized by RE-categories, i.e. involutive ordered cat-

egories satisfying certain conditions. RE-categories form a (strictly)
complete 2-category RE, where (strict) universal problems can be solved.

Part II will introduce RE-theories and prove the existence of
their canonical models, via the completeness of RE ; this also proves
the existence of bicanonical models for theories with values in exact

categories. A theory is distributive if its classifying exact category E0 is
so (i.e. it has distributive lattice of subobjects) ; in this case E
is an exact subcateqory of I, the distributive exact category of sets and
partial bijections, and the canonical model has a set representation.

Part III will supply the canonical models for some (distributive)
theories of interest in homological algebra : e.g., the bifiltered object,
the (discrete or real) filtered complex, the double complex, the filtered
differential object. Their classifying categories can be "drawn" in the
(discrete or real) plane, yielding quick "graphic" proofs of various results
on spectral sequences as well as a tool of investigation which, in the
author’s opinion, justifies the task of proving (once for all) that
the exhibited models are indeed canonical. For the differential filtered

object one recovers the Zeeman diagram [231*;’ actually the need of pre-
cise foundations for that representation was the starting point of this
research.
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A notion of distributive homological algebra, concerning distribu-
tive theories in exact categories (or in RE-categories) arises from the
above approach ; this notion is already present in Zeeman [231,
when he points out that the bifiltered complex is not "distributive", and
traces back to this fact the difficulty of that theory. Distributive the-
ories not only stand out for having a set representation, but also, from
a purely algebraic viewpoint, for the composability of canonical isomor-
phisms between subquotients, which characterizes distributive exact

categories [7]. Last we notice that a non-trivial abelian category
is never distributive : the frame of abelian categories seems to be too
narrow for studying basic properties of homological systems.

0.2. As concerning Part I, the problem we are interested in can

be guessed from the following trivial example.
The 2-category EX of exact categories, exact functors and nat-

ural transformations has no initial object ; however any null exact cat-

egory E 1) is biinitial [22J : for any exact category E there is an ex-
act functor Ejo -&#x3E; E, determined up to a unique isomorphism of functors 2).

More generally, any small graph A determines a (strict) univers-
al problem for diagrams -+ E (E in EX) which has no solution, while it
can be shown that the corresponding biuniversal problem has a solu-
tion (the bifree exact category generated by A), which is determined

up to equivalence. It may be remarked that Freyd’s Theorem on

the initial object cannot be applied, because EX is not complete [17J.

0.3. As well known, this situation is by no means confined to EX, but
generally occurs for 2-categories formed by categories possessing certain
limits or colimits and by the functors which preserve them (obviously,
up to isomorphism). For example, see the canonical models for theories
with values in toposes [16].

0.4. However in our case, that is for EX, one can observe that the re-
quired "limits", essentially kernels and cokernels, are subobjects and
quotients and thus can be simulated by endorelations : just consider, in-
stead of the subobject m : M +A (resp. the quotient p : A -&#x3E; P) the pro-
jection

These endorelations do not present any problem of choice or quotienta-
tion, since

(1) All the objects are zero-objects, that is initial and terminal ; in other

words, Eo is equivalent to 1.
(2) For "weak" limits in 2-categories we use the terminology of Street [221 on
bilimits.
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are equivalent monics iff mm = nn ; they allow to define "--kernels"

(6.2) which are strictly preserved by (the symmetrization of) any exact
functor.

Thus we are led to simulate exactness by involutive ordered

categories possessing suitable, uniquely determined, projections; these are
to be strictly preserved by good functors.

0.5. In §1, 2, we consider the 2-category of RO-categories, i.e., categ-
ories provided with a regular involution and a consistent order. It should
be noticed that RO-transformations are lax-riatural. Any RO-category
A can be fully embedded in a factorizing one, Fct(A)y whose objects are
the projections of the former (§ 3). 

In § 4, 5 the 2-category RE is introduced : a RE-category is a

RO-category where any projection has a numerator and a denominator

(still projections) and every object has suitable null projections ; RE-
functors strictly preserve all that.

The connections between EX and RE are studied in § 6 : any
category of relations Rel(E) on an exact category E is a RE-category ;
conversely, any RE-category A is fully embedded in the factorizing RE-
category Fct(A), which is isomorphic to the category of relations on its
proper morphisms Prp Fct A (a componentwise exact category) : RE-cat-
egories can be characterized as the full subcategories of categories of
relations on componentwise exact categories (6.6), or also as the

Prj-full involutive subcategories of categories of relations on exact cat-
egories (6.8).

In § 7, 8 we introduce the transfer functor

of a RE-category A into the RE-category of modular lattices and modul-
ar relations [10]. We also study transfer, distributive, boolean, idempot-
ent RE-categories ; in Parts II and III distributive and idempotent RE-
theories will be the main object of investigation.

Last, §9 proves that RE is a complete 2-category.

0.6. Conventions. We generally use Mac Lane’s [15] terminology for cat-
egories and Kelly-Street’s [14, 13, 22] for 2-categories. However, a sub-
object will be a "chosen monic" rather than a class of equivalent monics ;
the set of subobjects (resp. quotients) of the object A in the category C
will be written Subc (A) (resp. Quo c (A) ). 

We choose, once for all, a reference universe U. A U-category
C has objects and morphisms belonging to U, while we do not require it
to have small Hom-sets ; C is small whenever the set of morphisms
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(and therefore also the set of objects) belongs to U. We write U-CAT,
or CAT for short, the 2-category of U-categories, their functors and
their natural transformations.

An exact rqtpnnrv F (alwnys in thp sense nf PIJppp-Mitrhp11

[20, 18]) is a category with zero-object 0 (initial and terminal), in
which every morphism factorizes via a conormal epi and a normal monic.
In particular every morphism u : A’ -&#x3E; A" has kernels and cokernels, which
will be written

(1) ker u : Ker u &#x3E;-&#x3E; A’ , cok u : A" -&#x3E;-&#x3E; Cok u

and assumed to be, respectively, a subobject and a quotient. A functor
between exact categories is exact whenever it preserves (up to equival-
ence) kernels and cokernels.

For exact categories and their categories of relations we refer
to [20, 18, 3, 4, 2, 5, 7, 8, 10] ; the last reference contains a short re-
view of results. Here an exact category will always be assumed
to be a well-powered U-category (hence also well-copowered).

If F : A + B is a 2-functor between 2-categories, and B an ob-
ject in its codomain, an i--universal arrow

from B to F will be given by an object A. of A and a morphism b. of
B such that :

a) for every morphism b : B -&#x3E; F(A) in B there is some morphism
a : Ao -+ A in A verifying b = F(a)bo ,

b) for every cell

in B there is some cell

in A verifying 8 = F(a) bo ; a is determined by a 1 and a2 -

Notice that the condition a is formally superfluous, but useful
for checkings. The morphism a : A. - A in a is determined up to a un-

ique isomorphic cell a of A such that lb = F(a) b. ; the object Ao is det-
ermined up to equivalence in A.

Every 2-universal arrow is i-universal, and every i-universal one
is biuniversal ; i-universal arrows compose in the usual way.
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1. RO-categories.

1.1. An involutive category A = (A, -) is a category provided with an

involution - : A -&#x3E; A, i.e. a contravariant endofunctor, identical on ob-

jects and involutory, whose result on the morphism a : A’ -&#x3E; A" will be

written a : A" -&#x3E; A’. An involutive category is selfdual.

Assume now that the involution of A is regular, that is

a = aaa for each morphism a.

An endomorphism e : A -&#x3E;A is called a projection if it
is symmetrical and idempotent ( e = e=ee ) ; an equivalent condition is

The projections of A form a set PrjA(A) canonically ordered by :

It is well known that the composition of e, f E Prj(A) is always
idempotent :

it is a projection iff e and f commute.

1.2. Definition. A RO-category (A, -, ) will be a category A provided
with a regular involution - and with an order relation  on parallel mor-
phisms, consistent with composition and involution. We always assume
A to be a U-category with small projection-sets ; notice that these have
two order relations and « (1.1.1), which are generally different.

For any exact category E, the category Rel(E) of relations on
E has such a structure (see Calenko [ 3, 4 ] ; for generalizations [2, 5] ;
the smallness of projection-sets follows from [5], Ch. 3, III-IV).

A RO-category (A, -, ) has an obvious 2-category structure,
with 2-cells given by  , y and three opposite RO-categories : the first

opposite (A*, - *, ), the second opposite (or order opposite) (Ag - , &#x3E;-),
and the biopposite (A*, -*, &#x3E;) ; one easily sees that

are isomorphic, and so the other two.

In the following (A, -, ), or A for short, is a RO-category.

1.3. For any morphism a : A’ -&#x3E; A" there are two transfer mappings of
projections ([6], § 2.17-18):
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yielding two projections accociated with a:

which simulate, respectively, the coimage and the image of a (see 3.6.8).
The transfer mappings preserve  and « : if e = ef in Prj(A’) then

If a and b are composable

1.4. Owing to the regularity of the involution, it is easy to see that,
for any morphism a :

a) a is monic iff it is a coretraction, iff aa - 1 (c(a) = 1),
b) a is epi iff it is a retraction, iff ag = 1 (i(a) = 1),
c) a is monic and epi iff it is iso, iff a and a are reciprocal isos.

It follows that epi-monic factorizations a = a2 a 1 when

existing, are unique up to isomorphism.

1.5. One verifies easily that the mapping (1) (resp. (2)) :

is an embedding (resp. anti-embedding) of ordered sets with regard to
« : in particular A is well-powered and well-copowered. The mappings
(1) and (2) are consistent with the anti-isomorphism

and will be seen (3.3) to be surjective (for every object A) iff A has

epi-monic factorizations.

In any case, the projections of an object in a RO-category A
(more generally in any category provided with a regular involution) sub-
stitute advantageously the subobjects also when (1) is a bijection, be-
cause the projections do not present any problem of choice of represent-
ants or of quotientation.
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1.6. A restriction of A will be an endomorphism e : A -&#x3E; A such that
e  1 : it is hence a projection, as

All restrictions of A build a small set Rst(A), which is a semilattice
with regard to composition: if e, f E Rst(A) then ef 1 is a restriction,
hence a projection and

moreover  and « coincide on Rst(A) : if e  f then

conversely, if e °° f then

Analogously, the corestriction e : A -&#x3E;A, e ? 1, form a semilattice
Crs(A) C Prj(A), in which e  f iff e °° f .

1.7. A morphism u: A’ -&#x3E;A" of the RO-category A is proper if :

These morphisms form a subcategory Prp(A) of A, non-closed
under the involution, whose induced order is trivial :

because

In the above example A = Rel(E) (1.2), one recovers the
first category :

1.8. A morphism a : A’ -&#x3E; A" is said to be null if, for every a’: A" -&#x3E; A’,
aa’a = a. Null morphisms form an ideal N = Nul(A) of A (the composi-
tion of any morphism with a null one is null). Other trivial properties
((7) follows from (5), (6) and (2)) :

1’) We shall always suppose that the construction of Rel(E) is carried out

so that this equality holds.
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for any a

for any a :

(7) if u, v : A’ -&#x3E;+ A" are proper and null, then u = v.

1.9. An object A. is said to be null if it has a unique endomorphism,
that is if its identity is null ; if A. and Al are null objects, connected in
A 4), there exist unique isomorphisms A0 -&#x3E; A 1 : actually, two such
morphisms are necessarily reciprocal.

Any morphism which factorizes through a null object (hence by a
null identity) is a null morphism.

2. The 2-category RO.

2.1. A RO-functor F : A -&#x3E; B is a functor between RO-categories, which
preserves involution and order. It also preserves : projections and their
canonical order «, transfer mappings

the operators c and i, monics and epis, restrictions and corestrictions,
proper morphisms. It need not preserve null morphisms and null

objects (a counterexample with A = 1 can be easily given).

A faithful RO-functor F reflects projections and their canonical
order, monics, epis, isos, null morphisms and null objects.

A RO-functor F : A + B has a restriction Prp F: Prp A -&#x3E; Prp B ;
on the other hand, a zero-preserving functor F 0 : E -&#x3E; E’ between exact
categories extends to a RO-functor F : Rel(E) +Rel(E’) iff Fo is exact

([5]y Theorem 6.15); in such a case F is (trivially) uniquely determined,
and will be written Rel(F 0).

2.2. A RO-square of A will be a square diagram in A, of the following
type :

where the second and third condition are equivalent (when the first

holds) : if va  bu, then

(4) In the involutive category E this simply means that A(Ao,Al) is not empty.
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Obviously, RO-squares can be composed, horizontally and verti-
cally ; the vertical composition has a vertical involution, which is

regular 5).
By 1.7.2, the RO-square (1) is commutative when a and bare

proper.

2.3. A RO-transformation

between pprallel RO-functors F and G is a family (a A)AEObA satisfying :

a) for any A E Ob A, oc A : FA - GA is a proper morphism, 
O6)b) for every a : A’ -&#x3E; A" in A, the following square is R06)

Remark that the square (1) is commutative when a E Prp A (2.2) : thus
the RO-transformation a determines a natural transformation

with (Prp a)A = a A, on any object A.

2.4. RO-transformations have an obvious vertical composition : given
another RO-transformation

we get

by vertical composition of RO-squares. The vertical composition of
RO-transformations is associative, and has obvious identities

Remark that the RO-transformation

(5) The category of RO-squares of A and vertical composition has an obvious RO-

structure, which yields the cotensor product 2 y A ([13]; see also 9.6).
(6) In other words a is lax-natural according to [14, 12J ("quasi-natural" accord-
ing to [11]).
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is an isomorphism between F and G (with regard to the vertical compo-
sition) iff the following conditions hold :

(2) for any object A, a A is iso , in B,

(3) for any morphism a : A* -&#x3E; A" the square 2.3.1 is commutative
in B.

Actually, the sufficiency of these being obvious, suppose that

is reciprocal to a ; then, for any object A, a A and BA are reciprocal
isos, and for any morphism a : A’ -&#x3E; A" the commutativity of 2.3.1
follows from :

2.5. RO-transformations have also a horizontal composition : if

is RO take for any A :

where the second equality comes from the square

which is commutative because y is RO and a A is proper. Now

is RO, by the horizontal composition of RO-squares.
The horizontal composition of RO-transformations is associative,

and has identities

2.6. RO-categories, RO-functors and RO-transformations, with the hor-
izontal and vertical compositions, build obviously a 2-category RO (or
also U-RO) : the "interchange law" and other axioms are easily
verified, in the same way that in CAT.
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There is a canonical 2-functor

which has already been defined in 1.7, 2.1 and 2.3.

2.7. Let EX (or U-EX) denote the sub-2-category of CAT consisting of
exact categories (0.6), exact functors and natural transformations. There
is also a 2-functor

whose composition with Prp : RO -&#x3E; CAT is the inclusion. It has already
been considered on objects (1.2) and morphisms (2.1). Now, if

is a 2-cell in EX, take

so that (Rel a)A is always proper ; for any a E Rel E(A’, A") the "quat-
ernary factorization" a = nqpm ([5J], § 1.5), yields the following commut-
ative diagram of E’ :

a fortiori all the squares are RO-squares ; by vertical involution and
vertical composition (2.2), one gets the RO-square 2.3.1.

2.8. Remark. In any RO-category the order  between morphisms is det-
ermined by its restriction to projections, in the following way : a b iff

Actually, if a  b :
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conversely, if (1) holds :

Analogously : a = b iff

2.9. It follows that an involution preserving functor F : A +B between
RO-categories is a RO-functor iff it preserves  between projections ;
moreover a RO-functor is faithful iff it reflects idempotent endomor-
phisms (from endomorphisms) and is faithful on projections.

3. Factorizing RO-categories.

A is always a RO-category.

3.1. We say that the RO-category A is factorizing (or FRO-category )
if any morphism a has an epi-monic factorization a = a2a, (necessarily
unique up to isomorphism, by 1.4) ; then

which also proves that if a is proper, we have an epi-monic factoriza-
tion of a in Prp A.

These categories determine a sub-2-category FRO of RO.

3.2. If e : A -&#x3E; A is an endomorphism in the RO-category A, with epi-
monic factorization e = mp, it is easy to verify that :

a) e is idempotent iff pm =1,
b) e is a projection iff p = m,
c) e is a restriction iff p = m and. m E Prp A,
d) e is a corestriction iff p = m and p E PrpA.

3.3. Proposition. The following conditions are equivalent :

a) A is factorizing,
b) for any object A, the embedding 1.5.1 :
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is an isomorphism of ordered sets (with regard to «).
c) for any object A, the anti-embedding 1.5.2 :

is an anti-isomorphism of ordered sets (with regard to « ).

Proof. a =&#x3E; b by 3.2 ; b =&#x3E;c by the anti-isomorphism 1.5.3 ; c =&#x3E;a : if
a : A -&#x3E; A’ is a morphism and c(a) = pp ( p E Quo(A)), then

and ap is monic since

3.4. Lemma. Consider the (possibly non-commutative) diagram (1) in the
RO-category A :

where u, v are proper and a = a2ai, b = b2b, are epi-monic factoriza-
tions. Then the outer square is RO (i.e., va  bu ) iff there exists a

proper morphism W such that the inner squares are so ; in such a case

Proof. First suppose that the outer square is RO, and take w = blual ;
then

Conversely, if there exists a proper morphism w such that the
inner squares are RO, the global square is so and :

3.5. We associate to any RO-category A a FRO-category F’ct(A) , which
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will be seen (3.8) to satisfy the obvious i-universal problem. The

objects of Fct A are the projections of A, its morphisms are the triples :

The composition, involution and order in Fct A are obviously :

3.6. So Fct A is a RO-category, and :

(a ; e, f) is a projection iff e = f, a is a projection and a a e,

(a ; e, f) is monic iff c(a) = e , epi iff 1 (a) = f,

the projection (e ; f, f) is a restriction iff e  f,
a corestriction iff e&#x3E;f,

(a ; e, f) is proper iff c(a) ? e and i(a)  f,

(a ; e, f) is null iff a is null in A.

Moreover Fct A has epi-monic factorizations :

where we write

3.7. It is now easy to define a 2-functor

so that, for any RO-transformationa :

(7 ) Equivalently : a - fae.
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We verify only that Fct a is really a RO-transformation from Fct F
to Fct G ; actually the morphism (3) is proper in Fct 8 by 3.6.6, and

while every (a ; e, f) in Fct(A) supplies the following RO-square in
Fct B (where A’ = Dom e, A" = Dom f) :

3.8. The canonical full embedding of any RO-category A in Fct A

gives a 2-natural transformation n: 1 -&#x3E; T.Fct : RO -&#x3E; RO, where T :
FRO -&#x3E; RO is the inclusion.

Moreover (1) is an i-universal arrow (0.6) from the object A
to the 2-functor T. 

Actually, every RO-functor F : A +T(B) towards a FRO-categ-
ory extends to a RO-functor G : Fct(A) -&#x3E;B, in the following way. For
any projection e’ of B, choose a monomorphism m,, so that e’ =

m,, (m,, )(3.2 b) and take :

Thus, G is a RO-functor

which extends F, as we assume that mls = Is for each object B of B.

Suppose now that

is a RO-transformation, and that Gi : Fct(A) -&#x3E; B extends Fi ( i = 1, 2).
For each e E Prj(A) the epi-monic factorization of (e ; 1 A, lA) in Fct(A) :
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is transformed by Gi into an epi-monic factorization of

therefore, by 3.4, there is a unique proper morphism of B

such that the inner squares of (7) are RO-squares :

hence a unique FRO-transformation y: G -G2 such that y. n A = p.

3.9. It is easy to see that this functor G is faithful iff F is iso.

Now, if the RO-category A is factorizing it follows (by taking
F = 1 A) that there is a faithful functor G : Fct A -&#x3E; A which is a retrac-
tion (G. Tl A = lA ) : A and Fct A are equivalent categories.

4. RE-categories.

We introduce here our generalization of (the categories of rel-
ations on) exact categories, essentially based on the fact that in a RO-

category Rel(E) every projection e : A -&#x3E;A is associated with a subquo-
tient H/K of A with regard to E [5], hence it has a numerator

and a denominator

the latter is also determined by the associated corestriction

The null restriction
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and the null corestriction

will also be of interest.

4.1. Definition. A RE-category is a triple A = (A,- ,  ) satisfying :
(RE.O) A is a RO-category,
(RE.1) for every projection e

a) there exists exactly one restriction n(e) (the numerator of e)
such that e °° ne  e. 

b) there exists exactly one corestriction dC(e) (the c- denominator
of e 8)) such that e°° dce &#x3E; e. 

(RE.2) Every object A has a null restriction wA and a null corestriction
Q A (unique by 1.8.5-6).

The order duality (1.2) turns numerators into c-denominators
and null restrictions into null corestrictions.

4.2. Lemma. In the RO-category A satisfying (RE.1), with

Proof. (1)

(2) : obvious ; (3) : if f &#x3E; 1, ne is the numerator of the projection efe,
since efe °° ne  e  efe..

4.3. Lemma. In the RO-category A satisfying (RE.1), the following con-
ditions on a, b E A(A’, A") are equivalent :

a) a  b,
b) there exist e e Rst(A’) and f E Crs(A") such that fa = be,
c) there exist e E Rst(A’) and f E Crs(A") such that

(8) The denominator, a restriction, will be defined in 4.8.
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Proof. It is obv ious that d =&#x3E; c =&#x3E; b =&#x3E; a ; a =&#x3E; d :

4.4. Proposition. If A is a RO-category satisfying (RE.1), and e , f in
Prj(A) : 

Proof. The right-hand equivalences follow from 1.6.

a) If e « f the projections (1.6) :

verif y

hence (4.2.2)

Conversely, when these conditions hold :

and :

and applying 4.2.3 to the first and last term of (4) one gets :

that is ne °° nf ; by order duality, dce °° dcf . The converse property fol-
lows at once from 4.2.1.

4.5. A RO-category A satisfies (RE.2) iff it satisfies the following con-
dition :

(RE.2’) for every object A there exist endomorphisms wA’ S2a : 
A -&#x3E; A such that :

a) for every endomorphism a : A -&#x3E; A, wA  a  Q A
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Actually, (RE.2) implies (RE.2’) via 1.8.5-6 ; conversely if a and

b hold, then wA  1 A  S2A and for any a’ : A -&#x3E; A :

We notice also that the object A is null (1.9) iff 1A = W A, iff

1A =QA, iff w A= QA.

4.6. From now on A is a RE-category. If Nrp(A) is the set of null pro-
jections z of the object A, ordered by , there are biunivocal corresp-
ondences :

which, by 4.4, preserve the orders  .
Actually, for e E Rst(A) and z E Npr(A) :

4.7. By composing 4.6, 1-2, one gets a biunivocal correspondence :

which preserves  (hence reverses « ). In particular :

It should be noticed that this C-duality between restrictions and
corestrictions of a RE-category A is given by the whole RE-structure,
and has little to do with the order duality (which turns restrictions of
A into corestrictions of its order-opposite RO-category, preserving the
order « ). It will be seen (6.1.5) that the c-duality extends the (ker-cok)-
duality between subobjects and quotients, in an exact category.

4.8. This duality supplies, for any projection e E Prj(A), a denominator
d(e) E Rst(A) and a c-numerator !2C(e) E Crs(A) :
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where the right equality in (1) follows from 4.7.1, 4.6.1, 4.2.4 :

4.9. Proposition. For e E Prj(A) and a : A’ -&#x3E;A" :

c) the projections e’ = de and e" = n c e are respectively charac-
terized by (1) and (2) : 

Proof. a)

b) If e is null, de = n(e we) = ne; conversely if de - ne, then

c) e’ = ne verifies (1) by a ; conversely any projection e’ satis-

fying (1) coincides with de = n(e we) since (4.2.2) its product with dC(ewe)=
= ewe is ewe

4.10. Every morphism a : A’ -&#x3E; A" of the RE-category A determines the
following restrictions of its domain and codomain, which we call defini-

tion, values, indetermination : .

so that
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a is monic il

a is proper i

a is null iff

It will be seen in 6.2 that, when A is a category of relations
Rel(E), def(a) simulates the E-subobject def (a): Def(a) &#x3E;-&#x3E; A’ [5 ], and
so on.

4.11. Let A be a RE-category : for every connected objects A’,
A" there exist unique w A’ A", QA’A", 0A’A" £ A(A’, A") such that :

(1) for each I-

(2) for each a

Equivalent characterizations are :

indeed, take some a and def ine :

Then the properties (1)-(3’) are easily verified, while the uniqueness is
obvious or follows from 1.8.

4.12. As a consequence of 1.9 and 4.11, any null object in a connected

RE-category A is a zero-object (i.e., initial and terminal) for Prp A.
We shall see that such objects necessarily exist when A is also factorizing
and non-empty. 

5. RE-functors and RE-transformations.

A and B are RE-categories.

5.1. Definition. A RE-functor will be a RO-functor F : A -&#x3E; B between
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RE-categories, which satisfies the following equivalent conditions :

a) F preserves null morphisms,
b) for any object A, F(wA) = WFA,
c) for any object A, F(PA ) = QFA,
d) for any cnnected pair A’, A": FwA’,A")-wRA’,FA: 

e) for any connected pair A’, A" : F( QA, A") E2FA1,FA" f
f) for any connected pair A’, A" : F(0A’A"- = 0FA’ ,FA",
g) F preserves the operators n, dC , d, nc, def, ann, val, ind

and Qduality. 

5.2. Let F : A+ B be an involution-preserving functor (between RE-cat-
egories) ; it is easy to see that :

a) F preserves the order iff it preserves restrictions and cores-
trictions (from 4.3),

b) if A is factorizing, F preserves the order iff it preserves pro-
per morphisms (from a and 3.2),

c) if A is connected, with a null object Ao, F preserves
null morphisms iff F(Ao) is null in B.

5.3. Definition. A RE-transformation will be a RO-transformation

between RE-functors. Thus, we have RE, a sub-2-category of RO.

5.4. Lemma. Let F : A -&#x3E; B be a RE-functor, and a, b E A(A’, A"); then
Fa  Fb iff there exist a’, b’ E A(A’, A") such that 

Proof. The condition (1) is clearly sufficient ; conversely, if Fa  F b
by 4.3 d :

and therefore it suffices to take

5.5. Corollary. A faithful RE-functor F : A + B reflects the order bet-
ween parallel morphisms ; it also reflects proper morphisms and null mor-
phisms ; moreover, when acting on endomorphisms, it reflects restric-
tions and corestrictions.

(9) Here a’ -F b’ means that a’ and b’ are parallel maps and Fa’ = Fb’.
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5.6. It follows from 5.2 a and 5.5 that, if

are RE-structures on the same involutive category (A, -) and moreover
the restrictions and corestrictions of A 1 are still so in A2 , then A1 = A2.
The same condition holds, a fortiori, if 1 implies 2 . 

It can be noticed that, if A1 = (A, -) is a non-null RE-categ-
ory (has some non-null object), then A1 itself and its order opposite
A 2 = (A, -,&#x3E;, are different RE-structures on LA, -), because WA# Q A for
every non--null object A (4.5). 

5.7. A RE-subcategory A’ of A is an involutive subcategory satisfying :

(1) for each A E Ob A’ and each e E Prj A (A), the projections n( e) , 
dc(e), wA, QA belong to A’. 

Then A’ will be provided with the induced RE-structure, that
is the only one which makes the inclusion A’ - A a RE-functor.

It should be noticed that any full subcategory (more generally any
Prj-full involutive subcategory (5.11)) of a RE-category is a RE-sub-

category, and any intersection of RE-subcategories is so.

5.8. If A is a subgraph of A, the RE-subcategory of A spanned by A is
the intersection A’ of all RE-subcategories of A containing A ; A’ is

given by :

where the sets An C Mor A are inductively defined as :

(3’) if a E b:.n , then a E An+1 
(3") if a, b E An are composable in A, then
(3"’) if e 6 An is a projection of A, then

This proves that

card(Mor A’) max(card(Ob A), card(Mor A), N0).

Any two RE-functors F, G : A + B which coincide on A coincide also
on A’.

5.9. A RE-functor F : A +C is called a RE-quotient if it is bijective
on the objects and full ; by 5.4 the RE-structure on C (i.e., composition,
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involution and order) is then determined by the one of A, and by F.
Analogously, if F : C -&#x3E; B is a faithful RE-functor, the RE-

structure of C is determined by the one of B, by the mapping F and by
the domain and codomain mappings of C (by 5.5).

5.10. Any RE-functor F : A -&#x3E; B has an essentially unique RE-factoriza-
tion

where Fi 1 is a RE-quotient and F2 is a faithful RE-functor. To prove the

existence, consider the (usual) CAT-factorization of F [10] : F1 is a

quotient and F2 a faithful functor ; then define the involution on C via
F1 (F1 (a) - = Fl (a) ) and the order via F2 : r 

c  c’ iff they are parallel in C and F2(c) F2 (c’) in B ;

C is thus a RO-category and (1) a factorization in RO. Now, any e in
Prj C(F1A) is the F1-image of some e E Prj A (A) : actually, if

then

thus the existence of numerators and c-denominators of projections of
C comes from A, while their uniqueness comes from B ; last Fl supplies
the null restrictions ( w ) and the null corestrictions ( Q ) of C, and F2
preserves them.

5.11. The RE-functor F : A - B will be said to be Prj-full (resp. Prj -
faithful ) if for any A E Ob A the mapping

is surjective (resp. injective) ; any full (resp. faithful) functor is so.

Analogously one can define Rst-full RE-functors, and so on.

However, the following conditions on the RE-functor F : A -* B,
having RE-factorization F = F2F1 , are equivalent :

a) F is Prj-full,
b) F is Rst-full,
c) F2 is Prj-full (and Prj-faithful),
d) F2 is Rst-full (and Rst-faithful).

In fact, a =&#x3E; c and b =&#x3E; d are obvious, while c =&#x3E; d follows
from 5.5 and 4.7. Analogous results hold for the "local" faithfulness of
F and F 1 .
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We also remark that a Rst-faithful RE-functor reflects
the order «of projections, hence also their order  (4.4) ; it also re-
flects monics, epis, isos, proper morphisms, null morphisms (4.10.7-9).

6. Exact categories and RE-categories.

6.1. Main Theorem. Let A = (A, N, ) be a RO-category and E = Prp A.
Then the following conditions are equivalent :

a) A is a factorizing, connected, non-empty RE-category.
b) E is exact and the embedding E -&#x3E;A is (isomorphic to) the

canonical symmetrization of L, that is the embedding E - Rel(E).

If these conditions hold, for any e E Prj A (A) (notations as in

(4) Ao is a zero object for E iff it is a null object for A.

(5) there are commutative squares of order isomorphisms (-&#x3E;) and anti-
isomorphisms (-- -&#x3E;), with regard to - : 

Proof. First we prove b =&#x3E; a, as well as properties (1)-(5). We can sup-
pose that A - Rel(E) is precisely the RO-category of relations on the
exact category E = Prp A : thus A is trivially connected and non-empty
(so is E) and factorizing [5]. As regards (RE.l) : if e E Prj(A), then ([5],
§ 5.21),

are proper morphisms, so that

conversely, if

then (3.2)

where n is monic and p is epi in E (and in A) ; now,
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is a coternary factorization of e([5]y § 5.15) so that

in other words

are uniquely determined, and two formulas in (1)-(2) are checked.
Now, the axiom (RE.2) is trivially satisfied by assuming (3), and

(4) is a consequence of 4.12. Let us verify (5) : let

then

commute([5], § 5.21.1-2) and

by 4.9.1, e = d(f) = fc. The other two formulas in (1)-(2) follow easily ;
for example, :

Conversely, let a be assumed. First we prove that A has some null ob-

ject ; if A is an object, consider the epi-monic factorization of 0A A in A :

then

hence A, is null in A and a zero-object in E (4.12). We proceed
now to verify Puppe’s axioms (Kl-3) [201, to ensure b.

The first follows trivially from (RE-0), 4.11 and the above arg-
uments. As to (K 2 ), let

(i.e., Ia  I b, in Puppe’s notation). By 4.9 d :

and, by 4.8, 4.4 and 4.7 :
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By duality on the order , one also has that

implies aab &#x3E; b .

Last, for (K 3), let a E A(O, A) : a is a null morphism, hence (4.9 and
3.2 c) : 

where m : A’ - A is a proper monic of A (hence monic in E) ; moreover
a = m Q 0A by 1.8.2, as :

where the third equality in (14) follows from 4.9 d.

6.2. Let E be an exact category and A = Rel(E). If

it is easy to derive from 6.1 that :

Moreover the restriction

is characterized by :

a) ue 0 is null,
b) if v is a proper morphism and uv is null, then v = eov,

and can be called the - -kernel of u ; analogously one characterizes the
- -cokernel of u, f 0 = c(cok u) = (val u)c .

6.3. The above Theorem 6.1 supplies a 2-adjoint 2-equivalence :

where :
- REX is the full sub-2-category of RE determined by connected,

non-empty, factorizing RE-categories ;
- Rel is the restriction of the 2-functor Rel : EX-&#x3E; RO (2.7) ac-

cording to 6.1 and 5.2 c) ;
- Prp is the restriction of the 2-functor Prp : RO +CAT (2.6),

according to 6.1 and to the following fact : if F : A + B is a REX-func-

tor, then it is the symmetrization (i.e. the involution-preserving exten-
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sion of

a zero-preseving functor which is exact [5], Th. 6.15);
- the equality Prp Rel(E) = E has already been considered (1.7) ;
- for each REX-category A

is the unique isomorphism of RE-categories extending the identity

the family e = (e A) is natural ;
-last, the composite transformations

are identities, since n, Prp e and E Rel are so.

6.4. More generally, call a category E component-wise exact if its con-

nected components are exact (the empty category, having no connected
components, is allowed). Call EX’ the (obvious) 2-category of these cat-
egories.

Then 6.3.1 trivially extends to a 2-adjoint 2-equivalence

where FRE is the 2-category of factorizing RE-categories.

6.5. Theorem. For any RE-category A, B - Fct A is also RE; the former
is connected and non-empty iff the latter is so. Moreover, for

(that is e °° x in Prj (A’)) :

Proof. We know from 3.6 that B = Fct A is a factorizing RO-category.
Now e’l = (xel x ; x, x) trivially satisfies the conditions of (RE.l a) :
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Conversely, if e’l = (gel ; x, x) verifies (6) then :

so that, by 4.4,

In the same way

is the unique projection of x satisfying

Thus we have proved the axiom (RE.1), together with the properties (1)
and (2), while the axiom (RE.2) is clearly satisfied by assuming
(5).

Last (3) and (4) follow from (1), (2), (5) ; e.g. :

6.6. Corollary. For every RE-category A there is a full RE-embedding :

which is an i-universal arrow from A to the 2-functor Rel : EX’ -&#x3E; RE.

Thus, RE-categories coincide up to isomorphism with the full subcatego-
ries of the categories of relations on componentwise exact categories.

Proof. By 6.5, the i-universal arrow A -&#x3E; Fct(A) in 3.8.1 embeds RE-cat-

egories into FRE-categories ; by composition with a suitable 2-universal
arrow related to the 2-equivalence 6.4.1 one gets (1). The last assertion
follows from the preceding one and from 5.7.

6.7. Every componentwise exact category E has a Sub-full exact embed-
ding : 

where Z(E) is the exact category obtained by adding to E, for every
pair A, B of disconnected objects of El one morphism 0A B: A -&#x3E; B, with
obvious compositions ; when E is empty, take Z(E) = 1.
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It is easy to see that (1) is an i-universal arrow from E to the
2-inclusion EX -&#x3E; EX’. 

6.8. By composing the j-universal arrows "D" in 6,6.1 and 6.7.1 ] nnp nRtH

an i-universal arrow

from the RE-category A to the 2-functor Rel : EX -&#x3E; RE ; (1) is a Prj-
full RE-embedding. 

Thus, RE-categories coincide also, up to isomorphisrri, with the

Prj-full involutive subcategories of the categories of relations on exact
categories.

6.9. Proposition. In any RE-category A the ordered sets Rst(A) and

Crs(A) are modular lattices. If e, f e Prj(A) :

and in this case

Proof. By 6.6, A can be embedded in Rel E where E = Prp Fct A is

componentwise exact, hence has modular lattices of subobjects and
quotients ; therefore all lattices Rst (A) and Crs(A) are modular (6.1.6)
and the property a is just a restatement of [8], § 2.13.

In b, the first condition implies the second one, which is equi-
valent to the third by a ; finally, if efe = fef then :

Last, c and d follow from a and b.

6.10. Let

the mapping

is an isomorphism of ordered sets, with regard to  (4.8.3, 6. 9d) ; there-
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fore (Prj(A),  ) is a modular lattice.

If e1 &#x3E; e2 in Rst(A), we shall write e1/e2 the only projection e
of A such that

in other v/ords :

7. Transfer functors and distributivity.

We extend here to RE-categories some notions concerning the
transfer of subcbjects (direct and inverse images) for exact categories
[10].

7.1. Every RE-category A is provided with a canonical RE-functor, the
transfer-functor of A

into the REX-category of modular lattices and modular relations [10]
§ 3.3, associating to every object A the modular lattice RestA(A) of its
restrictions, and to every morphism a : A’ -&#x3E; A" the modular relation :

Actually, the composed RE-functor :

(where E = Prp Fct A is componentwise exact and S = Rel(SubE) is the

symmetrized of the transfer functor of E ([10], § 4.1)) is transformed into
the above mapping RstA by the family of isomorphisms 1 = (i A) (6.1.6).
This is natural because if 

By 4.10 :

The functor Rst A is obviously Rst-faithful and Rst-full (5.11) ; in
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particular it reflects monics, epis, isos, proper morphisms, null morph-
isms.

Last, we remark that the transfer functor Rst : Mlr+ Mlr of the
RE-category M1r is isomorphic to the identity . functor 1 via :

7.2. Analogously to [101, § 4.7, every RE-functor F : A -&#x3E; B defines a
horizontal transformation of vertical functors into the double category
Mhr of modular lattices, their homomorphisms and their modular rela-
tions (or an Mhr-wise transformation according to [I], p. 251) :

Actually, Rstp is the unique horizontal transformation

since, for any e£RstA (A), necessarily : 

F is Rst-faithful or Rst-full iff all the mapping (2) are respectively in-
jective or surjective.

7.3. We say that the RE-category A is transfer if its transfer functor

is faithful.
For every RE-category A, the RE-factorization (5.10) of

its transfer functor Rst A will be written

It is easy to see that the (faithful) functor R2 is isomorphic to
RstTrn(8J : therefore Trn(A) will be called the transfer RE-category,
associated to A.

We say that A is Rst-finite whenever all the sets RstA(A) are
finite ; in this case the functor Rst,q takes values in the full subcategory
Mlrf of finite modular lattices, which is clearly Horn-finite. Therefore
every transfer Rst-finite RE-category is Hom-finite.

Obviously these notions agree with the analogous one for
exact categories ([10], § 5.1, 5.2).
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7.4. We say that the RE-category A is distributive (or also orthodox )
if it satisfies the following conditions, equivalent by 6.1, 6.4, [7],
Cor. 1.10, and [8J, Thm. 2.8 :

a) for any object A, Rst(A) is a distributive lattice,
b) for any morphism a : A’ -&#x3E; A", the mapping

is a lattice homomorphism,
c) the componentwise exact category Prp Fct A is distributive,
d) the category A is orthodox, 
e) the category A is quasi-inverse.

We only recall [6J that a category A, provided with a regular
involution, is orthodox when its idempotent endomorphisms are

stable for composition.
Then A is provided with a canonical preorder a O b (domination)

on parallel morphisms, consistent with composition and involution, def-
ined by the following equivalent conditions :

(3) there exist idempotent endomorphisms e, f such that a = fbe,

(4) there exist projections e, f such that a = fbe.

The quotient of A modulo the associated congruence 4l is an
inverse category.

For more informations about orthodox categories, inverse cat-

egories and their links with induction, canonical isomorphisms and dis-
tributive exact categories, see [6, 7, 8, 10] and their references.

7.5. Analogously, we say that A is boolean when, for every object A,
the lattice Rst(A) is a boolean algebra ; i.e., when the associated com-
ponentwise exact category Prop(Fct(A)) is boolean (see [101, 6.1 and
characterization 6.4).

7.6. If F : A -&#x3E; B is a RE-functor, it follows easily from 7.2 that :

a) if F is surjective on the objects and Rst-full, while A
is distributive (resp. boolean), so is B. 

b) if F is Rst-faithful and B is distributive (resp. boolean), so
is A.

7.7. Each RE-category A has an associated modular expansion Mdl(A).
The objects are the pairs (A, X), where A is an object of A and X is
a (modular) sublattice of RstA(A) containing its least and greatest ele-
ments ( W A and 1A ). The morphisms
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are those morphisms a E A(A, A’) such that :

In particular :

The composition, involution and order of Mdl(A) are those of A.

7.8. If (A, X) is in Mdl(A) and e E Prj (A) :

because

while for x E Rst(A),

This proves that Mdl(A) is a RE-category, and that the
transfer functor Rst : Mdl(A)+ Mlr is described by :

7.9. There is an obvious faithful RE-functor

Every RE-functor F : B -&#x3E; A has a unique Rst-full lifting

verifying F = UF#.

7.10. The distributive expansion Dst(A) of the RE-category A is the
full subcategory of Mdl(A) having objects (A, X) where X is distributive.
It is a distributive RE-category, by 7.8.2. The faithful RE-functor U :
Dst(A) -&#x3E; A solves the above lifting problem (7.9) whenever B is

distributive. Analogously one defines the boolean expansion Bln(A).

7.11. Last we remark that larger modular, distributive and boolean expan-
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sions can be built like in [10 ], § 6.6, via horizontal comma squares of

vertical RE-functors.

8. Idempotent RE-categories.

8.1. We say that the RE-category A is idempotent if all its endomor-

phisms are so. 

In such a case, for parallel morphisms a, b (by 2.8) :

and a RE-functor F : A -&#x3E; B is faithful iff it is Prj-faithful (iff it is Rst-

faithful). 

8.2. Every idempotent RE-category is trivially orthodox (i.e., distribu-

tive), and also transfer, by the above remark. Every idempotent Rst-
finite RE-category is Hom-f inite, by 7.3.

8.3. If F : A + B is a RE-functor, it is easy to see that :

a) if F is a RE-quotient and A is idempotent, so is B,
b) if F is faithful and B is idempotent, so is A. 

8.4. Theorem. Let F : A + B and G : A -&#x3E; C be RE-functors

If A is idempotent and G is a RE-quotient, the following condi-
tions are equivalent :

a) F factors through G (via a unique RE-functor H),
b) for all morphisms a, a’ of A, if G(a) = G(a’) then

F (a) = F (a’) , ,
c) for all projections e,
d) for all restrictions e,
e) for every projection
If A is also factorizing, the above conditions are also equivalent

to : · .

f) for each projection e of A, if G(e) = 1 then F(e) = 1,
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g) for each object A of A, if G(A) is null so is F(A).

Proof. a -e and d =&#x3E; c are obvious.
e P d : Let e, f e Rst (A) with G(e) = G(f) , and consider the projec-
tions (6.10) :

By 4.9, G (ei) is null, and so is F(ei) for i = 1, 2 : in other words

c =&#x3E; b : We can suppose that F too is a RE-quotient (otherwise, use the
RE-factorization of F (5.10)), so that B is idempotent. The conclusion
follows from 8.1 : if G (a) = G (a’) , then

analogously,
Def ine :

where G(A) = C and G(a) = c . H is obviously a functor, which preserves
involution and null morphisms. It also preserves the order by 5.2 : if
e = G(a) is a restriction of C, then

so that H (e) = F (n(aa)) is a restriction.

Last, suppose that A is factorizing.
a P f is obvious. f =&#x3E; g : if G(A) is null, then G( W A) = 1GA , so that

and F(A) is null.

g =&#x3E; e : if e : A +A is a projection of A with epi-monic factorization

and G(e) is null, so is the object G(Ao), hence so are F(A.) and F (e) .

8.5. It follows immediately that the two RE-quotients F: A-&#x3E; B and G :
A -&#x3E;C of an idempotent RE-category A are equivalent (that is, there
exists an isomorphism of RE-categories H which makes 8.4.1 commuta-
tive) iff F and G annihilate the same projections of A (or also the same
objects, provided that A is factorizing). In other words, a class
of equivalent RE-quotients F : A-&#x3E; B is determined by "Ker F ", the
subset of A containing the projections annihilated by F.
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8.6. Theorem. Let A be an idempotent RE-cat6gory RE-spanned by its
subgraph A (5.8). For every object A of A the distributive 0,1-lattice
Rst A(A) is spanned by its subset : 

where M A is the set of those morphisms a in A which can be written as
a composition,

If all these subsets X% are finite, A is Hom-f inite. If A is

finite, so is A ; in other words : a finitely generated idempotent RE-cat-

egory is finite 11).

Proof. First, notice that A and A have the same objects (5.8).
Let t : A -&#x3E; A be the inclusion morphism, and consider the embedding

where, for every A, XA is the (distributive) sub-0, 1-lattice of Rst(A)
spanned by X°A . This statement requires checking that, for d E A (A, A’) ,

Since A is distributive, d R and dR are lattice-homomorphisms (7.4), gen-
erally not preserving the extremes ; thus we only need to verify that

For example, let a E M A satisfy the conditions (2)-(4), and verify that
d R (va1(a)) e X A’ - If

Otherwise, A’ = Cod ai for one index i :

(1°) That is, the "path" a has at most one initial loop, when Dom al = Cod ai ,
for one index i = 1, 2, ..., n .

(11) Notice that a finitely generated idempotent semigroup (or category) is gen-
erally infinite [19].
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Decompose da = e.b, where

the last e is an idempotent, hence in the quasi--inverse (7.4) semigroup
A ( A’ , A’) :

where the second equality follows from the functoriality of transfer

(7.1), the third from its definition, the fourth from (10), the fifth from
6.9 a, and the last from 4.10. Since. both b and e are in MA , , we
have d R(val a) E X gi and our partial goal is reached.

Now, call A 1 the RE-subcategory of Dst(A) RE-spanned by t (A),
U 1 : A1 -&#x3E; A the restriction of the forgetful functor U : Dst(A) -&#x3E; A, and
t1: A -&#x3E; A the restriction of t 1 . As t = U ti = U 1 t1 , it follows that
U 1 is bijective on the objects (so are t and t i ) and full (because t is

RE-spanning and by 5.7) ; therefore U1 is Rst-full, and for every object
A of A : 

is surjective : in other words, Rst(A) = Im cp = XA .
Finaily, a finitely generated distributive lattice is finite. Thus,

if all the sets X A are finite, A is Rst-finite, and also Hom-finite by 8.2.
Now, if L is finite, so are the sets XA0 and A is Hom-f inite by the above
argument ; moreover A has a finite set of objects (the same as A),
hence it is finite.

8.7. We say that the (componentwise) exact category E is pre-idempotent
when Rel(E) is idempotent ; a direct characterization will be given in
8.8 c.

The paradigmatic example is the category 1. of small sets

and common parts : a morphism L : S +T is any common subset L of
the small sets S and T ; the composition is the intersection.

8.8. Theorem. Let A be a factorizing RE-category and E = Prp A the
associated componentwise exact category. The following conditions are
equivalent :

a) A is idempotent,
b) for every two parallel rnonics h, k : L + A in A, kh = 1L ,
c) if

are canonical factorizations in E and in the (generally non commutative)
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diagram of E

the epi-square is a pushout and the monic-square a pullback, then ql nl
and q? n2 are equal isomorphisms I2).

When these conditions hold :

d) every two parallel monics of E coincide.

Proof. Trivially a and b are eqiivalent.
b oc : Let vi = qini in E ; since pushouts of epis are bicommutative
in A, we have : 

analogously v1v2 = 1C . Thus vi and v2 are reciprocal isomorphisms,
and v1 = v2 .

c =&#x3E; d : If m1, m2: M -* A" are parallel monies of E, take

then nl and n2 are equal isos and M1 = m2 ·

c =&#x3E; b : Let h, k : L -+ A be parallel monics in A, and consider the

following factorizations

where p1, q are E-epis and n, m 1 are E-monics :

(12) It can be seen that m1n1(q1n1)-1q1p1 = m2n2(q2n2)-1q2P2 is the intersection
of ui and u2 with respect to the canonical order (L on E.
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then factorize qn = m2p2 in E, and apply the condition c to the inner

square :

thus kh is a proper morphism. Analogously, (kh)N = hk is proper : it
follows that kh : L + L is iso in E. Since it is parallel to 1L , by the
above argument (c=&#x3E;d ), kh = 1L 

9. RE is complete.

We prove here that RE is 2-complete [13], while its sub-2-cat-

egory REX (or the equivalent 2-category EX) is only 2-pseudocomplete.

9.1. RE has small 2-products. If (Aj )i£ I is a family of RE-categories
indexed on a small set, take A = II A i the usual product in CAT,
with the obvious involution and order ; A is a RE-category, the canon-
ical functors Pi : A -&#x3E; Ai are RE-functors, and satisfy the 2-universal
property : for any family

of RE-transformations there is exactly one RE-transformation

actually, for any object B of B, a(B) = (a i B)iEI ·

9.2. It will be noticed that the terminal object of RE (the product of
the empty family) is the RE-category 1 whose only object and morphism
we write 0 and lo , with trivial involution and order. 

9.3. RE has 2-equalizers. Let F, G : A-&#x3E;B be RE-functors, and Z C A
their usual equalizer in CAT, provided with the induced involution and
order. By 5.1 and 5.7, Z is a RE-category and the inclusion J : Z+ A
a RE-functor. The 2-universal property is satisfied, in the same

way as in CAT.

9.4. Thus RE has all conical 2-limits [13J. Analogously RO, and the
inclusion 2-functor RE -&#x3E; RO creates these limits.

It can also be proved that the forgetful functor RE, -&#x3E; CAT 1
between the underlying categories creates conical limits. For example,
if Pi : A -&#x3E; Aj ( i E I ) is the CAT-product of the family (Ai ) of RE-

categories, and
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are RE-structures on A agreeing with all Pi , then trivially N1 - -2 ; 
moreover, if e e Rstn (A) decomposes (according to A2 ) as

then

is a restriction-corestriction factorization in A of the restriction Pi(e) ;
therefore Pi e - Pi e’ for every i , that is e = e’ E RstA,(A). According to
5.6, A1 = A2.

9.5. RE has 2-comma squares. Let

be RE-functors :

and build the category Z whose objects are the triples

while the morphisms are pairs

with

The RE-structure of Z is obvious ; Ply P 2 and a: FP1 -&#x3E; GP2
are as usual :
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and a is a RE-transformation by (4). The 2-universal property in RE is

trivially satisfied. We write Z = (F+ G) ; it should be noticed that the

category underlying Z is not even a subcategory of the CAT-comma cat-
egory of F and G.

9.6. Theorem. The 2-category RE is complete with regard to limits ind-
exed by 2-functors J : D -&#x3E; Cat, where D is a small 2-category.

Proof. The 2-category RE is naturally enriched over Cat’, the cartesian
closed category of U’-small categories, with U’ some universe such that
U E U’ . Its completeness with regard to the above considered indexed
limits depends [21, 12] on the existence of small conical limits

(proved in 9.1, 9.3) and of cotensor products of the form 2 y A. This is
the solution in RE of finding a natural isomorphism :

The solution is clearly

the isomorphism being defined by the universal property of comma

squares.

9.7. Last, we remark that the forgetful 2-functor EX -&#x3E; CAT creates 2-

products (trivial), does not create equalizers or pullbacks which

generally fail in EX [17], while it does create 2-pseudo-equalizers. Thus
EX is 2-pseudocomplete, hence bicomplete, while it is not complete.
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