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ON CONNECTIONS, GEODESICS AND SPRA YS IN
SYNTHETIC DIFFERENTIAL GEOMETRY

by Marta BUNGE and Patrice SA W YER

CAHIERS DE TOPOLOGIE
ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

Vol. XXV-3 (1984)

R6sum6. Cet article traite de la th6orie des connexions en G6o-

metric diff6rentielle synth6tique. Il possede deux principales fa-
cettes. Nous discutons d’abord de plusieurs notions classiques de
fagon synth6tique. Nous utilisons ensuite ces pr6liminaires pour
6tablir 1’equivalence, sous certaines conditions des concepts sui-
vants : connexion et fonction de connexion, connexion et gerbe,
et leurs g6od6siques respectives. Nous comparons enfin deux no-
tions synth6tiques de gerbes dues à Joyal’ et à Lawvere.

0. INTRODUCTION.

A synthetic definition of what a connexion is has already been
given by Kock and Reyes [4] ; they also partially compare it therein with
the notion of a connection map in the sense of Dombrowski and
Patterson [7]. Other (combinatorial) notions of a connection were later
proposed by Kock and are still being systematically exploited. In
this paper we pursue the definitions given in [4], and push them further
in order to include the relationship between connections, geodesics
and sprays ; a topic not yet touched upon in any detail by the various
synthetic treatments of this subject. The definition of spray we use was

proposed by Lawvere (lecture, Topos meeting, McGill, October 10, 1981) ;
it is the synthetic version of the usual classical notion.

After showing the equivalence (under some extra assumption ;
the "short path lifting property") of connections in the two senses men-
tioned above ; i.e. that of Kock and Reyes on the one hand and
the infinitesimal form of the Dombrowski-Patterson connection maps on
the other, we proceed to the study of prolongations (cf. also [7]). We
then define covariant differentiation of vector fields over a curve, and
use it to give a basic definition of geodesic for a connection.

The main theorems in this paper refer to the passages : connec-
tion - geodesic spray and spray - torsion-free connection, which we prove
synthetically. Both of these proofs, we feel, provide ample evidence of
the power and simplifying nature of the synthetic (versus the classical)
point of view.
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In the process of establishing the Ambrose-Palais-Singer Theorem
this way, we need to assume a "property of existence of exponential
maps". This is done in two ways, a local and an infinitesimal one, accord-

ing to which notion of spray we are considering at the moment. Indeed,
alongside the synthetic version of sorav proposprl by I 8BNB/prp, we con-
sider yet another synthetic version proposed by Joyal (lecture, McGill
University, November 23, 1981) and then compare the two. We find that
Joyal sprays, although simpler from the point of view of stating the
homogeneity condition, are a bit more special than the Lawvere sprays
in the synthetic context. However, the assumptions needed to render
them equivalent are mild, and certainly true of classical manifolds.

Among these is a property which we label the "iterated tangent bundle
property" ; of this we prove it holds of any locally parallelizable object
in any model.

We assume familiarity with portions of Kock’s book [ 3] as
well as with the article of Kock and Reyes [4].

The contents of this paper were delivered by the first author at
a workshop which took place in Aarhus in June 1983. A preliminary ver-
sion of this paper appears in the corresponding volume, edited by A.
Kock : Category Theoretic Methods in Geometry, Aarhus Var. Pub. Ser.
35, 1983. Thanks are given to the Danish Science Research Council of
Canada for the financial support which made it possible for the

first author to attend this workshop. The second author is presently hold-
ing a scholarship of the National Sciences and Engineering Research
Council of Canada.

Thanks are also due to Anders Kock and Bill Lawvere whose re-
marks were very useful when preparing the final version of this paper.

1. CONNECTIONS VERSUS CONNECTION MAPS.

A synthetic definition of a connection is given in [ 4] as the infin-
itesimal germ of parallel transport. An alternative interpretation of what
connections are used for, leads to the notion of a connection map. Con-
nection maps (also in their infinitesimal guise) provide a simple approach
to prolongations and to Koszul derivatives. For this reason, it is

important that we begin by establishing the equivalence of the two data

provided by a connection and by a connection map. This is partially car-
ried out in [ 4 ] and completed below.

As in [4] , we assume that p : E -&#x3E; M is a vector bundle, i.e., an
R-module in E/M, with E, M infinitesimally linear. The basic example
will be the tangent bundle 

-

but it will be important to use two different notations for it in order to
deal with parallel transport while distinguishing the vector being trans-
ported from that which effects the transport.
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On EO there are two linear structures. Since E is infinitesimally
linear, there is the tangential addition on the tangent bundle TIE : E 0-+ E.

We shall denote it by ®. Corresponding to it is the scalar multiplication
given by

ED is also equipped with PD : ED -&#x3E; M D. For f, g in the same fiber

the following addition is defined :

Together with

this is an R-module structure on the fibers.
Consider now the map

notice that the diagrams

commute. Using the vertical maps on the right to define 0, respectively
+, the linear structures on MD XM E in the obvious fashion, K ends up be-
ing linear with respect to the two structures (cf [ 4] ).

Definition. A connection on p : E -&#x3E;M is a splitting V of K, which is lin-
ear with respect to both the + and the + structures.

Take the case of the tangent bundle 7T M: M 0 -+ M, where we as-
sume furthermore that it is a trivial bundle (i.e., M is "parallelizable"),
i. e., that a Euclidean R-module V exists with
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In this case, a connection on 7T M: M 0 -+ M is a rule which, given (t, v)
in M 11 XV, 

I

allows for v to be transported in parallel fashion along the (infinitesimal
portion of the curve with velocity) vector t , in pictures : the infinitesi-
mal diagram can be completed as follows :

The importance of parallel transport is. that it allows for the

comparison of velocity functors v, w attached to different (nearby) posi-
tions along a curve. This transport must therefore be required to

be a linear map between the tangent spaces involved (@-structures). The
other linearity will find justification later, when we deal with sprays.

Now, one reason for the necessity of comparing nearby velocity
vectors is the need for computing acceleration in terms of small changes
in the velocity vectors. Given a motion § (t) in M, we may always consi-
der the iterated vector field §"(t) of the velocity field §’(t) , but in or-
der to interpret it as acceleration, it is necessary to have a rule which
allows for the reduction of second order data to first order data. In other

words, what is needed in general is a map C : E 0 -+ E with some good
properties.

First of all, there is a map v : E &#x3E;-&#x3E; ED which identifies the fiber
Em for m e M with the tangent space to this fiber at 0 m, and is given
by the rule

It is natural to require that this lifting of first order data in a
trivial way to second order data gives back the original data when a con-
nection map be applied ; in other words, one should have

Secondly, some linearity assumptions are in order to insure good
behavior. Following [7J, let us give the following

Definition. A connection map on p : E -&#x3E; M is a map
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and C linear with respect to the two structures e, + on E U (and the only
available structure on p : E -&#x3E;M).

In this definition, the map C is also supposed to commute with
the appropriate maps, without which it makes no sense to speak of lin-
earity. The diagrams in question are :

and the commutativity of any one of these insures that of the other, on
account of the naturality of iT ("base point").

Let us consider now the map

given by

This map is linear with respect to e and +, if these structures
are put on

respectively, in the obvious fashion, i.e.,

Assume now that p : E + M is a Euclidean R-module in E/M. This implies
(cf. [4]) that H - Ker(p d ) . Thus, for the o-structure, H = Ker (K). Using
this fact, the map C may be defined out of V, as in the diagram

and is uniquely determined. It is also shown in [4J that C is linear with

respect to 0153, + provided V is a connection (affine, in the terminology of
[4]). This almost constitutes a proof of the following :
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Pcoposition 1. Let p : Elm be a Euclidean R-module in E/M wi th E , M

infinitesimally linear. Let 0 be a connection on p : E -&#x3E; M. Then, there
exists a unique connection map C on p : E &#x3E; M , satisfying the equation

Proof. All that remains to be verified is that

For this notice that

commutes, where

is the zero of the R-module structure of p : E -&#x3E; M in E/M. It follows
that for any ve E,

Use now the fact that H is mono.

Is the data provided by a connection map equivalent to the data
provided by a connection? For this we need to retrieve a suitable V (i.e.,
one satisfying the equation involving V and C) out of a given C.
A further assumption is needed for this, as follows :

Definition. Say that p : E- M has the short path lifting property if, given
any X and any commutative diagram as shown below, a diagonal fill-in
exists (not necessarily unique) :
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Remark. If a connection exists on p: E -&#x3E; M, or simply, if K is split epic,
then p: E -&#x3E; M has the SPLP. For example, this is the case for M paral-
lelizable, if we consider the tangent bundle 7T M : M 0 -+ M, since in

this case (identifying it with

Euclidean R-module)

a splitting for

is simply given by

We can prove :

Proposition 2. Let p : E - M be a Euclidean R -m odule in E/M wi th E , M

infinitesimally linear. Assume that p : E -&#x3E; M has the short path lifting
property. Then, given any connection C on p : E -&#x3E; M , a connection V
on p : E-&#x3E; M exists such that

Proof. Let (t, v) E X MD xME. Consider f e X ED as the exponential adjoint
of any diagonal fill-in arising from the assumption that 7TM(t) = p(v). Let

The main thing here is to show this is well defined. So, let g Ex E D
be any other diagonal fill-in. To show

Equivalently, show that

Now

thus,

which is the zero of the e-structure on the fiber of

above p(v) . Since H = Ker(K) for this structure, we must have that there
exists v E E with P(v) = p(v), such that
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Let us employ the notation f’ : R -&#x3E; VD for just the composite

This is always available, whether or not V is Euclidean. Assume now that
C : EU -&#x3E; E is a connection map on p:E -&#x3E;M. Let a : R -&#x3E; M be a

map (curve) and

a vector field on E above a . As above, we can always form

and this is a vector field on E 0 above a’ : R -&#x3E; M . In the presence of a
connection map C, we define

and this is now a vector field on E above a : R -&#x3E; M :

The latter on account of

Remark. This is indeed a generalization of the derivative of f : R -&#x3E; V,
regarding V -&#x3E; 1 as a vector bundle (with one fiber ; but V Euclidean R-
module) and -&#x3E; : VD-+ V as a connection map on V -&#x3E; 1. Any map f:
R - V may be regarded as a vector field on V along the unique curve
R -&#x3E; 1.

Given a : R + M, there is a canonical vector field on 7T M: MD - M
over a , namely a’ : R -&#x3E; MD , on account of
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Hence, if C is a connection on rr M : MD -&#x3E; M, the covariant derivative Da’ dt 
r

is defined and is a vector field over a .

Definition. a : R -&#x3E; M is a geodesic (with respect to a connection map C) if

is the zero map, i.e. if it is given by the map

We shall simply write

An alternative notion of geodesic can be given in terms of the

connection map C itself ; equivalently in terms of its associated connec-

tion V. We recall from [4J that X : R + 0 is V-paraliel provided

and that a : R -&#x3E; M is said to be a geodesic for V provided a’ is V-paral-
lel.

Similarly, in terms of C, a is called a geodesic for C (cf. [7J ) if
C o a" = 0, i.e., if f

We show below that all three notions are equivalent.

Proposition 1. L et V be a connection on 1T M : MD -&#x3E;M, C a corresponding
connection map and D/dt the covariant differentiation arising from C.
Let X : R -&#x3E; M . Then the following are equivalent :

Proof. Let

Now
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We have used, aside from the basic definitions and relationships, that H
is linear for the ®-structure, and that it is monic.

Covariant differentiation is a variation of the Koszul derivative

in the presence of a connection V. For a tangent vector field § : M + MD
and an E-vector field X : M -&#x3E; E, V § x : M -&#x3E; E is an E-vector field given
by

The following proposition establishes the relationship between the
two and gives the additivity and Leibniz rule for covariant differentia-
tion. The proofs are similar but not identical to those given in Proposi-
tions 3.1 and 3.2 of [41, as modifications are necessary.

Pcoposition 2. Let C be a connection map on 7T M: M D -&#x3E; M .
(1) Let a : R + M be given and let X : R + MD be a vector field

of TI M: M 0 -+M along a, of the form

where Y is a vector field on 7Tm : MD -&#x3E; M . Then

(2) Let X 1, X 2: R -+ MD be vector fields of TI M : MD-&#x3E; M along a :
R -&#x3E; M (so that TIM 0 X1= 7T Mo X 2 ). Then

(3) Assuming furthermore that M 0 is parallelizable (i.e., M 0
trivial, cf. [4]), if X : R + M D is a vector field of Trm: M D -&#x3E; M along a :
R - M and f : R -&#x3E; R, then

Proof. (1)
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(2) Since 7T M o X 1 = TI M o X2 , for each r E R, X1 (r) + X2(r) makes
sense in M . The result is denoted (X 1 + X2 )(r) . Now

We have for t £ RD :

Hence :

Hence

(3) We assume then that

is the tangent bundle on M. We have

Under this identification we get e and + as follows

The map H becomes

If

let us denote by X 1 : R -&#x3E; M, X’ : R -&#x3E; V the two components. Now

is given by

We have

Let us begin by calculating
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Now

Hence

So

Using the e-linearity of C, the above is equal to

Since

it remains to show that, in turn

Now : the map v : 0 -&#x3E;(MD)D may be identified with the map

and recalling that C o v = id, we have

as required. Hence

as claimed. #
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3. THE SYMMETRY MAP OF THE ITERATED TANGENT BUNDLE.

Out of p : p p M, a vector bundle with E, M infinitesimally linear
we can consider (E ) with several bundle structures :

We wish to investigate how does the symmetry map

given as the composite

(with T = prOj2, projl &#x3E; the twist map and cp the canonical isomorphism)
behave with respect to these structures. We have :

Lemma 1. (i)

and addition is preserved, i.e., if f, g e (ED)D such that 7TED(f) = 7T ED(g), then

as well as scalar multiplication,

and addition is preserved, i.e.: if f, g E (ED)D are such that (pD)D(f) =
(pD) D(g), then

as well as scalar multiplication.

Proof. Commutativity : For f
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So f e g E (E D)D is defined by means of a unique I : D(2) -&#x3E; ED such that

as (f e g)(d) = l(d, d). Consider now

We wish to prove that

and this will follow provided we prove that, for each d1,

has the properties

and

Now :

and

1

as required. It remains to prove that

For d, d e D, we have

and

(ii) The commutativity follows readily from

Next, if

addition in p : E -&#x3E; M. Now
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It remains to prove that for

where for any f E (ED)D with (pD)D : (ED)D-&#x3E;(MD)D, t he meaning of scalar
multiplication is

Hence :

and

Suppose a connection on a vector bundle p: E -&#x3E; M is given. Can
a connection be naturally defined on the iterated tangent bundles

etc.? This becomes a simple matter if we use the connection map asso-
ciated to a connection (the approach in [10] uses the connections them-
selves and is rather more involved), as was discovered by Patterson [7].
What is given below is the synthetic analogue of the treatment given in

[7]y but in this case, our treatment is basically the same as that of [7].

Definition. Let C : E D -&#x3E; E be a connection map on p : E -&#x3E; M. A family

of connection maps on the bundles

is said to be a k-th prolongation of C if Co = C and for each 1  j  k,
the diagram 

commutes, where

is the zero map given by
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In order that k-th prolongations always exist, we need another
lemma referring to the symmetry map :

Lemma 2. The following diagrams are commutative :

Proof. (i)

whereas

whereas

We can now prove that :

Praposition 3. Let p : E -&#x3E; M be a vector bundle, with E , M infinitesi-

mally linear. Let C be a connection map on p : E -&#x3E; M . Then, for any
k &#x3E; 0 , a k-th prolongation of C exists.

Proof. The definition is by induction. For i - 1, define C 1 by
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and, given Cj-1 ; Cj is defined similarly out of C j-1 .
We begin by showing that these maps prolong C in the required

manner. This amounts to showing that the diagrams involving zero maps
into the tangent bundles commute. The proof is the same for the case

j = 1 as it is in general ; hence we show that the diagram below is com-

mutative :
r"

(1) is true by Lemma 2 (i) ; (2) is the definition of Cl , and (3) can be
shown as follows (naturality of the zero map) :

Next, we prove that C, is a connection map (again the proof depends on
general properties of the connection map C and Of ZE , hence is the same
in the general case).

We begin with the identity

By Lemma 2 (ii) and the definition of C1, 

Next, we must show that Cl is linear with respect to both the ® and the
+-structures, and this requires establishing first the commutativity of any
of the two relevant diagrams in the definition of a connection map. We

try the one below :
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Here, (1) was shown in Lemma 1 (i), (2) is the definition of Cl and (3) is

true since C is assumed to be a connection map on p : E -&#x3E; M.

By Lemma 1 (i),

In turn, for any

Similarly, by Lemma 1 (i),

Now, for any I

The commutativity of the other diagram is automatic ; let us show lin-

earity with respect to +, ., where

By Lemma 1 (ii), ZE preserves the structure, and CD does too, hence Cl
is +-linear and a connection map. #

Denote by

the subobject of (M D)D given by the equalizer diagram. This map is not

linear for any of the structures on (MD’, D .

Definition. M has the iterated tangent bundle property if the diagram
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commutes, where

Remark. Classically a smooth manifold has the iterated tangent
bundle property as can be seen in [2], Chapter IX. The reader will also
find there a coordinate-free definition of the "classical" symmetry map.

We prove now :

Proposition 4. If M is locally parallelizable, i.e., there exists some epic
etale morphism M’-M with M’ parallelizable, then M satisfies the iter-
ated tangent bundle property, under the additional assumptions that M’
has property W and is infinitesimally linear. Also, 2 is assumed invertible
in R.

N. B. In order to use property W to prove that L. M(f) = f for f E (MD)D,
we need 

’

Only the first equality is warranted by TIMO(f) = 7T DM (f) . Therefore to assu-
me Property W for M does not seem enough to insure that it has the
iterated tangent bundle property.

Proof. (1) Assume M parallelizable, infinitesimally linear, with Property
W and 2 invertible. Let MD = MxV, V Euclidean R-module. We have

and f E (MD)D will be identified with

in turn, we set

We have

this is because

For t = (m, v) E MD denote m + d · v := (m, v)(d). We prove
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Let ti = (m, vl), i = 1, 2 ; since TFM: MD - M has the same bundle struc-
ture as pro j 1 : MxV -&#x3E; M, we have

for the unique

Now

because this satisfies

hence the result. Also,

We prove this by considering

Using Exercise 9.1 of C3 J we obtain

for each

or equivalently

for each

Since 2 is invertible this implies

for each

and by Exercice 9.5 of [3J we get the result.

using (***) and

In particular, if f satisfies

(2) Assume that the diagram below is a pullback
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with o etale epic. Equivalently, we have the pullback (o etale) :

with M parallelizable.
Since ( )D preserves pullbacks and since p9 is etale, we have that

both diagrams below are pullbacks :

It is easy to see that ( EM, Em, are isomorphisms)

is also a pullback, since it commutes.

Using pullbacks (1) and (2), it follows that

is a pullback (since pulling back commutes with equalizer diagrams). Since
M’ is parallelizable, it has the ITBP. Hence,
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The equation Zm o g’= g can be written using pullbacks (3) and (4) :

Now, (03BCD)D is 80ic : hence oullinn bank glonn it is faithful, t Thus

4. GEODESIC SPRAYS.

Let M be infinitesimally linear. The following definition is the

synthetic analogue of the usual classical notion and was proposed
by Lawvere. In order to distinguish it from yet another synthetic notion
proposed by Joyal, we shall employ the expressions "Lawvere spray" and
"Joyal spray" throughout this paper. Their exact relationship is establish-
ed below, in Proposition 1.

Definition. A L awvere spray on the tangent bundle 7M : ME) -&#x3E; M is a map

satisfying

(2) For any

where 8 refers to scalar multiplication in TTM : MD -&#x3E; M as well as in

while · is that of (

Definition. A Joyal spray on the tangent bundle 7TM: MD -&#x3E;M is a map

such that

Proposition 1. Let M be infinitesimally linear. Then, any Joyal spray on
the tangent bundle of M gives rise to a Lawvere spray in a canonical
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way. The process is reversible also, provided M satisfies the iterated

tangent bundle property, the symmetric tangents bundle property, and
perceives that + : D2 -&#x3E; D2 is surjective (i.e., M is monic).

Proof. Given (

where

Lemma. The diagram

commutes.

We justify (*) as follows :

S is a spray :

Assume now that additional hypotheses on M have been made as in the

statement of the proposition and let S be a Lawvere spray on the tan-

gent bundle of M. On account of the iterated tangent bundle property
and of (1), S is symmetric, hence by the symmetric functors property,
a factorization
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exists and is unique since M+ is monic on account of M perceiving that+
is surjective. It remains to prove that 0 satisfies both conditions.

where we have used the Lemma above and (1) for S. Since
is monic, M+ 0 a = id.

(ii) It is enough to check that

But, the left hand side is S(h O t) and the right hand side is

as shown earlier. But now, use (2) in the definition of a Lawvere spray,
and M+ monic. #

Remark. Joyal sprays are not as general as Lawvere sprays. However, on
the one hand, the assumptions needed for their equivalence are

classically true of manifolds, and on the other, the former may be pre-
ferable to deal with in generalizations to higher dimensions. The symme-
try condition inherent in any spray in this sense (i.e., S = ¿ M 0 S),
and which follows on account of the equation M = E Mo m can easily
be guaranteed by assuming M satisfies the iterated tangent bundle pro-
perty. Indeed, by (1)

hence, by the ITBP, S = Em o S.

Definition. A curve a: I -&#x3E; M, where I is a subobject of R closed under
addition of elements of D, is said to be an integral curve for the Lawvere
spray S, on 7T M: MD-&#x3E; M if
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commutes.

Definition. Given a connection V on 7TM: M 0 -+ M a Lav/vere spray S is said
to be a geodesic spray for V provided the following holds : for any curve

a : I -&#x3E; M, a is a geodesic for V iff a is an integral curve for S.

We now prove :

Proposition 2. Let V be a connection on a tangent bundle 7T M : MD -&#x3E; M .
Then, there exists a geodesic Lawvere spray for V.

Proof. Given V, define S by :

We verify that S is a spray :

(2) For t E MD, kE R,

Moreover, S is a geodesic spray for V : let a : I -&#x3E; M, I &#x3E;-&#x3E; R, a curve.
Then, a is a geodesic for V iff a’ is V-parallel, i.e., iff a"=V(a,a’)
iff a"= S(a’), i.e., iff a is an integral curve for S.

In order to reverse the process which leads to a Lawvere spray
from a connection, we must integrate (locally) the spray.

Definition. Let S : MD -&#x3E;+ (MD)D be a Lawvere spray on flM : M 0 -+ M. A
(local) flow for S is a pair (U, cp ) where U &#x3E;+ RxM is a Penon open cont-

aininq DxMD and p : U -&#x3E; M such that

(2) For any (X, t ), (§, t), (X + §, t) E U, then also
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(3) For any

then

Remark. Classically, condition (2) does not appear in the definition of a
flow for a vector field ; it is rather a consequence of the uniqueness in
the theorem about solutions of ordinary differential equations (cf. [5]).
As for condition (3) in the definition of a Lawvere spray, it is classically
stated as a property of all integral curves for the spray. Synthetically, on
account of the representability of the tangent bundle, it is possible to
state the condition already at the level of the vector field, without re-
sorting to integral curves (cf. definition of a spray) ; the corresponding
condition, for flows of sprays, is then the natural local extension of the
infinitesimal version of it.

We shall now consider a property for M which guarantees the
existence of local solutions of second order homogeneous differential

equations. This assumption seems to be the natural one to consider
in order to obtain the passage from a spray to a connection if the notion
of spray used is that of a Lawvere spray. However, as’’ will be seen later,
an infinitesimal version of this property is all that is required if dealing
with Joyal sprays instead. As both notions of spray have been discussed
and compared here, we shall deal with the passage in question separately
for both and comment on their relationship later.

Definition. M is said to have the local property of existence of exponen-
tial maps if the following holds : given any Lawvere spray S on the tan-
gent bundle of M, there exists a local flow

Let Ds &#x3E;-&#x3E; MD be given by the pullback diagram :

(1 = constant map)

Notice that since (1, OM) E D (S), then 0 M E Ds &#x3E;-&#x3E; M is a Penon
open neighborhood of OM’ on which the exponential map can be
defined : exps : Ds + M is then given by exps(t) = TIMCP (1, t).

On account of our definition of flow, and unlike the classical sit-
uation, we immediately get here the

Proposition 3. Let S be a Lawvere spray, cp : D(S) -&#x3E; MD a local flow of S.
Then, for any X E R, t £ M such that (k, t) £ D(S) and k O t £Ds, we
have exp( a 0 t) = 1rM (p (k, t)).
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Proof. By assumption,

Applying 1rM and noticing that

are on the same fiber, we get

Corollary. For d E D , exp S (d C) t) = t(d) (d O t E Ds as can be seen in the
next Lemma).

Armed with the exponential map, we can attack the question of
recovering a connection given a Lawvere spray (cf. [91, Th. of Ambrose-
Palais-Singer) without invoking limits. Before w’e proceed we will prove
an auxiliary lemma.

Lemma. Let S be a spray on 1T M : M D -M . Then for any n ? 1, given

Proof. Consider

Now, for any map f : N -&#x3E; P, for any

(monoticity of ]] ). Now, clearly since ]] commutes with A

So,

i.e.,

but 0 ME Ds which is a Penon open, therefore

And now, passage from a Lawvere spray to a connection : o
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Proposition 4. L et M have the local property of existence of exponential
maps. Let S be a Lawvere spray on TI M: MD -&#x3E; M . Then there exists a

torsion-free connection on TIM: M 0 -+ M of which S is its associated geo-
desic spray.

Proof. Let cpS : D(S) -&#x3E; MD be a local flow of S ; exps the exponential
map. Define 

as the exponential adjoint of the map :

where

This map is defined because

and the latter is in the domain of the exponential map (Lemma). We
check that V is a connection. First :

Hence, K o V = id .

(2) V is ®-linear :

Let 1 : D(2) -&#x3E; M 0 be given by :

Clearly

on the other hand

hence the result (again here 1 is well defined because of the Lemma
and the fact that D(2) &#x3E;-&#x3E; D2 ).
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We have

(3) 0 is +-linear :

(i) To show that

equivalently, show that for every d E D,

Let 1*cJ: D(2) -&#x3E; M be given by : 

Notice that

on the other hand

hence the result (again l*d is well defined since D(2) &#x3E;- D2 and then

by the Lemma).

(ii) To show that

i.e. to show that

for every d e D. For dE D,

and

where (*) uses that H and (expfl) are both ®-linear.
(4) S is a geodesic spray for this V:
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Hence, V (t, t) = S(t) as required. Note that

and (0, t) e D (S), a Penon open, hence

and ys (d, + d2, t) makes sense.
(5) V is torsion-free : We will prove for now that

where

sends (t 1 , t2) to (t2, tl ) . The next proposition will clarify the
relation between this equation and the definition of the torsion map
associated to a connection.

while

The torsion 9 associated to a connection V is defined as

where C is the connection map associated to V (cf. [4]). The following
result permits us to verify when a connection is torsion-free without

using its associated connection map.

Proposition 5. Let V be a connection on 7TDM:M -&#x3E; M and C its asso-

ciated connection map. Assume that M is infinitesimally linear and that
7T M : MD +M is Euclidean in E/M. Then

Proofi. We will write 0 and 0 respectively for the zero sections of
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It is easy to verify that

Concerning the linearity of ¿M’ we refer the reader to Lemma 1 (i),
Section 3.

(definition of C from V).
Now

the first equality is straightforward and the second is by hypothesis.
We have using (b) :

Here we have used that : Em is linear and an involution, the definition
of H and the fact (easy to verify) that ZM o v = v .

Applying C to the last equation we obtain

C is linear and C o v - id Mp. If we apply C to (a) we get :

Looking at the previous equation, we get the result.

(2) C = C o EM implies V o t = EM oV
Equivalently : V = EM o V o t . Let V’ = E M o V o t.
That D’ is a connection on 7T M: MD -&#x3E; M is a straightforward verifica-
tion. We want to show that V’ = V. Let C’ be the connection map
associated to 0’. We will show that C = C’ ; it clearly implies V = V’

(using the fact that 7T M: MD -&#x3E; M has the short path lifting property
since it has a connection). Let f £ (M 9D :

definition of C’. Applying C to this equation :
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(it is clear from (1) that C o H = proj2 ).

Hence C(f) = C’(f) . #

From now on, we shall shift our attention to Joyal sprays. In
this case, as pointed out earlier, a weaker assumption for the passage
spray-connection is needed, as follows.

Definition. M is said to have the infinitesimal property of existence of
exponential maps if the following holds : Given a : M 0 -+ MD2, a spray on
TT m : M -&#x3E; M in the sense of Joyal, there exists a map

and Dn (M) is the image of the map § of the Lemma preceding Propo-
sition 4 of this section

satisfying

Proposition 6. L et M have the infinitesimal property of existence of exp-
onential maps. Given a Joyal spray a: MP -&#x3E; M O2 there exists a torsion-
free connection 0 such that a is the associated geodesic spray. We as-
sume here that S comes from a a Joyal spray (as in Proposition 1 of this
Section).

Proof. We will give only an outline as the proof is very similar to that

of Proposition 4, although the basic assumption made is notably weaker
here.

We have used the property assumed and the definition of a spray a .

(3) V is e-linear. To show :

it suffices to take
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and do as in Proposition 4. We show that

as in Proposition 4.

(4) V is +-linear

Let

It suffices then to proceed as before. Same for

S (or 6 ) is the geodesic spray for :

by the assumed property ; this is another way of expressing that S (or
6 ) is the geodesic spray for V since

(6) The proof that 0 is torsion-free is as in proposition 4. #I

Remarks. In [1] is shown that if M is cut out of RI by f = 0, then.
there is a unique e : D(1) (M) -&#x3E; M such that 

By DrkJ(M) we mean

where
n

rin I’ll D(2) (M) is defined only for k = 1).
Examining the argument in [lJ and using similar assumptions

on E and R we find that although

if we let v E D(2) (M) be given by v = (u, v) in M x Din), then "defin-
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ing" e(v)= u + v does not necessarily land in M ! Indeed, calculating

where h(u)(v) is of degree &#x3E; 3, we find f(u) - 0 since M is defined by
f = 0, dfu(v) = 0 since (u, v) E M 0, h(u)(v) = 0 since v e D 2 (n) but
there seems to be no guarantee for d2fu(v) to be zero. Hence, the need
for the property of existence of exponential maps seems clear, not only
on the local but also on the infinitesimal level, i.e., not only when deal-
ing with Lawvere sprays but also when dealing with Joyal sprays. We can
now establish a relationship between the two kinds of assumptions.

Proposition 7. Let M be infinitesimally linear. If M satisfies the local

property of existence of exponential maps, then M also satisfies the in-

finitesimal property of the existence of exponential maps.

Proof. Let a be a Joyal spray and let S be the Lawvere spray arising
from a as the composite

Suppose that a local flow (OS , D(S)) exists for S. Recall that this
defines

Define

S according to the Lemma preceding Proposition 4 of this section). We
show that given dl, d2 E D,

Indeed :

(again (dl + d2, t) E D (S) since it is a Penon open containing (0, t)). #
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Added in proofs :
One question not dealt with in this paper is that of the validity

of either property of existence of exponential maps for the classically
constructed objects in the models of SDG and its corresponding implica-
tions for the derivability of the classical counterparts of those synthetic
results depending on them. Concerning the infinitesimal property of
existence of exponential maps, this follows from recent work of Kock
and Lavendhomme ("Strong infinitesimal linearity, with applications to
strong difference and affine connections", Aarhus Preprint Series 47,
1983/84), since they prove that the property of strong infinitesimal lin-

earity (widely satisfied for familiar objects in any model) implies the
"ray property" considered earlier by Kock ("Remarks on connections and

sprays", in Category Theoretic Methods ir Geometry, Aarhus Var. Pub.
Ser. 35, 1983) in an attempt to do without assumptions of the kind we

employ in our paper. In fact, almost direct inspection shows that the

ray property of order 2 implies our infinitesimal property (called
"axiom" in the preliminary version of this paper) of existence of exponen-
tial maps, for n  2, if one assumes furthermore that TXM = Rn. (Notice
that it iis only the case n S 2 that is needed in the proof of our theorem.)
It follows from this that our second synthetic proof of the Ambrose-Pa-
lais-Singer Theorem (§ 4, Prop. 6) does give the corresponding classical
theorem.

Two further remarks are in order concerning the two notions of
spray considered here, and as follow from remarks made by Kock and
by Kock and Lavendhomme in the above mentioned articles. Firstly, two
of the three assumptions which render the two notions equivalent are,
in fact, also consequences of strong linearity (namely, the Symmetric
Functions and the Itarated Tangent Bundle properties). Secondly,
not only the Lawvere sprays are a synthetic version of an existing cla-

ssical notion ; but according to Kock and Lavendhomme, the notion of
a Joyal spray (which they just refer to as "spray") is the synthetic coun-
terpart of a notion introduced by Smale and utilized in the work of
Libermann.
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