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SHEAVES AND LOCAL EQUIVALENCE RELATIONS
by Kimmo I. ROSENTHAL

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXV-2 (1984)

R6sum6. Une relation d’6quivalence locale r sur un espace topolo-
gique X est une section globale du faisceau des germes de rela-
tions d’6quivalence sur X. On construit une cat6gorie sh(X r ) de
r-faisceaux, qui sous certaines conditions sur r est un topos, et
meme une 6tendue. D’aprbs un th6orbme de Grothendieck carac-

t6risant les 6tendues, il s’ensuit que ce topos est equivalent à
un topos de faisceaux muni d’une action d’un groupoide topologique
6tale. En utilisant une construction de Pradines pour le groupoide
d’holonomie d’un morceau diff6rentiable de groupoide, on decrit

explicitement ce groupoïde pour une grande classe d’6quivalences r.

Introduction.

Much of topology deals with analyzing local information about a

space and trying to relate it to global properties of the space. Sheaf

theory plays a central role in this process and sh (X), the category of
sheaves on a space X, is the fundamental example of a topos. Often
a space X comes equipped with some additional data such as a group
action or an equivalence relation and it is natural to consider sheaves
which have a compatible such structure. These categories will again be
topoi. Given the local nature of topology, it may be that X locally has
some structure in addition to its topology. The significance and need
of systematically understanding this point of view was first emphasized
by C. Ehresmann [4]. In this paper, we consider an example of local
structure on a space, namely that of a local equivalence relation. We
then construct a category of sheaves relative to this local equivalence
relation and investigate its properties.

A local equivalence relation on a topological space X is a global
section of the sheaf of germs of equivalence relations on X. This notion
was introduced by A. Grothendieck in SGA4 [11], p. 485, in a series
of exercises, presented essentially as open problems, for the purpose
of constructing a certain kind of 6tendue.

Constructions similar to local equivalences appear earlier in Dif-
ferential Geometry, namely Reeb’s "systbme dynamique generalise"
[14] and Ehresmann’s "partition locale" [6]. Grothendieck wished to
construct an 6tendue of sheaves relative to a given local equivalence
relation. An 6tendue is a topos E, which has a covering U of the term-
inal object such that E /U is generated by subobjects of 1. If this locale
has enough points, we call E a topological 6tendue. (A study of local
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equivalence relations appears in [17 ], while 6tendues are investigated
in [16 J). A characterization theorem of Grothendieck states that every
topological 6tendue is equivalent to a category sh(X, R ) of R -sheaves,
which are sheaves equipped with an action from an etale topological
groupoid R with space of objects X. In [16], it was shown that 6tendues
can have more general presentations, for example by topological
categories with monic maps. Another means of obtaining 6tendues
is from strictly open local equivalence relations. The details of this

appear in [15], however there the presentation and proofs are rather

lengthy and cumbersome and there is no description of the associated
etale groupoid as provided by Grothendieck’s Theorem.

In this paper, by considering a certain class of strictly open local
equivalence relations r, we present the 6tendue of r-sheaves by explicit-
ly exhibiting its etale groupoid. A motivating example from Reeb
and Ehresmann and also Grothendieck was that of the local equivalence
relation defined by a foliation on a manifold. Ehresmann defined

holonomy groupoids for foliations [6] and our construction is based on
a general notion of holonomy groupoid as introduced by Pradines U3J
and described by Brown [2 ]. We hope this will provide some insight into
how the various properties of local equivalence relations relate to

sheaves and 6tendues.

In § 1, we present the relevant definitions and results about local
equivalence relations, describing the various coherence assumptions
and the functors loc( ) and glob( ) relating local and global equival-
ence relations. Most of these results appear in [17] and proofs in gen-
eral will be omitted.

In § 2, we similarly give definitions and results concerning
6tendues. Most of this section appears in [16], to which the reader
is referred for details.

In §3, the category sh(X ; r) of r-sheaves is presented, where r

is a local equivalence relation on X. We investigate some of its

properties, in particular for globally coherent r.

In §4, strictly regular r are defined and for such a local equival-
ence relation we construct an etale topological groupoid FE such

that

If r is the local equivalence relation of a foliation on a manifold, we
can take rr to be the holonomy groupoid of the foliation. In this con-

text, we can think of r-sheaves as sheaves which locally have a

connection relative to the foliation. Consideration of this kind of struc-
ture goes back to the work of Ehresmann [5]. Hopefully, the topos
theorists find) this an interesting example of a topos and it provides an-
other perspective on the holorfiomy groupoid construction.

I am very grateful to Professor R. Brown for sending me his pre-
print [2], which proved invaluable, and for his general interest in

this work. I would also like to thank Professor A. Ehresmann for mak-

ing me aware of the work of C. Ehresmann and G. Reeb, which served
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as a motivation for the constructions presented in this paper. This not

only places things in a proper historical perspective, but it also provides
increased insight and understanding.

1. Local equivalence relations.

A local equivalence relation on a topological space X is a global
section of the sheaf of germs of equivalence relations on X. In this

section, we present some of the definitions and results we shall
use later on. Most of this material appears in [171, and proofs will only
be provided for results which do not appear there.

Let X be a topological space. If U is open in X, let

Equiv (U) = {equivalence relations on U} .

This defines a presheaf on X, which however is not a sheaf (see p. 168
in [171). Let Ex denote the associated sheaf.

Definition 1.1. A global section r of Ex is called a local equivalence
relation on X.

A local equivalence relation r is given by the following local data :
an open cover

with and

such that if z e Ux f1 U y , there is an open neighborhood W of z with

and

A motivating example is that of the local equivalence relation r
of a foliation on a manifold X. (See [17] , p. 169.) If the foliation is
defined by submersions

an index set),

then r is defined by

where iff

If rx) sx are germs at x E X in the presheaf Equiv (X) locally def-
ined by

and

respectively (where U and V are open neighborhoods of x ), then
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rx  Sx iff there is an open neighborhood W of x with
W C U h V and R | W C S |w.

Definition 1.2. Let r and s be local equivalence relations on X with

and

Then for all

Using this ordering we can try to study the relationship between
local and global equivalence relations via the following definitions.

Definition 1.3. (a) Let R E Equiv (X). Then loc (R) denotes the local

equivalence relation it defines.

(b) Let r e Ex . Let

Remarks. glob(r) represents an attempt to "approximate" r locally by
a single global relation. Let U = luxlxf X denote the open cover, where
r is locally defined by Rx E Equiv(Ug. If V - {Vx}xE X is an open cover,
we say

for all

It can be shown that

where Rv is the equivalence relation generated by {Rx Vx }XE x . One
should also note that if R e Equiv (X), then glob(loc (R)) C R always
holds. However, r  loc(glob(r)) need not always be true. To have an

adjoint relationship between loc and glob , we need the notion of co-
herence.

Definition 1.4. Let r be a local equivalence relation on X.

(i) r is coherent iff r  loc(glob(r))..
(ii) r is totally coherent if r Iu is coherent for every open set U in

X.

(iii) r is globally coherent iff r = loc(glob(r)).

Definition 1.5. Let R be an equivalence relation on X.

(i) R is locally coherent iff loc(R) is coherent.

(ii) R is coherent iff R = glob(loc(R)).

When we restrict our attention to coherent local equivalence rel-
ations and locally coherent global equivalence relations, glob becomes
the left adjoint of loc . The following proposition indicates some of the
relationships between the above definitions.
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Proposition 1.6. Let r be a local equivalence relation on X locally def-
ined by R x E Equiv (Ux), where Ux is an open neighborhood of x in X.

(a) Suppose r is globally and totally coherent. Then, if U is

open in X, rlU is globally coherent.
(b) Suppose r is totally coherent. Then, rl U x is globally coherent.
(c) If there is an open cover

with

such that r | VX is globally coherent for each x E X, then r is totally
coherent.

(d) If r is globally coherent and R = glob(r), then for any open
cover {VX}XEX’ R = Rv , the equivalence relation generated by

Proof. For (a) and (c), see Proposition 2.8 in [I7J. (d) is immediate, since

Ry C R for all covers V, yet by the remarks following Definition 1.3,
R C Rv .

To prove (b), since r is totally coherent, rlux is coherent, hence

We also have rl Ux = loc(RX ), since the other equivalence relations Ry
are locally compatible with Rx ;

is true, i.e. glob( r|UX) C Rx . Applying the functor loc, we obtain

The above notions of coherence are closely related to connected-
ness of equivalence classes (for details, see [17J). The next couple of
results indicate some of these relationships and will be crucial in the

se quel.

Proposition 1.7. L et R be an equivalence relation on X. If R has con-
nected equivalence classes, then R = glob(Loc( R)), i.e. R is coherent.
If R is coherent and has closed equivalence classes, then it has
connected equivalence classes.

Proof. See Theorem 2.7 in [17]. 0

Proposition 1.8. Let r be coherent. Then, glob(r) has connected equi-
valence classes.

Proof. This follows immediately from Proposition 3.6 of [I7J. 0
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Corollary 1.9. If r is totally coherent, then r is locally definable by
equivalence relations with connected equivalence classes.

Proof. By Proposition 1.6 (b),

Since total coherence implies that r| U is coherent, by Proposition 1.8,
glob (r lUx) has connected equivalence classes. 0

We shall need one further definition concerning equivalence rela-
tions. Recall that an equivalence relation R on X is open iff the
canonical quotient mapping X --+ X/R is an open mapping.

Definition 1.10. (i) A local equivalence relation r on X is open iff it is

locally definable by open equivalence relations.
(ii) r is strictly open iff it is totally coherent and open.

These definitions and results will be used in §3 and §4 to analyze
the category of r-sheaves, and the important role played by the various
coherence assumptions will become clear.

As concluding remarks to provide some historical perspective on
local equivalence relations, they can be traced back to the "systemes
dynamiques g6n6ralis6s" introduced by G. Reeb in [14]. (Many of the

ideas of this section and [17] can be found in Reeb’s paper.) The "sys-
tbmes dynamiques g6n6ratis6s" were somewhat generalized by C. Ehres-
mann in [6 ] under the name "partition locale". We get a correspondence
to the strictly open local equivalence relations of Definition 1.10 (ii)
and of course the local equivalence relation of a foliation is strictly
open.

2. Etendues.

Ltendues are a class of topoi introduced by Grothendieck in SGA 4

[ 11] , page 479. An 6tendue is a topos E with an object U covering the
terminal object 1, such that E /U = sh (H), where H is a locale ;
i.e. E/U is generated by subobjects of 1 (see [12 ], Chapter 5). If H has

enough points, E/U = sh (X), where X is a topological space, and we

call such an 6tendue "topological". A theorem of Grothendieck charac-
terizes a topological 6tendue as equivalent to a category of sheaves

equipped with an "action" from an etale topological groupoid. More

generally, 6tendues can be presented by categories with monic maps
[16] or, as we shall see in §4, by certain local equivalence relations.
Finally, we should note that every Grothendieck topos F is equivalent
to one of the form EG’ a topos a G-coalgebras, where G is a certain

kind of left exact cotriple on an 6tendue E , [18]. In this section, we
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state the main theorems about 6tendues, and discuss the examples which
will be relevant to our discussion in §4.

Let

be a topological category. (We can think of X as the space of objects,
X 1 as the space of morphisms and X2 as the space of composable pairs
of morphisms. m represents composition, do and d1 are the domain
and codomain maps, which have a common section 1 : X -&#x3E; X, .)

Definition 2.1. (i) C is an 6tale topological category iff do and d1 are

local homeomorphisms.
(ii) C has monic maps iff

implies

(note we are writing composition algebraically).

Definition 2.2. Let

be a topological category. A C-sheaf is a sheaf p : Y + X together with
a map oc : Xi t x Y -+Y such that

di

commutes (where X1 1 x Y denotes the pullback along d1 : X1 +X) and
furthermore dl

and

(i.e. a is an "action" of C on Y).
A C -sheaf morphism is a sheaf map which preserves the actions
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and so we get a category sh(X ; C) of C-sheaves.

Theorem 2.3. Let

be an 6tale topological category with monic maps. Then, sh( X ; C) is
an 6tendue.

Proof. See Theorem 3.13 in [16]. 0

Examples. 1. If X is discrete, C is just a category in Sets and

In fact Setscop is an 6tendue iff maps in C are monic (see Theorem
1.5 [16].

2. Let

be an etale topological groupoid, i.e. R is etale and every map in R
is invertible. (For more on topological groupoids, see [3] and the refer-
ences therein.) As special cases of this, we have equivalence relations
on X, i.e.

is monic, and discrete group actions on X, where R - G x X and

71 is o: G x X - X, the action of the group G on X. In this case, we

obtain the topos of G-sheaves.

If R is an etale groupoid on X, then 71 : R -+ X becomes an R-
sheaf with the action given by the composition in R. Using this, we
have the following

Theorem 2.4. If R is an 6tale topological groupoid on X , then sh( X ; R)
is an 6tendue and

Proof. See Theorem 4.2 [16]. 0

For the more general topological categories of Theorem 2.3, we
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need not be able to recover the space X. However, the following char-
acterization Theorem of Grothendieck outlines the central role played
by etale groupoids.

Theorem 2.5. (Grothendieck) If E is a topological étendue, then there
is an etale topological groupoid R with space of objects X such that

Proof. See Theorem 4.5 [16]. 0

It should be noted that different groupoids can give rise to

equivalent 6tendues. For some examples, such as the Jonsson-Tarski

topos [16], pp. 198-200, an explicit description of the associated etale

groupoid is not known.

C. Ehresmann initiated the study of topological categories and
emphasized their significance. The idea of a C-sheaf goes back to his

paper [7], where the notion of a topological category C acting on a

space is presented under the name "espbce de structures" over C .
These objects are studied in a differentiable setting and the important
role of actions by topological groupoids is outlined.

In this paper, we are, primarily, interested in the case of equi-
valence relations. If

is an equivalence relation on X and R denotes the topological groupoid
it defines, then even when T1 and T2 are not local homeomorphisms,
the R-sheaves, sh (X ; R), form a topos. Since R is a groupoid,
it can be shown that an R -sheaf can be described as a sheaf p : Y +X
with an equivalence relation S on Y such that if

and

there is a unique

with

Of course

implies

(This follows from Proposition 4.1 in [16].) We shall be interested in
when we can recover sh (X/R), the spatial topos of sheaves on the quo-
tient space. We make the following definition.



188

Definition 2.6. A continuous map p : X -+- Y of topological spaces locally
admits sections if for every x E X, there is an open neighborhood V of
p(x) and a continuous section a : V -+-X with O- (p(x)) = x.

(If X and Y are manifolds and p is smooth, then if a can

be chosen smooth, this is equivalent to saying that p is a submersion [IJ.)

Theorem 2.7. (Grothendieck) Suppose

is an equivalence relation on X and q : X -+- X/R (the canonical quotient
map) locally admits sections. Then, sh(X ; R) = sh(X/R). 

Proof. It suffices to show that sh (X ; R) is generated by subobjects of ,
1 ([12], Chapter 5), i.e., by sub-R-sheaves of X. An open U C X is a
sub- R-sheaf iff it is saturated under R and thus of the form q-1 (V) for
V open in X/R. Suppose

are R-sheaves and

are R-sheaf morphisms with f 1 # f 2 . Let S denote the equivalence
relation in Y making it into an R-sheaf. Since f1 # f2 there is

with

Let p(y) = x and choose an open neighborhood W of y such that p(W)
is open in X and homeomorphic to W. Since q: X --+X/R locally admits
sections, choose an open neighborhood U of [x] in X/R and a section

with

O- 1( p (W)) = W is open in X/R and [x] E W. Let U = q 1 (W). Then, U is
a sub-R-sheaf of X.

Define s : U -+ Y as follows. If x 1 E U, then

Since W = O-1 ( p (W)), there is

with

Thus, Xl, x2&#x3E; E R. Since p(W) is homeomorphic to W, choose the unique

with
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Since Y is an R-sheaf, there is a unique

with

Let s(x1) = yi. By construction s is an R-sheaf morphism and separates
f 1 and f 2 since s(x) = y. Thus, subobjects of 1 generate sh(X ; R ). 0

This result will prove useful in §4, when we consider local equi-
valence relations locally defined by equivalence relations satisfying the
above hypothesis.

3. r-sheaves. 

Given a local equivalence relation r , we shall define a categ-
ory of r-sheaves, sh (X ; r). It can be shown, [151, that if r is strictly
open, then sh(X ; r) is an 6tendue. In §4, we shall prove this for a slight-
ly less general class of r, the strictly regular local equivalence relations.
In this section, after defining an r-sheaf, we shall discuss some proper-
ties of sh (X ; r ), in particular for globally coherent r, that will be
needed in what follows.

Let p : Y -+ X be a sheaf over X, and let U be open in X. Let

Q(U, Y) consist of pairs (Rug S u) where RU is an equivalence relation
on U, SU is an equivalence relation on Y| U, such that p: Y| U -+-U is

compatible with Ru and Su (i.e.,

and we have the following pullback

with q a local homeomorphism.
This implies that if p(y) = x and

x’ E [x ] , the equivalence class of x mod R U ,

there is a unique

with

Note that distinct elements in the same fiber in Y cannot be equivalent.

We shall make use of the following categorical lemma.
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Lemma 3.1. Let A be a category. Suppose we have the following diagram

such that the whole square is a pullback, the right hand square com-
mutes and g is monic. Then, the left hand square is a pullback.

Proof. It is a straightforward category theoretical argument and will
be omitted. 0

Lemma 3.2. L et Y be a sheaf on X . L et O(X) denote the open sets of
X. Then, 

is a presheaf.

Proof. If V C U in O(X), let Q(U, Y) + Q(V, Y) be given by restricting
the equivalence relations on U and Y | U to V and Y|V respectively.
if (Ru, SU e Q(U, Y), let

and

The following square is a pullback, since the two smaller squares are.

The maps Y IV -+-Y lu/sU and V - U/Ru factor as follows :

Thus

is a pullback. One can see that the right hand square is a pullback, and
hence Y| V/SV -+ V fRv is a local homeomorphism. Since g is monic, apply
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Lemma 3.1 to conclude that (Rv, Sv) E Q(V, Y). 0

Q will not be a sheaf however, and let Qy denote the associated
sheaf. We have a forgetful functor of sheaves Qy --+ Ex , the sheaf of
local equivalence relations on X.

Let r be a local equivalence relation on X.

Definition 3.3. An r-structure on a sheaf Y is a local equivalence rela-
tion s on Y such that (r, s) is a global section of Qy.

Definition 3.4. An r-sheaf on X is a pair (Y, s), where Y is a sheaf on X
and s is an r-structure on Y.

If (Y, s ) and (Z, t) are r-sheaves, an r-sheaf morphism is a sheaf

map Y + Z, which locally preserves the r-structures. Thus, we have a
category sh (X ; r) of r-sheaves.

If r is locally defined by Rx F Equiv(Ux), where UX is an open
neighborhood of x in X, then (Y, s ) being an r -sheaf means that
s is locally defined by equivalence relations (SX)x E X defined over open
neighborhoods of x in X such that on some Vx C Ux , we have

is a pullback and the right hand map a local homeomorphism. (Thus, loc-
ally we have parallel translations along equivalence classes.)

The following lemma will prove useful.

Lemma 3.5. If q : (Z, t) -+- (Y, s) is a morphism of r-sheaves, then t is
an s-structure, i.e., we can view (Z , t) as an s-sheaf over Y .

Proof. Suppose t is locally defined by equivalence relations (Tx)xE x and s
by (Sx)XEX. Since (Z, t) and (Y, s) are r-sheaves and q is an r-sheaf map,
we can find open neighborhoods W, of x in X such that

are pullbacks with the right hand maps local homeomorphisms and over
WX , if
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then

Thus we obtain

It follows that q’ is a local homeomorphism and since the whole

square is a pullback and the bottom one is, then so is the top square.
Thus t is an s-structure on Z over Y. 0

We shall now look more closely at globally coherent local equi-
valence relations. If r is globally coherent and R = glob(r), then we can
think of r as being locally defined by R at every point. We obtain a
functor

by pulling back along the canonical quotient map q : X --+ X/R. If q:
Z +X/R is a sheaf, define q*(Z) by

On q*(Z) define an equivalence relation S by

iff and

With this relation q*(Z) becomes an r -sheaf. If R were open, it could be
shown that q*(Z)/S = Z in sh (X/R).

Let us now look at an r -sheaf for globally coherent r . Let p :
Y --+ X be an r -sheaf with r-structure s. We can find open neighborhoods
V of x in X such that s is locally defined by equivalence relations Sx
on Y|vx and we have the following pullback conditions for each x e X,
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with the right hand map a local homeomorphism.

If R is an open equivalence relation with quotient map q :
X ---+ X/R, we can identify Vx/R with the open set q (Vx) in X/R and thus
view YI Vx/Sx as a sheaf over X/R. Let us denote this sheaf by Zx for
x E X.

The following technical lemma gives some insight into the nat-

ure of an r-sheaf in this special context.

Lemma 3.6. Let r be globally coherent with R = glob(r) and R an open
equivalence relation with quotient map q : X ---+ X/R. Let p : Y --+ X

be an r-sheaf with r-structure s locally defined by equivalence relations
Sx over open neighborhoods Vx of x in X such that the pullback
conditions (*) hold for each x in X . Then, if x, x’ E X have non-empty
fibers in Y and x, x’&#x3E; E R there is an open neighborhood W of [x] in

X/R such that over W, Zx = zxl -

Proof. If x, x’ &#x3E; e R, then since r is globally coherent (by Proposition
1.6 (d)), R = Ry , the equivalence relation generated by I Ri Vx Ix, x and
therefore we can find xl, ..., Xn-1, aly ..., an in X such that

Let y e Y with p(y) = x. Since y E YI Val , applying the pullback condi-
tion (*), there is a unique

with and

Similarly, using the pullback conditions (*) we get a unique

with and

with and

and finally
with and

Since

by the local compatibility of the equivalence relations defining s , we
can find open sets W 0 , ..., Wn in Y with

such that

Since p is an open map and so is q , q(p( Wi)) is open in X/R for all
i = 0, ..., n an d

Let
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W is open in X/R, [x]e W and over W,

Note that for the element y’ obtained above with p(y’) = x’ ,
we have that over W, Zx = Z x’ and the equivalence classes [y] = [y’].
The pullback conditions (*) guarantee that y’ is the unique element in
the fiber of x’ with this property. 0

We record this last observation as a Corollary. 

Corollary 3.7. Let r be globally coherent with R = glob(r) and R is an
open equivalence relation. L et p : Y --+ X be an r-sheaf with r-structure s

locally defined by equivalence relations, Sx over open neighborhoods Vx
of x E X with the pullback conditions (*) holding for each x E X . Then
if

and with

there is a unique y’ E Y with p(y’) = x’ such that over some open neigh-
borhood W of [x] in X/R we have

and

We now obtain a theorem about globally coherent r , which will
be very useful in §4. More general results about local equivalence
relations relating them to spatial topoi and 6tendues can be proved [151,
but the following will be sufficient for our purposes.

Theorem 3.8. Let r be globally coherent and let R = glob(r) be such that
the canonical quotient map q :X ---+ X/R locally admits sections. Then,
we have that the following categories are equivalent :

Proof. We know

by Theorem 2.6. From the discussion preceding Lemma 3.6, it is
clear that because of the above equivalence, every R-sheaf can be viewed
as an r -sheaf. It remains to show that every r -sheaf can be made into
an R-sheaf. If p : Y +X is an r-sheaf with an r-structure s , we must
produce an R-action a: R x Y --+ Y making the following diagram com-
mute 7T 2
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(see definition 2.2 and the ensuing discussion). Since q locally admits

sections, it is an open mapping. If

i.e., and

let y’ E Y be the unique element with p(y’) = x’ obtained in Corollary
3.7. Let

From the proof of Lemma 3.6 it follows that this will be an R-action
on Y and after a moment’s reflection one can see that this will yield
our desired equivalence sh (X ; r) = sh (X ; R). 0

We do wish to state here without proof a result from [15].
The proof is quite lengthy and cumbersome and is best omitted, as it
would not shed any light on the topics discussed in §4.

Theorem 3.9. Let r be a strictly open local equivalence relation on X .
Then, sh(X ; r) is a topos.

4. Strictly regular r and the groupoid F-,’

In this section, after defining the class of strictly regular local
equivalence relations, we shall show that for these r, sh(X ; r ) is an
6tendue and we shall explicitly describe an etale topological groupoid
f r (as guaranteed by Theorem 2.5), such that

sh (X ; r) = sh (X ; Fr).

The construction of f r is essentially that of the holonomy groupoid of a
differentiable piece of a groupoid as defined by Pradines [13 ] and des-
cribed by Brown [2]. In the case where r is the local equivalence rela-
tion of a foliated manifold, the Pradines construction gives the holonomy
groupoid of the foliation.

We shall first describe Pradines’Theorem and sketch its proof
following Brown. This will motivate our definition of strictly regular r
and gives us our etale topological groupoid rr. We then show that f r has
an r-structure s making it an r-sheaf and that

from which we draw our desired conclusions.

First, we need some notation : let
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be a topological groupoid. c : X --- + G denotes the common section of a
and )3 . G x G denotes the pullback of a along itself and 6 : G x G ---+ G
is the map 

a 

(note, we are writing composition algebraically). For the following, let
us suppose X is a manifold.

Definition 4.1. A differentiable piece of a groupoid is a pair (G, W) such
that :

(i) W contains E(X) and generated G algebraically.
(ii) W has a manifold structure and e : X + W gives X as a regul-

arly embedded submanifold.
(iii) a |W : W +X is a submersion (i.e., locally admits sections ;

see Definition 2.6 and [1]). 
(iv) V = (W x w)nD-1 (W) is open in W x W and 6 : V---+ W is differ-

entiable. a 
(G, W) is a- connected if a 1 (x) n W is connected for all x E X.

Theorem 4.2. (Pradines’ Holonomy Theorem [13,2]) L et (G, W) be an a-

connected piece of a differentiable groupoid. Then, there is an a -con-

nected differentiable groupoid Q(G, W), and a groupoid morphism

such that :

(1) op- is the identity on objects and cp : op-1 (W) -+- W is differen-
tiable.

(2) If A is an a-connected differnetiable groupoid and L : A --+ G
is a groupoid morphism, which is the identity on objects and with L :
L-1 (W) ---+ W differentiable, there is a unique morphism

with

This groupoid has a sheaf topology over X and hence is

an etale topological groupoid. We shall be interested in general topolo-
gical spaces and shall sketch the construction of the holonomy groupoid
(as it appears in Brown [21), however we shall omit the differentiability
assumptions. Let

be a topological groupoid, where X is a topological space. Let W be as
in Definition 4.1, deleting (ii) and replacing "differentiable" in (iv) by
continuous.

Definition 4.3. Let U be open in X. a : U ---+ G is an invertible local sec-
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tion of a iff ao O- = idu and S(o(U)) = U’ is open in X and homeomorphic
to U.

If a : U ---+ G is as above and T: U’ ---+ G is another local invertible

section, define

by

Let F be the sheaf of germs of local invertible sections
of a. The above composition makes F into an etale topological groupoid
over X. Let r(W) denote the subsheaf of germs of sections a : U ---+ G

with a(U) C W. Let F’ be the subgroupoid of r generated by F(W). This
will be a subsheaf and there is a map

given by L 
If we let

then | 0 will be a normal subgroupoid of F’. Define

It is a topological groupoid and still has a sheaf topology over X. One
should observe that

mod and

locally has values in W.

This type of construction for topological groupoids appears in a
more general form for topological categories in [8]. In that paper,
Ehresmann constructs categories of local sections of a topological cat-
egory and then develops the idea of prolongations of topological categ-
ories. These ideas are utilized in some of his subsequent work [9, 10].
Recalling that the motivating example is that of a foliation on a mani-

fold, these constructions, together with the holonomy groupoids
of general foliations, which Ehresmann defined in [6], serve as a back-

drop for Pradines’ Holonomy Theorem and the special case of topological
groupoids and invertible local sections.

Motivated by this construction, we now turn our attention to
local equivalence relations and make the appropriate definitions

necessary to be able to apply the preceding.

Definition 4.4 Let r be a local equivalence relation. A family (Rx,WX)XEX
is called r-adaptable iff 

(1) Rx E Equiv (Wx), with Wx an open neighborhood of x

in X, and these locally define r.
(2) Rx had connected equivalence classes.
(3) glob(r) = equivalence relation generated by { RxlxE X
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Proposition 4.5. Let r be totally coherent. Then, r admits an r-adapt-
able family.

Proof. Suppose r is locally defined by Sx E Equiv (Ux). By coherence,
there is an open cover

with
such that

glob(r) = S!1 = the equivalence relation generated by {Sx | Wx} XE X . ·

By Proposition 1.6 (b), r IW, is globally coherent, hence

As in corollary 1.9, we can conclude that glob (r I W x) has connected

equivalence classes. Let Rx = glob(r|Wx). Since glob(r) = S wand in some

neighborhood of x , we have Sx = Rx , it follows that (3) above will also
be satisfied for (Rx, Wx). 0

Definition 4.6. (i) A local equivalence relation r is regular iff it is tot-

ally coherent and has an r-adaptable family (Rx, Wx) xex such that IT 1 :
Rx --+ W x (the first projection) locally admits invertible sections for
each x e X.

(Call such an r-adaptable family regular. )
(ii) r is strictly regular iff it is regular and there is a regular

r-adaptable family (Rx , Wx)xE X such that if

and

then V is open in W x W. Note that

If r is regular, it is open and hence strictly open. Further-
more, if (R x , Wx) xex is a regular r-adaptable family, then by Theorem
2.6 the topos of Rx -sheaves, sh (Wx ; Rx), is spatial and equivalent
to sh (Wx/Rx).

Suppose r is strictly regular and (Rx , Wx )xE x is a regular r-
adaptable family as in Definition 4.5 (2). Let

and

Then, (R, W) will be a-connected, since if

denote the projections onto X, then a 1(x) n W is the union of all the
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equivalence classes of x in the various relations Ry . Since these are

connected and have x in common, it follows that their union is connec-
ted. We can now apply the holonomy groupoid construction to (R, W).
We shall denote Q(R, W) by f r and p : r’ --+ Fr will denote the quotient
map. We shall call Fr the holonomy groupoid of r.

We must now describe various properties of f ’ and Fr for
r strictly regular. As notation, since elements of Fr are equivalence
classes of germs of invertible sections, we shall denote them by
[a x] where this is the class of x, i.e., ax E P-’( [ax I). For (R, W), re-
call that r(W) is the sheaf of germs of invertible sections, which

locally are defined by sections having their values lie in W.

Lemma 4.7. Let r be strictly regular and let (Rx, Wx)xe x be a regular
r-adaptable family satisfying Definition 4.5 (2). Let W= xL4R x. Sup-
pose O-X and T yare composable germs of local invertible sections with

if
and

and and

then (O-T )X E F-(W).

Proof. Choose U an open neighborhood of x so that a : U --+ W defines

O-X and BO-(U) = U’ is homeomorphic to U and T : U’ --+ W locally defines
Ty . Let

It is open in W x W and if we take the following pullback
a

then V’ is open in U’ x U’ and it is non-empty since

because x, y&#x3E; E W. Choose an open neighborhood S of x with S C U
such that

Define a section y: S --+ W to be the composite

if . 
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hence -Y = or on S. Thus, or locally has values in W and (or) e r(W). 0

Define F. C r(W) to be the subsheaf of germs of invertible sec-
tions, which are locally defined by sections having values in Rx, i.e., O- Z
is in F, if f it is defined by

where and

Definition 4.8 (1) Let A C F’ Ivv x . A is Fx -saturated iff given aze A
and Ty e Fx with Ty and O-z composable (i.e.

then
Let; The FX- saturation of A,

where and

(By slight abuse of notation, we shall use the letter a and S for
the domain and codomain maps of our various groupoids. It will

always be clear from the context as to which groupoid we are referring.)

Proposition 4.9. L et A be open in Fl , wi th A C Fl Iw x. Then, A, the
Tx -saturation of A, is open and Fx-saturated.

Proof. We have the following pullback diagram

where m denotes the multiplication in the groupoid F’. Since Fx is an
etale groupoid over W,, it follows that r’ IW, is a Fx -sheaf. Also, m is
a local homeomorphism and the proof can proceed similarly to Proposi-
tion 3.12 in [16J with suitable changes in notation. 0

We shall now show that Fl has an r--structure s making it into
an r-sheaf. We shall then prove that s is globally coherent on f-r
and combining these facts with some results obtained in §3, we

shall be able to conclude that sh (X ; r) is an 6tendue with Fl as its
associated etale topological groupoid.

Theorem 4.10. Suppose r is strictly regular on X and Fl is its holonomy
groupoid with domain and codomain maps
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Then out: Fr --+ X has an r-structure s so that (1-r ; s) is an r-sheaf.

Proof. Let (R., Wx)xE x be a regular r -adaptable family satisfying the
conditions of Definition 4.5 (2). As remarked earlier, existence of local

sections gives us that

Thus, if we can show that rr,Wx is an Rx -sheaf, this will be sufficient
to guarantee the pullback conditions (see §3) necessary for having an
r-structure. Let Rx 7T x 2 FrlWx denote the p.ullback oflT2

(the second projection). We need to define an action

such that the following diagram commutes

Suppose
and

Let O-X2 be a representative of [O-X2]. Choose a germ ’rx 1 of a local invert-
ible section T : U --+RX with xie U open in Wx and TXl(x1) - X1, X2 &#x3E; ·

Define 

We must show that this action is independent of the choices of
sections made. Suppose

Then

and Tu-1 locally has values in W. Similarly,

and O-y-1 1 locally has values in W. We must show that (TO-)x1~ (lJY)x 1 .
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We have that

and thus is in ker z. To see that it is locally defined by a section hav-

ing values in W, we shall apply Lemma 4.7 twice. o’Y and T both local-

ly have values in W and

hence by Lemma 4.7, TO-y-1 locally has values in W. Since ux~ uxl’
11 and P-1 both locally have values in W and applying Lemma 4.6 we
conclude that TOy-1 u-1 locally has values in W. Thus, w does not depend
on the choice of sections and T r|wx is an Rx-sheaf for each x E X.
This defines an r-structure on F’ making it into an r-sheaf. 0

a
(Recall that Fr 2013B--+ X denote the structure maps of I-r as

a groupoid.)
If s is the r -structure on Fr described above, then s is locally

defined over W x by equivalence relations Sx , where

iff :
if

and

then

(2) there is with

and

Let S be the global equivalence relation on Fr, whose equival-
ence classes are given by {B-1(x)}XEX. (Note that since Fr is a

groupoid, S could also be given by left multiplication in Fr , as

iff there is 

with and

Clearly, we have that s  loc (S). The following proposition will
show that in fact s = loc (S), i.e., there is an open cover of Tr such
that on each piece of the cover, the relations locally defining s
agree with the restrictions of S.

Proposition 4.11. L et s be the r-structure on r r described in Theorem
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4.9. Then, s = loc(S), where S is the equivalence relation on r r with

equivalence classes {B-1(X) ixr x’
Proof. Let [YX1 E Tr. Suppose it is locally defined by a section

with

V denotes the basic open set {y z z e U} in F’. From Proposition 4.8, it
follows that V, the Fxl -saturation of V, is open in F’. Since the quotient

map p : F’ --+ Fr is open, p(V) is an open neighborhood of [yxl I in Fr. We
shall show that on p(V), S coincides with SXI. Suppose

in p(V) with representatives l-lx2’ TX3 E V. Then,

By the definition of Tx 1 -saturation, it follows that

Let
and with

and

Then, Z2, z3 E U, since V is the saturation of

Furthermore, Z2 = z3 , since y is an invertible local section and

Now,

From the proof of Lemma 4.7, it follows that (WV-1)X2 E rXl ’ since

and each section locally has values in R,1 . Thus,

and therefore

We have proven that

and so

since at any element of Fl, they locally agree on some open neighbor-
hood of that element. 0
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We immediately obtain the following facts about the local equi-
valence relation s on Tr, which will allow us to prove our main
result.

Proposition 4.12. s is a globally coherent local equivalence relation
on rr .

Proof. Since s = loc (S), it suffices to show that S is coherent. Since

(R, W) is a -connected (see page 20), it follows that f r is a-connected
from Pradines’ Theorem. From this and the fact that Fr is a groupoid,
we can conclude that B -Yx) is connected in f r for each x E X. But,
these are the equivalence classes of S, so by proposition 1.7, S is co-
herent. 0

Proposition 4.13. sh(Tr ; s ) N sh (X).

Proof. First, we observe that Tr/S is homeomorphic to X. It is easy to
check that

is a coequalizer diagram, where Tr(2) is all composable elements of Fr,
11 is the groupoid multiplication and fl2 is the second projection. The
equivalence relation S on Tr is the image of

and thus, Fr./S = X. Since B is a local homeomorphism, it locally admits
section and that together with the fact that s is globally coherent (Pro-
position 4.11) allows us to apply Theorem 3.7 to obtain

Hence, we have

Now, we can state our main result.

Theorem 4.14. Let r be a strictly regular local equivalence relation on
X. Then, the topos sh( X ; r) of r-sheaves is an 6tendue and

where Fr is the holonomy groupoid of r.

Proof. By Lemma 3.5, the objects of sh (X ; r)/(Fr ; s) can be thought
of as s -sheaves over 7r. Conversely, if (Y, t) is an s -sheaf over Fr, it

follows from Propositions 4.12 and 4.13 that (Y, t) is isomorphic as an
s-sheaf to a pullback Fr x Z of a sheaf p: Z -- &#x3E; along the map B:

x
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T r- -+ X. It is clear that the composite sheaf

inherits an r-structure from Fr making it into an r-sheaf. Thus, we can
obtain an equivalence

Since sh (rr ; s) = sh (X) , by Proposition 4.13, we can conclude that
sh (X ; r) is an 6tendue. From the proof of Theorem 4.5 in [16]
it follows that

Hopefully, the above shows that there is some connection bet-
ween the notions of local equivalence relation and r-sheaf and the holo-
nomy groupoid construction. This should give some insight into what
motivated Grothendieck’s thinking regarding the various rather technic-
al definitions about local equivalence relations and their connections
with the concept of an 6tendue.
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