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CAHIERS DE TOPOLOGIE © Vol. XXv-2 (1984)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY
AND GLOBAL ANALYSIS 11
by Peter MICHOR

RESUME. On développe une théorie des variétés différentiables
et des espaces fibrés vectoriels, ol les courbes différentiables
prennent la place des cartes et atlas, de sorte que la catégorie
correspondante soit cartésienne .fermée. Dans le cas de dimen-
sion finie, on retrouve les variétés usuelles.
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5. PRE-VECTOR BUNDLES IN MORE DETAIL.

5.1. Lemma. Let (E, p, M) be a pre-vector bundle, let Oz : M ~E denote
the zero-section, Og(x) = 0, € E, . Then 0 = Og is smooth.

Proof. Consider the following diagram :
S(R, M)gsmt(R, E)

(Id, 0, ev,))
/ ‘CartE
0

SR, M) . * S(R, E)
5 5

(a) 0 j 0
™ 10 TE

\ lDecE
(Id, 0o Ty, 0o Ty) ™ xME >§4E
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P. MICHOR 48

So, 0 is SZ,
T(0) = (DecH1 o (Id, 0 o TM,0 o Ty)
is again S! by Theorem 4.13, so 0 is S , so TO is $2,s0 0is & and by

recursion 0 is smooth. QED

5.2.Lemma. Let (E, p, M), (F, q, N) be pre-vector bundles and consider
a commuting diagram of the form

F
E F
p q
M9 N

such that g is smooth and f is fibrewise a C* -mapping between
C ® -complete bornological Ics and commutes with the parallel transports.
Then f is smooth.

Proof. fcommutes with the parallel transports means that, for all ge R,
f e S(R, M), we have

o [} = P F o C o N F o
flEc(O) Pti(c, t) = PtHg o ¢, t} f[&.c(o) Eqo) > Foolt)

Now censider the following diagram :

S(Ry M) X Scost(R, E)—Sﬁ‘—”—*—v S(R, N} % Sconst (R, F)
zCartE fCartF
S( R, E) £ S(R, F) )
(a) Goxso léo 150 Sox 8o
TE Tf TF
l DecE [De
TMx E xE

M M Tg x (f o pry, d'f opr2,3Tf\[Msz)\<4 F
The first line makes sense because f is fibrewise C*, so
fo : CY(R,E) >C(R, F)
makes sense. The top quadrangle commutes :
Cartfg oc;y focht) = PtHg oq, t) o flcyt)
= f o PtHcy, t)cylt)) = (Fo CartE(cs, cINb).
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 49
So the second line in the diagram makes sense. By d ¥ we mean the "ver-
tical" derivative of f, given by
dvf(vx ’ Wx) = d(flE )(Vx)(wx)-

It is clear that the outermost quadrangle commutes. So f is $! . Now con-
sider the following diagram :

TF
TE - TF
(b) Decf ™ Tg TN< DecF
F x F
T™MRERE Tg.(f, po, dVf . pr2,3 ™NEF %

We see that
Tf : (TE, Tp, TM) > (TF, Tq, TN,

is a fibre-respecting mapping which is fibrewise C* and we claim that it
commutes with the parallel transports : For

ceS(IRR M, te R and (%, wyje E>§IE
where x = ¢(0), we have
PtF(g o ¢, t) o dYF(v, w) = PEE(g oc, t) o d(f | J(vdlwy) =
=dPtRg oc, t) o f}g()(vx)(wx) = d(f] Eort)® PtE(c, )v(wy) =
= d(f Lfc(t ))(PCE(C, £).v,)(PtE(c, t).w,).
If we now take c e (R, TM) with
c(0) =uc € TxM and (uy, v, w,) eTM >&E ﬁE,
then we have :

DecF o Tf o Pt(TE 2. M) ) (DeE) ux, vy W) =
= Decf o T o (DeEyclt), PE(T. ¢, thvy PEf o, thwy) =
=(Tg o c(t), f o PEM o c, )y, dF(PLEM 5 ¢, t)w, PEM o ¢, b.wy))=
=(Tg oc(t)y PtFlg o T o C t) o f(vy), PE(gom s e, t) - d'flvy, w)) =
=(Tg o c(t), PtHm oTg o cs t) o f(vy), Ptftn o Tg o ¢, t) o d%(%, wx) =
= DecF, PUTF, T4, IN) (Tg o ¢, t) o (DecEy1(Tg o c(0), F(vy), d%F(w, wy) =
=DecF , Pt(TF,Tq,IN) (Tg o ¢, t) o Tf o (DecE)'](ux, Vyr ¥ ).
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P. MICHOR 50

So Tf commutes with the parallel transports, so we may apply the arg-
ument above to show that Tf is SI; but then f is $2and in the same to-
ken Tf is 2, so f is S3 and so on. QED

5.3. Corollary. Let (E, p, M) be a pre-vector bundle. Then the fibre addi-
tion +_ : E x E —E and the fibre scalar multiplication mp:Rx E~ E are
smootﬁ.

Proof. +, is fibrewise linear and continuous and commutes with the paral-
lel transport, since the parallel transport is fibrewise linear. So by 5.2,
*o is smooth. The same argument applies to

R x E E

Pom /
M QED

5.4. Let F be a functor from the category BCS of bornological C®>com-
plete lcs and linear mappings into BCS , of one or several variables, even
infinitely many (but less than the least inaccessible cardinal), co- or con-
travariant.

Examples. Let V, W etc. denote objects in BCS.

L(V, W), the space of continuous linear mappings, with the bor-
nological topology described in §1, is a contra- covariant bifunctor.

V & W, the bornological projective tensor product, described in
§1, is a co-covariant bifunctor.

The last two functors describe the cartesian closed category BCS.

V"= L(V,R), the bornological dual space, is a contravariant
functor. a

® V, the n-fold bornological tensor product, is a covariantn-
functor.

Ny , the n-fold bornological exterior product, i.e., the closed sub-
space of all antisymmetric elements in QV, is a covariant nfunctor.

Definition. A functor as described above is called a Cw—functor, if for all
objects the mappings

L(V, W) > L(F(V), F(W)), F }—F(f)

(here expressed for a functor F with one covariant variable) are
C” in the sense of §1, i.e., map C®curves to C*curves.

All the examples above are C*-functors, since the morphism-map-
pings are bounded multilinear mappings or polynomial mappings derived
from bounded multilinear mappings.

C®-functors will play an important role for the theory of vector
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 51

bundles. For pre-vector bundles just functors suffice.

5.5. Theorem. Let F be a functor on the category BCS as described above
in 5.4. Let (E1, p;, M) be pre-vector bundles over a fixed premanifold M,
one for each variable of F. Then (F((E1); ¢1), p, M) is a pre-vector bundle
in a canonical way, where the fibre

F((Ei)jep)y = FI(Ey)jcr)-
Proof. For the sake of simplicity and clearness let us assume that F has
two variables, one contra- and one covariant, F(V, W), contravariant in
V. Then we put

FEEL E2) = U FEL, EF),

so each fibre is a bornological C®complete space. So (VB1) holds. Now,
define the parallel transport by

PEL ) (o, 1) = FPE (¢, L, PE (e, 6 :
FEY, E)eto) = FlEgop Ecto)) > FE ey Edie) = FIED E)grey
Clearly we have
Pt FEL B (o 0) = F(1d, 1d) = Id
and for f e C*(R, R) :
peFEL B9 (¢, 1) = FPE (e, DL PEE (e, RO =

- F(PEYe o 1, 6) o PLETe, KON, PE (e o 1, ) = P (c, F(O) =

= FPEEY e, FO™L o PeE'(c o f, 7L, PE(C o f, 1) o PEE(C, HOD) =

FPE (c o f, 7L, PE(c of, 1) o FPEE (e, HODS, PtP(c, FOD) =

PeFEL, B (o 5, 1) o PEFIEY B (o, f0).  GED

5.6. Example. Consider the functor C*(R, ) : BCS » BCS, assigning toeach
bornological space V the space C®(R, V) of all C®-curves in V. This is a

C=functor. Let (£, p, R) be a pre-vector bundle. Applying the functor
C™(R, ) to this vector bundle we get the vector bundle

(Sconst(R’ E), p, M)

with the parallel transport

s (R, E)
pt st (c, t) = Pt (c, t), :

Scmst(R' E)C(O) = CA(R Ec(O) ) *CAR, E(¢) = Scanst(R, E)c(t}-
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P. MICHOR 52

More generally, we may take any C*®-complete bornological space instead
of R to get the bundles (S . (V, E), p, M).

5.7. Theorem. Let F be a functor on the category BCS as described in
5.4. Let (EL pj, M;) be pre-vector bundles, one for each variable of F.
Then

(F(El)yep), (0, TM)

is a pre-vector bundle in_a canonical way, where for x = (x;) the fibre
is given by F((E1))y = F((E,%i)).

Proof. Let us assume that F is purely covariant here. Note first that the
product ierE'Mi is a premanifold by 4.1. ce S(R, iETE_Mi) is given by

c=(c), c;eSR, M) forall i
Define parallel transport by
peFED) (¢, t) = FUPE ey, ),

then by the functor property of F it is clear that (YB2) is satisfied.
(VB1) is clear by construction. If F has contravariant variables too, then

we put PtEj(c , tr1 into each contravariant variable. QED
5.8. Example. Let (EZ, p;, M;) be pre-vector bundles for i = I, 2, and
consider the functor L(V, W). Then we get the vector bundle
(L(EL, E?), (p3, pY)y M1 xM)),

the fibre over (x3 x) being given by

LEL Ex,, xpf = L(ER, EZ),
and the parallel transport being given by
PLUEL B2) (¢, ¢,), t)g = PEX (e t) o g o PtE(Cy D7 e L(EL (t) E2prt))

for ge L(EL (o) EZy0) )-

5.9. Lemma. Let (E, p, M) be a pre~vector bundle, then

(E (p,M,>1<H‘1°p) L(Ey E); (P, p), M XM)

is a pre-vector bundle again, since it can be written as a pullback in the
form

pro* E % I (E, E)
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 53

(cf. 5.8, 4.3, 4.2). So it is a premanifold by 2.6. Then the mapping

ev: E >ML(E-, E)~ E
is smooth.

Proof.

ev
E(p,M,ﬁrpp) L(E, E) —————~»F

p
pry
M x M M

and in this fibration ev is fibrewise bilinear and continuous (note that on
each fibre Eyx L(Ex, Ey) we have the bornologicalization of the product
topology), so a Cw-mapping. We claim that ev commutes with the paral-
lel transports. For let (c;, cy)e S(R, MxM),

EXL(E, E)
B ((c1,cp) OV, W) =

evo Pt

= ev(PtHc), )y, Pt(cpt) o ho Pt )7 =

= PtE(cy t) o Ao PtE(q, 71 o PtE(cy, t)v =
= PE(c,, )W) = Pt(pryo (c)y c5)y ) o ev(v, V.
So we may use Lemma 5.2 to conclude that ev is smooth. The form of
T(ev) can be read off the diagrams in 5.2. QED
5. 10. Lemma. If (Ei, Pis M ;) are pre-vector bundles for i = 1, 2, 3, then:

(LEL E2) ;;ZL(I?, EJ, (b1 p2 Py M x Mpx M3)
is again a pre-vector bundle since we may write it in the form :

pry 3 L(EY, E2)Mlxﬁ2xM3pr2,3* L(E, B).

Then the composition

L(EL, E2) x L(E2 E3)~ L(E, P)
M

is smooth.
Proof.
L(EL, B) x L(E? E7) —omP__, 1 (eL B
2 i
Myx Moyx M P13 ~M;x M;
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P. MICHOR 54

commutes and in this fibration comp is fibrewise bilinear and continuous,

so C°. A computation similar to that in the proof of 5.9 shows that comp

commutes with the parallel transports. So by Lemma 5.2 comp is smooth.
QED

5. 11. The covariant derivative. Let (E, p, M) be a pre-vector bundle, let
s: N » E be a smooth mapping and put f := p °s. Then we have the
following commutative diagram

E

(a) > P
f

N—— M

Consequently s is called a section over f. From this we get the following
commutative diagram :

TE

Ts
NG
Tf

) TN ™

Y

N—————M

Definition. In the situation above the covariant derivative of s is defined
by :

Vs := pr3 , Decf ,Ts : TN > E.
Then for u, e T,N we have
DecE(Ts.ux = (Tf.uy, s(x), Vs.uy).

* . . . . .
Of course s ¢ TXN > Ef{x) is linear and even continuous, since it

is smooth, so maps C *-curves into C ®-curves, so is bounded by §1. This

notion of covariant derivative of course depends heavily on the parallel
transport of E.

5.12. Lemma. V has all the properties of the classical linear covariant
derivative, as there are :

1. Let s;, s, N >E be two sections over f : N *M. Then
M 23 sp 2 N >E

is again a section over f by 5.2 and we have
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 55

V(sl 552) = Vsl+sz2.

2. If s is a section over f and g€ S(N, R), then g.s = mp(s, g) is
again a section over f by 5.3 and we have

¥g.s) = dg.s + g. Vs, where dg = pry o Tg: TN >TR= RxR> R .

3. Vs : TN ~ E induces a continuous linear mapping T,N > Eg/,)
for each x € N.

Proof. 1. Writing Dec = DecE, we have
V(s; +s2) = pryo Dec o T(Sl + 52) = prjo Deco T(+p) o T(sl , So)
= pr3yo (Id x (+p)x(+p))o DecEﬁEo T(sy, s5)
4= (*p) o (pr 3xpr3) o (Dec x Dec)Tsy, Tsp) = Vsp + Vs
2. V(g.s) = pr3 o Dec o T(g.s) = pr3 o Dec o T(my, o (s, g))
= pr3 oDec o T(my) o (Ts, Tg)s.:jpr3o A o(Decx Id) o(Ts, Tg)
S0 Pr3 e A(Tp oTs, s oMy, Vs, g o Ty, dg)

5:Bpr3 o (Tp o Ts, (g.5) oMy, (g o Tp)es +dg.(s o Tp))

= (g oy) s +dg.(s o Ty = g.Vs+ dg.s

for short. Here, A is given by Dec o T(myp) = Ao (Dec x Id). See 5.2 for
the form of A .

3 has already been proved in 5.11. QED
5. 13. Let c e S(R, E), then

¢ = Cart(cy, c,) for (cz, ¢;) e SR, M) x SopopsfRs E)
i.e.,
c(t) = Pt(c,, t).cy(t).
Let 3/3t = (t, 1) denote the unit tangent vector att in R.
Lemma.
9 d d .
Ve.() =V(Cartlcy, ) = Ptlcy, t)'FtC2(t) = Cart(cy, ci(t).
Proof.
Vel ) =v(Cart(y, e =
e T Qs G T
= pr3o Dec o T(Cart(cy, c2)) o &ldy) = pr3o Dec o 8¢ o Cart(cy, (.‘2)*(IdR):

= pr3 o Dec o 8¢o Cart(c, ¢) =
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2 P Seep e, D), Pi(c;, .S )

= Pt(cy, t).cj(t) = Cart(cy, ch(t).
QED

5.14. Lemma. If s : N~ E is a section over f : N+ M and g : P~ N is a
smooth mapping, then Ws.o. g) = Vs o Tqg.

Proof.
V(s o y)=pry oDeco T(s 0 g) = przo Dec o Ts o Tg = Vs, Tg.

QED

5.15. Corollary. If s : N ~E is a section over f : N +M, then for any ¢
in S(R, N), we have

Vs.(800) = g2oPE(f o ¢ tFLs(e(t)).
This is a convenient mean to compute covariant derivatives.

Proof.
Vs(8gc) = Vs o Teu(0, 1) = V(s o ¢)(0, 1)

by 5.14 above. Put
cft) := PU(F o ¢, tFl.s(e(t),
Thenc,: R~ Ef(c(O)) . Since
VCart(fo ¢, cp)=soce SR, E),
c, is a C”-curve. Then by 5.13 we have :
3 3
V(s o c)(0, 1) = V(s o C)'(Z)_t |0) = V(Cart(f - c, c;)).(a—tlo) =

d d
v Cal’t(fo C, CECZ)(O) = '(%Cz(o)-
QED
5.16. Theorem. Let (E, p, M) be a pre-vector bundle with parallel trans-
port Pt and covariant derivative = VE. Then for any ce SR, M) and
vy e Ey with x = c(0) the smooth curve
t b Pt(c, t).v, = Cart(c, const(v ))(t)

in SR, E) is the unique solution of the "ordinary differential equation"

poes=c 80 =v , Vs=0=0g, CoTg
for s € S(R, E).

Definition. Let us call a smooth section s : N—-> E over f : N+M paral-
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 57

lel with respect to Pt iff
VS = = OE o f o T[N;

then this theorem says that t P Pt(c, t).v, is the unique parallel section
over ¢ with initial value vy.

Proof.
V(Pt(c, )'VX)(%t) = V(Cart(c, const(\g())(ait) =
= Cart(c, const(0O))(t) = Pt(c, t).0, = Qg
by 5.13. So t}> Pt(c, t). v, is a solution. Now suppose that s e S(R, E)

is any other solution. Smce Pos =c we have s = = Cart® (c, ¢) for unique
¢ e S(R, E, ). But then we have

Ogre = Vs (52) = V(Cartle, NG = Ptle, .55

by 5.13 again. But then %té(t) = 0 in E, for all t, since each Pt(c, t) is an
isomorphism. So

C = const = &(0) = s(0) = vy, so s(t) = Ptlc, t).vy .
QED

Remark. This theorem might one lead to suspect that the condition

Pt(c, f(t)) = Pt(c o f, t) o Pt(c, £(0))
in (VB2) is equivalent to the following weaker condition :

Pt(c, t + s) = Pt(c(. + t), s) o Pt(c, t)
for all s, t in R. But we have used the stronger condition in the
given proof of Theorem 2.6 in a very essential way (in 2.9 and 2.13) and
the whole differential structure on E depends on this.
5.17. Déﬁnition. Let (E, p, M) be a pre-vector bundle. Denote by

XE) = T(E, p, M)

the space of all smooth sections of p,i.e.,

(E, py M) ={s €SM, E) : po s =1Idy) .
Likewise denote by I'(E) = T *(E, p, M) the space of all S™-sections of p .

Lemma. If (E, p, M) is a pre-vector bundle, then TXE, p, M), the space
of all Sl-sections of p, is a bornological C*® -complete lcs in the point-
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linear structure and with a naturally given topology.

Proof. By Lemmas 5.1, 5.2, 5.3, the space T(E) is a vector space in the
pointwise linear topology. Now we put a topology on TY(E). For each
c e S(R, M) consider the linear mapping

B(c) : TY(E) » C=(R, E¢p) given by  B(c)s)t) = Pt(c, t)™Ls(c(t)).
Since s ° ¢ is in S(R, E ) and
Cart(c, B(c)(s)) =so ¢

we see that B(c) (s) is, indeed, a C*®-curve in Ego) . Now equip T Z(E)
with the initial topology with respect to all mappings :

B(c) : THE) »C IR, E_s,) for all c e S(R, M).

This topology is not bornological in general, so we take the associated
bornological topology. The initial topology is locally convex since all the
mappings B(c) are linear and the topologies on the spaces C” (R, E o)
are locally convex. It remains to show that TZ(E) is C®-complete. Let
sp be a Mackey Cauchy sequence in I'l (E) . Then s, is a Mackey Cauchy
sequence in the initial topology too, since any locally convex topology and
its bornologicalized topology have the same Mackey sequences (see §1).
Since all the mappings B(c) are bounded, they map s, to Mackey sequen-
ces. For ¢ = const(x), x € M,

B(c)(sp) = const(s (x))
in £ , so sn('x) is a Mackey Cauchy sequence in E and converges to some
element s(x) in E, , because E, is C -complete. Clearly s: M ~E is a
section.
Claim. For ¢ € S(R, M), s, c e S(R, E).
For B(c)(sy) is a Mackey Cauchy sequence in C%(R, Ep) ), so it con-

verges uniformly on compacts in R, in each derivative separately, and it
converges to

B(c)(s) = Pt(c, .) %s(c(.)

since it converges to this limit in the weaker topology of pointwise con-
vergence. So

B(c)s) e C (R, E o)
and the claim is proved.
Dec o Sgfsy o ©) = (§xSp) o (Cart) s o c) =
= (8p80)e, Pele, JUspo ©) = (&8 e, BS)s )) =
- (80 ¢, BS)s, X0, (B(e)(s)N0)
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 59

So this last expression depends only on §pc, since the sequence above

depends only on §pc (all s, are 51). But this means exactly that s

is SI, and an element of T'Z(E). By a standard argument s,- s converges

to O in the initial topology and is even a Mackey sequence in the

initial topology, so it is a Mackey sequence in the bornologicalized top-

ology of TX(E) ; so s, - s converges to 0 in r'iE) , so s_-s in TIL(E).
QED n

5.18. Lemma. If (E, p, M) is a pre-vector bundle, then the space T'(E, p, M)
of all smooth sections of p is a bornological, C % -complete Ics in
the pointwise linear structure and a canonically given topology.
Proof. By 5.1 - 5.3, T (E) is a vector space in the pointwise linear struc-
e Claim. The mapping
T: I(E, p, M) > T(TE, Tp, TM), s |> Ts,

is linear and injective. Injective is clear.

Tpo Ts = T(po s) = T(ldy) = Idpy, so Ts e T(TE, Tp, TM).
Note that (TE, Tp, TM) is a pre-vector bundle, it is isomorphic (via Dec )
e (TM xMExME, PG » T™) = my*E zxMﬂ&‘E =T p*(E )&E).
For any s e T'(E, p, M) we have

Dec o Ts(uy) = (uy,s(x), Vs.uy)
by 5.11. So
Dec o T(s; b s,) = (Id (s, *p sp) o Ty Vs, 52)) =
= (Idpy, SoTy + 20Ty, Vs + Vsp) =

= (dpp,sy oMy Vg +pp(ldy, 550w,V sp) = Dec(Ts +p, Ts2)

by 5.2 (a) and the claim follows. Now consider the mappings
I (E, p, M) AN I(TRE, TPp, TAM) <= TATTE, Top, TOM),

which give a linear embedding

T (E, p, M) + ﬂlFl(T“E, T, ™M),
n:

The latter space is a bornological c” -complete les by Lemma 5.17 above
and the categorical properties of §1. We equip T(E)  with the subspace
topology induced by this embedding. This need not be bornological in gen-
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eral, so we consider the bornologicalized topology. It remains to show
that it is C™-complete. So let s, be a Mackey-Cauchy sequence in T(E) ;
then it is a Mackey-Cauchy sequence in the weaker subspace topology,
but this means that T™Msp) is a Mackey-Cauchy sequence in

L (T"E, ™, TmM) for each m.

By 5.17 TMs,) converges to an element T in TX(T7E, T™p, T™"M) for each m
and from the proof of 5.17 it follows that

T(T™) = T™*'s  for all m.

So s is smooth, is in T (E) . By the same argument as in the end of the
proof of 5.17 we see that s, converges to s in T (E). QED

5.19. Lemma. Let (E, p, M), (F, q, M) be pre-vector bundles over the
same premanifold M. Let f : E~> F be a fibre respecting mapping which
is fibrewise linear and continuous and which commutes with the respec-
tive parallel transports (i.e., ‘

f o Pt(c, t) = PE(c, t)o f,
for all ¢ and t). Then the induced mapping

f, s T(E, p, M) > I(F, g, M)

*

is linear and continuous.

Proof. Let c e S(R,M). Then B(c) : T(F) ~» C* (R, Fx) is one of the gener-
ating mappings for the I'Z-topology, where x = c(0). For s e T'(E) we have

(B(c)o Fu(sW(t) = PE(c, )1 o Fo s oc(t) =
=Ffo Pt(C, t}-'l o So C(t) = (f.)(. ° B(C))(S))(t),
where

fo: C7MR, E)> C*(R, F)

is clearly linear and continuous.” So the following diagram commutes for
all c e S(R, M) :

B(c)
r1(e) C®(R, &)
f* (flE'X )*
B(c)
i) C*®(R, Fx)

This implies that fy : TX(E) > T1(F) is continuous.
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Now by Lemma 5.2, f : E -~ F is smooth and a glance at the diagrams
in 5.2 shows that

Tf
TE - TF
" g
™ Id =M

is again fibre respecting, fibrewise linear and continuous, and commutes
with the respective parallel transports (given in 4.15). So by the first
part of the proof we conclude that

(Tf), : TYTE, Tp, TM) >~ TLTF, Tq, TM)

is linear and continuous. The following diagram obviously commutes :

NE, p, M) T TUTE, Tp, TM)
, | (e,
I (F, g, M) T . TI(TF, Tq, TM) .

We can repeat the last argument and conclude by recursion that
fo :T(E)~>T (F)

is continuous indeed. QED

5.20. Corollary. Let (E, p, M) be a pre-vector bundle. Then the covariant
derivative is a linear and continuous mapping

V :T(E, p, M)> T (y*E, p, TM).
Proof. Vs =pr3 o Dec oTs, so
V= (pr3.Dec)y o T: T(E, p, M) > I(TE, Tp, TM) > T(m¢E, Tp*p, TM).

T is linear and continuous by the definition of the topology on T(E, p, M
in 5.18, (pr_; o Dec), is linear and continuous by Lemma 5.19 above, since

Dec pr3
TE ————— = TM J E 4 E TWE
(a) Tp * lpr lﬂ,q‘p
™ ™ ™

is fibrewise linear and continuous and commutes with the respective par-
allel transports. Note that
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(,XE, Tp, TM) = (TM x E, pr;, TM)

and the mapping pr3 above is actually pr; 3 . This comes from the fact
that Vs : TM ~E is a section over Ty, but we look at Vs as a section of
the pre-vector bundle Ty*E using a universal pullback property. QED

5.21. Lemma. Let (E, p, M), (F, g N) be pre-vector bundles and let f :
P +M, g: @~ N be smooth mappings, where P, Q are premanifolds. Then
we have an (parallel transport respecting) isomorphism of pre-vector bun-
dles over P x Q :

L(FXE, g*F) = (f x g)*L(E, F) = P % L(E, F) %,Q.
Proof. All three sets are pre-vector bundies over P x Q, they coincide

fibrewise, and they have the same parallel transports by 5.7. By
Lemma 5.2 it follows that the identity mapping is then smooth. QED

5.22. Lemma. Let

be smooth mappings, f fibre linear, where (E, p, M) and (F, q, N) are pre-
vector bundles. Define the mapping

FiM>L(E,F) by Ffx)= flEX e L(E, Fgrx)-

Then f is smooth.
Proof. Let
o F -1
A(c)(t) := Pt (go c, t)74e (Ff IEC(O} o Pt(c, t)
for ce S(R, M).
Claim. For c e S(R, M), A(c) € Scnst(R, L(E, F)).
By §1 it suffices to show that for each v e E ) the mapping
t > Ale)t)v)
is in Coo(R, Fgc(O) ). But this is the case since we have :
ABW) = PE(go ¢, Do F o Pt(c, t)v =
= Ptflg o ¢, tJ1 o fo Cart(c, const(V)(t).

So the top triangle of the following diagram makes sense :
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SR MxN), x Sconse( R, L(E; F))

W’ l@rtm, F)
S(R, M —~ S(R, L(E, F))
(a) 8 150 So XSO
™ _ TL(E, F)
\\;3\\\ lDecL(E,F)

™M TN) e L(E, F), s L(E, F)

We claim that a mapping B fits commutingly into this diagram.
Let c e S(R,M). Then we have :

Dec® F), g o (yfc) = (@ X80 (e, g o o), Alc) =
= ((Soc, Tg-(89c)), ACHO), ] HA(CHE.
Iy AU = Sl (AQOW) =3 o(PF(g o ¢, D o F o Pile, DV
515 Vi SoPE(c, )-v) 5 11 5 5167 o (DecJ! Goc, v, Q(0))

So L ~
Dec HE F) 80 o (F)(c) =

= (((SOC, Tgo(60 C))’ F(C(O», Vf o (DeC)—l(GO Cy o OC(O)))’
which depends only on §pc. Now put
h =V fo(DecS? o (ldpy xldy, Op o p) 1 TM )y E = mE > F,

then we have a commuting diagram

h
TM x £ = 1 ¥ ————>F
(b) prll q
™ g™ . N

of smooth mappings such that h is fibre linear in the fibration given by
the diagram. We can write B as the following sequence of mappings :

> L(E, F) yLm*E, F) X TN
I by Lemma 5.21 above

LE, F)ygy (TM % L(E, F)) % TN
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So we see by diagram (a) that f is st The mapfmq B (and so T(f) ) is
again st since its components f, h are, so f is $¢ and so on. QED

5.23. Corollary. Let e, p;» M;) be pre-vector bundles for i = 1, 2, 3. Let

f
E2 —_— E3
le lp,?
M, 9 M,

be smooth mappings with f fibre linear. Then the mapping

L(EL ED e | L(EL E3)

P

M.ZXM2 =M1XM3

is smooth.

Proof. The followmg diagram clearly commutes, so by Lemma 5.22 and
5.10 the mapping L(EL, f) is smooth.

(Id (g1, g2)s f 2 p2)

LEL ED - L(E!, B2) xL(E2, E3)
L(EL, ) comp
L(EL, )
QED

5.24, Lemma. 1. Let (f, g) : N > E ﬁI_(E E) be a smooth mapping, where
N is a premanifold and (E, p, M) is a pre-vector bundle. Then

¥ (g.f) =VHE Elgp 4 guF

2. Let (f, g) : N~ L(EL, E2) x L(E% E3) be a smooth mapping,

My
where N is a premanifold and (L, pi, IV&) are pre-vector bundles for i =
1, 2, 3, then we have

vL(E"Z, 5‘3) (g.f)+(VL(E2’ EJ) vL(E'Z, Eg) f).

g).f + g.(

Proof. By 5.9 and 5.2 we have the following commutative diagram :

T(ev)

T(Eé L(E, E)) —TE

EML(E E) I

Dec lDecE

(TMxTM)J (ExL(E E))M;I{EXL(E E)—h . TM 5 ExyE

130



A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 65

where
h = (pry, ev o pr3,4,d"(ev) o pr3 q,5,6)

rEry

and dv is the vertical derivative. Thus

VE (ev) = pry o DecEs Tlev) = d¥(ev) o piy g 5 6 o Dec B1° 5,
So for
(axs Qj 5 Vs xhg s Wy xky)
we have
(VEe)Dec T F F 1L (ay, by s v xhy 1 wier xky) =

= dv(eV)(Vx, xhy; W s xly) :xkg(\ﬁ() "“xh_.;(wx)

since ev is fibrewise bilinear and bounded. Now consider the smooth map-
pings :

N “9 L EyiE B

T~ |

MxM

Dec® o Tf = (Th, fomy, VEf) : TN >TM xE x E
and
Dec® B o Tq = (Th, Tk ;g oy V& ¥ g):
TN > (TM 3 TM) 5 L(E, E) o4, L(E, E).

So we can compute as follows :

VE (q.f) = VE(ev o (f, g)) = VE(ev) o T(Ff, g) =

EJ(E, E) )1.p E%(E, E)

= VE (ev) - (Dec ec o T(f, g) =

EX(E, E) _
= VE(ev) o (Dec i ) l(Th, Tk; oy, goTy ;vEf’ VL(E, E) 9)
= (VL(E’ E) g)'(fo ﬂN) + (g o 'ITN).(VEf) = VL(E' E) g.f +g. vEf

in short hand. So assertion 1 is proved. Assertion 2 is completely similar.
QED

5.25. Corollary. Let f : N ~ L(E, E) be a smooth mapping, N a premani-
fold, (E, p, M) a pre-vector bundle. Suppose furthermore that f(n) is in-
vertible in L(Eplf(n)’ Epzf(n)) for each n e N, and that the mapping

inv f: N> L(E, E), inv f(n) = f(n) "2,

is again smooth. Then we have :
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VEE E) (iny £) = ~(inv £).(VHE BV R) (inv £),
or
VHE Eliny £)(u) = ~F(n) L 9B By ) f(n)

Proof.
(inv f)(n).f(n) = ldp,t(n) = (Idg” (pyg(n))
in the notation of 5.22.

vHE E(14)™ op e )=, V5 FAE) o T(pgo O(y,) =

= VE(ICIE) o ([bCE)—l(T(p_Z of)(un)’ * Oplf(n))

by the proof of 5.22; this is an element in I_(Eplf(n)) Eplr(n)) which equals

the constant mapping Oplf(n)' So

o VL(E, E)(Idé” o plo f) = OL(E, E) ° (pl, p2) o f.
0 = VHE E (Giny f).) = VHE B (iny p).f + (inv ). VHEE) ¢
by 5.24.2, and

VHE E) (iny £) = ~(inv £.9HE F g giny ).
QED

6. FIRST STEPS TOWARDS CARTESIAN CLOSEDNESS.

6.1. Proposition. If M, N are premanifolds, then S(M, N), the set of all
smooth mappings from M to N, satisfies axioms (M1)-(M3) in a natural
way.

Proof. Put
TS(M, N) := S(M, TN)

(a) m S(MN %M, T = (T,
S(M, N)
Then it remains to prove that
-1 ~ -1 ~
s, w) (0 = ) (F) =
={se SM, TN) | myos=F} = S(M, TN),

the space of all sections over f, is a bornological c” -complete les. But
we have a canonical isomorphism

S M, TN) = T (FTN, f*m. M)
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induced by the universal property of the pullback :

m *f

FXTN N
(b) oy Ty
M f ~ N

I'(f*TN, f*y, M) is a bornological C* -complete les by 5.18, and we car-
ry its structure over to Sg(M, TN) - the pointwise linear structures co-
incide. So we have proved that (M1) holds.

M 2) Let S(R, S(M, N)) consist of all mappings ¢ : R+ 5M, N) such
that the associated mapping

¢:Rx M> N given by &, m) = c(t)(m)

is in S(R xM, N). So we have bijections :

A~

S(R, S(M, N)) S(R xM, N)

given by i
&(t, m) = c(t)(m) and g(t)(m) = g(t, m).

For fe C®(R, R) we have
(g7e F(E))(m) = g(f(t))(m) = g(f(t), m) = go (F x Iay)t, m),
50

¢ of = (o (Fxldy) e S(R, S(M, N).

Here R x M bears the premanifold structure of 4.1. SR, S(M, N)) cont-
ains all constant mappings, since for g e SM, N) we have :

const(g) = (g - pr,) , where g , pr, € S(RxM, N).
(M3j For t e R put
Ar:M> T(R xM) = TRx TM = R? xTM, At(m) =(t, 1 ; Oy,

OF A ¢= (const(t, 1) ; Op) : M > TR xTM.
Then At €S(M, TR xTM). Then define

S¢lc) := T¢ 5 Ax € S(M, TN) = TS(M, N),
for c e S(R, S(M, N)).

Claim : 1 gy yf8c) = c(b).

Tsru, wfecdm) = (m)@.c)m) =m ) o T o A(m) = Eomp o Ay(m)
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= &(t, m) = c(t)(m).
Claim : If fe C°(R, R) and c € S(R, S(M, N)), then
Sglco F) = FI(E).Sgry)cCe
Belco FXm) = T((co £)7) o Ac(m) = T(C o (F x Idy)(t, 1 ; Oy =
L TE o (TF xId g )(t, 15 Oy = TE((E), F'(t) ;5 Oy =
= TE(FU(E)(F(E), 15 Qp)) = FI(E).TE(F(E), 1 5 Oy =
= PUE(TE o Agre) (M) = (FI(E). Spr¢) C)(m).

Claim : If c e S(R, S(M, N)) with 8§ ;.c = Oy, for all t, then c is
constant.

0 £, m = (6t C)(m) =T¢Co At(m) = Té(st(ins(m))),

ol
= & (€ o (ins(m))),
where ins (m) : R+ R x M is given by ins(m)(t) = (t, m). Now
S (ins(m)) e S(R, N), (& o (ins(m)))(t) = &(t, m).
So by (M3) for the premanifold N we conclude that
éo (ins(m)) = const in N, i.e., &t, m) = & o (ins(m))(t)
does not depend on t. So c(t) does not depend on t,
c =const in SR, S(M, N)). QED
6.2. If M, N are premanifolds, then TS(M, N) = S(M, TN) is again of the
form S(M, P) , so it satifies (M1)-(M3) too. Therefore we may continue

and get the whole sequence of iterated tangent bundles :

o= T S(M, N) — TOS(M; N) o = TS(M, N) —— S(M, N)

| ) |

e SM, T N) o S(M, TPN) e S(M, TN)
So we may speak of smooth mappings between objects of the form S(M,N)
for premanifolds M, N, by just using Definition 3.1.
6.3. Lemma. If M, N, P are premanifolds, then the set S(M, N) x P sat-

isfies (M1)-(M3) in a canonical way, and
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is of the same form.

Proof. Look at the proof of Theorem 4.1 and proceed in the same manner.
6.4. Lemma. If M, N, P are premanifolds and f € S(M, N) then the follow-
ing two mappings are smooth in the sense of 6.2 :

F* = S(F, P) : S(N, P) > S(M, P), gl g of,

f

.= S(P, £):S(P, M)> S(P, N), gl fo g.

Proof. Consider the following diagram :

S(R xN, P) Sdx f, P) ~ S(Rx M, P)
S(R, S(N, P) St Py - SR, st P))
@  T()eA l@o lo 100
TSN, P) — — — __ sth,pP) ~TS(M, P)
SN, TP) Stf, TP) - S“(M T#’)‘

This diagram commutes :
(60 o S(f, P)*(c))(m) = T(é o (IdR Xf)) ) Adm) = Té o (]dm XTf)(O’ 1 ;s QT)
= T&(0, 15 0g1) = TE o Ag(f(m)) = (S(f, TP) o & (c))(m).

Therefore Ts(f, P) = S(f, TP) and we may iterate and conclude that
S(f, P) is smooth. Now consider the following diagram :

f

S(Rx P, X) x + S(RxP, Y)
b) SR, S(P, X)) S, 1), L S(R, SP, Y))
T( JoAg l‘SO 1‘30 T( JoAo
TS(P, x)____TIs®ehH >~ TS(P, Y)
| S, TF) “

S(P, TX) S(P, TY)

Let us check that (b) commutes :
S0 oS(Py ) (c) =8 ((f o C))=T(f o8, Ay =

=Tf , Téo AO = Tfoéoc = (Tf)*((SO C).
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Therefore TS(P, f) = S(P, Tf), and by recursion we see that S(P, f)
is smooth. QED
6.5. Lemma. If M, N are premanifolds, then the insertion mapping
ins : M >S(N, M x N), ins(m)(n) = (m, n)
is smooth.

Proof. We use the diagram :
__»S(Rx N, Mx N)

/L‘fM :1"
ins

S(R,M) - X —+ SR, S(N, M x N)

sO‘ 160
(a) Y .
M _ ] Tins) ____. = TS(N, M x N)

F i

SN, TM x N) —Ns Tdrw<On) oo, Tm x TN)

This diagram commutes : (ins o ¢)"= ¢ x Idy ,
( 8efins (e))n) = T((ins o ©)7) o Ay(n) = T(c x Idy)(O, 1 ; Q,)
= (Te xId )0, 1;0,) = (Te (0, 1), Q) = (§,¢, 0
= ((Id g x Q) o ins( &, (cI(n).
Therefore ins isS! and
T(ins) = S(N, Idp x0y) o ins
is again st by 6.3 and induction, so we may iterate and conclude that
ins is smooth. QED
6.6. Lemma. If M, N are premanifolds, then for any me M the mapping
evy ¢ S(M, N) =N is smooth in the sense of 6.2.

Proof. Consider the following diagram :
S(R x M, N)

fh ( S(I'ns(m), N)
SR, S(M, N)) CVimix + S(R, N)
@  TOeA: s, l 8¢
TS(M, N) o
S(M, TN) - mn ~ IN
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Let us check that this diagram commutes :
& o (evph(c) =& (evypo ) = & (&(, m)) = 8 (¢ o ins(m))
= 8 ¢ o € (ins(m)) = TE oS¢ (ins(m)) = TE(t, 1 ;0,) = T¢ o A-(m)
= evy(TC o Ay) = ev o & (o).
Note that we used only ins(m): R > Rx M and not ins, and 6.4. If

we putt = 0 in (a) we see that ev, is S! and T(ev,) = ev,. So by recur-

sion ev,, is smooth. QED

6.7. Lemma. Let M, N be premanifolds, and let (E, p, M) be a pre-vector
bundle. Then for any n € N the space

S(N, M)(evn,xM, p) E

satisfies (M1)-(M3) in a canonical way, and the tangent space is of the
same form.

Proof. (M1) Put

T(S(N, M) x E) = TS(N, M)

(ev,, M, p) (T(evn)jﬂ, Tp) TE = S(N, TM% % TE

evn, ™,Tp)
m S(N, TTM) X TTE
S(N, M) X E
Then {ev,, M, p)
T2(f, vern)) = (SN, ) x ) (F, ven) =
= {(g, W) e Se(N, TM) x T,E | evy(g) = Tolp)w } ,

where v = vgn). This is a closed linear subspace of SAN, TM) xT,E ,
since it is the kernel of the linear continuous mapping

€Vpopri - Tup o pr2 2 SAN, TM) x TyE + Tgn)M.

So it is a bornological C* -complete vector space with the bornologized
subspace topology.

{M2)+(M3) We choose the following setting :

SR SN 5 = SR 0 My S ) = SRN MRS
lﬁt 1& x§ ¢ (T()OAt)thl
T(S(N, M) x E) = TSN, M) x TE = SN, TM) «x TE
{ev,, M, p (T(evnj, M, Tp) fevn, ™,
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It is easy to check that all requirements of (M2) and (M3) are satisfied.
QED

Remark. Since the tangent space is of the same form again we have the
whole tower of iterated tangent bundles and the notion of smooth map-
pings makes sense, as in 6.2.

Note that the proof of (M1) does not work for a general smooth
f : S(N, P)> M instead of evp, , since we do not know that Tf is fibre
linear (8o surjective depends on Geo in 2.1 and was used in 3.1).

6.8. Lemma. In the setting of Lemma 6.6 the fibred product

S(N, M)(evn,"M, ) E
has the universal property of a pullback with respect to smooth mappings.
Proof. Let X be a premanifold or of the form S(N, M), or even itself a

fibred product as above, and consider smooth mappings f, g in the situa-
tion of the following diagram :

X
(g, f) f
AN

“siN, M) x E P2 F

(evy, M, p)

(a)

g pr p
S(N, M) €Vn M

Now look at diagram (b) below. It shows that the projections pr; , pry,
and (g, f) are of class SI and their tangent mappings are of the
same form. So by recursion all these mappings are smooth. QED

6.9. Lemma. Let (E, p, M) be a pre-vector bundle. Then the mapping

L(TM, My, L(E, E) —L L(TM 4 E, TM 4 E)

MxM M xM

given by (f, g) b f x g, is smooth.

Proof. J is fibrewise continuous and linear, so fibrewise a C~ -mapping,
and clearly commutes with the parallel transports. So we may use 5.2.
QED

6.10. Lemma. Let M, N, P, Q be premanifolds. Let f : P > Q be
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?!.n DA W P
7 1 P X S(RxN, M)
V o 1
d fe ins(m)*
S(R, XL -
(g, N, S(R, 5% M) xE}
(prl)*
¢
5, =~ S(R, S(N, M)) (ew), S(R, M)
So
‘ e |% %
Ti<~ - T, f){ ' So
TS, M), x5) T(prz) ST
Tp
\ Tg — TS(M, N) ‘ - M
\
(Tg, TH\ =
\ ~
\ prz

\

;N TM) % TE/

pr; j
S(N,

€Y

™)

Diagram (b) of Lemma 6.8.
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smooth. Then the mapping
(. xf) : S(M, N) > S(MxP, NxQ)
is smooth.

Proof. Consider the following diagram :

SR x M, N)—C XD | SR xMxP, N xQ)
(a) N "
T()eA0 SR, s, N — X Px SR, sMxP, Nx Q)

501 l(SO / T()o A 0
s, TN) (X000 O oM wp, TNXTQ)

A little computation shows that this diagram commutes. Then (. x f) is

S and
T(. X f) = (oX OQO f)

which is & too, so (. x f) is $° and so on. QED

7. Manifolds, Vector bundles and cartesian closedness.

7.1. Definition. A premanifold M is called a manifold, if its defining pa-
rallel transport Pt 7% and geodesic structure Geo satisfy the following
further requirements (besides (M1)-(M6) of 2.1) :

M7) Pe™ ;i S(R, M) x R >L(TM, TM) is smooth.
(M8) Geo' ' : TM +S(R, M) is smooth.

Condition (M8) is equivalent to either one of the two following

conditions :
expM=ev; - Geo”: TM »M and (Geo™ : TM x R+ M

are smooth.

The mapping exp = exp¥ is called the exponential mapping for the
geodesic structure Geo = GeoX.

Proof. If Geo is smooth, then by the formula above exp is smooth, and in
turn

(Geo) = exp o : TM xR +TM> M
is smooth, since by (Mé) we have
{Geo) (v, t) = Geol(v)(t) = Geolt.w)(1) = exp o m™M(w, t).

On the other hand
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Geo = S(R, (Geo)?) o ins : TM > S(R, TMxR) ~ S(R, M)

so Geo is smooth if (Geo)” is it. QED

7.2. Definition. A pre-vector bundle (E, p, M) is called a vector bundle
if M is a manifold and the following condition holds for the defining par-
allel transport of the pre-vector bundle :

(VB3) Ptf: S(R, M) x R>L(E, E) is smooth.
Remark. We have shown in 5.16 that
t b PtEc, t).vc(0)
is the unique smooth solution in E of the ordinary differential equation

Vs = 0. This may be a way to show that some premanifolds are already
manifolds. I have no results in this direction.

7.3. Theorem. Let (E, p, M) be a vector bundle over a manifold M. Then
the total space E (with its premanifold structure from 2.6) is actually a
manifold.

Proof. (M1)-(M6) hold by Theorem 2.6.
(M7) Ptf : SR, M) x R+ L(E, E)

is smooth by (VB3) for (E, p, M). Define

Pt?: S(R, M) x RxE~ E
(evp.M, p)

i PtHc, t, vero) = PE(C, ) -
Then ﬁtE is smooth in the sense of 6.7, since
PE = ev o (PExId) : SR, M) xR x,E > L(E, E) x,E +E
and the fibre linear evaluation is smooth by Lemma 5.9. Likewise
Pt™: S(R, M) x R x TM > TM
is smooth. By (2.15) we have

Pt(c, t, w) =
= (Dec Ey i(pt™ (pe o t, prye Ded(w)), c(t), PtE(p oc, t, prye De&(w)),

so PtTE is smooth and we have the diagram :
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1E
S(R, E) x R x TE TE
(a) pri,z Tg
SR, E) x R ev E

Pt TE is fibre linear in the fibration given by (a). Note that diagram (a)
implies that ev : S(R, E) x R ~E is smooth for

ev = TTEQ Istmo([dS(R,E)xR ’ OIEO eVoo prl)

and the mapping (Id, Oz o €vy o pr;) is smooth by Lemma 6.8.

It is rather complicated to show that smoothness of PHE implies
smoothness of Pt directly. Consider the isomorphism of pre-vector
bundles and differentiable structures

(TE, Tz, E) = (TM % E % Es pros E).
This implies an isomorphism of pre-vector bundles over E x E:

(L(TE9 TE), (TTE" TrE'), EXE) =

= (E L(TMx E, TM x E, E E x E).
((p,MX,pl) ( X, Es X )(p2,1>51,p) s Pry 45 ExE)

By (2.15) the parallel transport on TE is given by the following
sequence of mappings :

S(R, E)
l(evoo pry, Pt™, (p, x Idg), P&, (p, x Idg), ev)
E )h(L(TM, TM)M(X%E, E)) ﬁE
Idgx J x ldg (ev is smooth, see above, evyis
E 3L(TM % E, TMx,E)x,E smooth by 6.5, J is smooth by 6.8)
llso
L(TE, TE)

So Pt TE is smooth.
(M8) Geo® : TE » S(R, E) is given by (2.16),

Geof((DecT (u,y vyy wINE) = PE(GeoMu,), t).(y + tow) =
= PtEGeo Muy), t, v + towg).

The last expression is smooth in all appearing variables, since P¥ and
Geo "are smooth and by 5.3. So

142



A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY... 77

(GeoEY's ((DecE)™L x Id )

is smooth and thus (Ged®) : TE x R *E too. By the Lemma in 7.1 this
suffices. QED

7.4. Proposition. Let (£, p, M) be a vector bundle. Then the space
C (R, T(E)) of all C®-curves in the bornological C “-complete space
T'(E) corresponds exactly to the space Sprz(Rx M, E) of all smooth map-
pings g : R xM ~E with p o g(t, x) = x.

Proof. Let g : R~ T'(E) be a C®-curve. Then
§: RxM~E, §(t, x) = g(t)(x),

is a mapping satisfying p o §(t, x) = x.

Claim : § is smooth. Let ce SR, M), put c(0) = x . Consider the
mapping B(c) : T(E) ~C®(R, E) from the proof of 5.17 -this is one of
the generating mappings for the Fl-topology. So B(c) is linear and contin-
uous. For s € T(E) we had

(B(e)(s))(t) = PtE(c, tJL(s(c(t)).

B(c) og : R > C” (R, Ey)

So

is a C®-curve in C*(R, E ), given by
r b (t > PE(c, t)r)(ct).

But now we are in the setting of §1, and by the cartesian closedness of
the category of C%-mappings and bornological C *-complete vector
spaces the mapping

(r, t) > PtRe, ) g(r)(c(t)
is a C ®-mapping R?* » E,.Thus the mapping

H:S(R, R) x S(R, M) > S(R, M) xS__ R, E)

cons
given by

H(f, c) = (c, t PPtE(c, tlLg(f(t)(c(t)

makes sense. Now consider the following diagram (a) on page 78, in which
the mapping R is given by

R(a, b ; uy) = (uy, g(a, x), b.g'(a)(x) +V(g(a)).uy).
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SR, R) xS(R,M H S(Ry M) X Scope(Ry E)
i CartE
(a) S(R, R xM) (@, + SR, E)
8 x5, éol lao 8% 8,
TR xTM L . TE
R Decf
rd
™ ﬁ E 3(4 E

A little computation shows that this diagram commutes. So § is $. By 5.
20 the mapping

V:T(E) > T(njE)
is linear and continuous, so
Vog:R > I(njE)

is again a C®-curve. If we apply the argument above to the curve V.g
we see that the mapping -

R x TM—E, (a, ) P> V(g(a).y, ,

is &. Likewise g' : R > I'(E) is a C®-curve, so by the argument above,
the mapping

RxM=>E, (a, x) Pg'a)x)

is SL So all the ingredients of the mapping R are $1 so Ris & and Tg
is S1. Now by the whole argument above the two critical mappings in R
turn out to be $2 so g is S3. This can be repeated, so g is smooth and the
claim is proved.

Conversely, let h: R x M > E be smooth with p o h = pr. Then
h"(t) = h(t, ) = h o ins(t) : M>M x R>M>E

is smooth, so h"(t) € T(E) . We have to show that h”: R +T(E) is a C -
curve. Let ¢ € S(R, M), put again x = c(0). Then

BB (Ir) = PtE(c, tF 1R (t)(c(s) = PtEC(. +s), -s, h(t, c(s)) € E,.

The last expression, viewed as a function of s, t, is smooth R?~> E
{the mapping
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t ol +t), R—SR, M),
is smooth, since it coincides with
S(R, ¢ o+) o ins : R—SR, R x R)—= SR, M))

and takes its values only in the fibre E,, So it maps C%-curves in R? to
smooth curves in E lying in the fibre E,, but these latter are exactly the
C®-curves in E4 by the definition of Cartf in 2.8. By §1 this suffices to
see that

(t, 1) B (D)
is a C*-mapping R? » Ex. This means that

(B(c) «h")" : R?~> E,
is C ®. By cartesian closedness the mapping

B(c)oh” : R>C*(R, E)
is C* then. So h¥: R»>T(E) is C® if T'(E) bears the initial topology
with respect to all mappings of the form B(c) , and is C*® too if we bor-
nologize this topology. So h*: R > T1(E) is C*®. Now finally
T ohY : R » I(E) » TXTE, Tp, TM)

coincides with the mapping

(Th o (0gxIdy)) : R > TXTE, Tp, TM),

which is C% by the argument above. This can be repeated and shows that
h: R > I(E) is C®. QED

7.5. Lemma. Let M be a premanifold, let N be a manifold. Then S(M, N)
is a premanifold.

Proof. (M1)-(M3) have been checked in 6.1.

(M4&) Construction of the parallel transport for S(M, N). For
c € S(R, S(M, N)) we define

PtTS(M, N) (¢, t) : Sorp)(My TN) > Sgr¢)(M, TN)

b
Y (PLTSMM, N) (¢, t).s)m) = PETNE( ,m), t).s(m),

s € S cofM, TN), m € M.
Claim. For s e S.g(M, TN) we have
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PETS(M, Nie, t).s € Syre)(M, TN).
PLTS(M, N) (c, t).s = PLTN, (5, const(t), s) : M> S(R, N) x R xTN >TN.
That PtT¥ is smooth was shown in the proof of Theorem 7.3.
¢: M >SR, N) given by c(m)t) = c(t)(m) = c(t, m)
is smooth since
¢ =(8, flip) = SR, &, flip) o ins : M >S(R, Mx R)~> S(R, N),

and all components are smooth by 6.4 and 6.5. The claim follows.

Claim.
PESM, N) (e, ) : Sei )My TN)> S o 1y(M, TN)

is continuous and linear, where
SAM, TN) = T (F*TN, f*my, M)
as bornological C*®-complete vector spaces.
ptTS(M, N)(c, t) is clearly linear since the linear structure
is the pointwise one. To show that it is continuous (= bounded) it suffices
to show that it maps C*® -curves to C* -curves by §1. By Proposition 7.4
C®(R, SAM, TN)) = C*(R, T (f*TN)) = Sfoprz(R xM, TN).

So letg : R >S5, (M, TN) be a C® -curve, then § : R x M — TN s
smooth, and :

(PtTS(M, N) (c, t) og(s)(m) = PEIN(E(, m), t).g(s)(m) =
PtM(E(m), t, §(s, m)) = Pt o (@ o pry, const(t), G)(s, m) ;
this is a smooth function of (s, m). So

PLTSM, N) (¢, t) o g :R > S (M, TN)

c(t

is a C®-curve.
Claim. PtTSM, N) (¢, 0) = Id.

(PtTS(M, N) (¢, 0).s)(m) = PEN(E(, m), 0).s(m) = s(m).
Claim. For fe C®(R, R) we have
PEIS(M, N) (¢, f(t)) = PtTS(M, N) (¢ f, t) , PtTS(M, N) (¢, £(0)).

(PLTS(M, N) (c, £(t).s)(m) = PtTNE(, m), f(t).s(m) =
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=PtNE(F( ), m), t) o PEN@E( , m), F(0)).stm) =
= (PtIS(M, N)(c o f, t) o PEIS(M, N) (¢, £(0)).s)(m).

All requirements of (M4) are satisfied.
(M5) Let c € S(R, S(M, N)). We have that

Pt TS(M, N) (C, C)_l.(st c

as a function of t is in C*(R, S.t0)SM, TN)). By Proposition 7.4 it
suffices to show that

(t, m) = (Pt ™M, N) (¢, t)1. 8 4c)(m)
is a smooth mapping R xM~>T N
(Pt M, N) (¢, )71, & c)(m) = PE™(@E(, m), 71 (8 pc)(m) =
= PEN(E(.4t, m), -t) o TEo Ag(m) = PtTN(@E(.4t, m), -t, TE(t, 1 ; Ofm))).
This last expression is smooth in (¢, m) ; that
(t, m) > c(.+t, m)

is a smooth mapping R x M > S(R, N) can be checked similarly as
smoothness of ¢ at the beginning of this proof.

(Mé6) We define
GeoS™M, ¥) : TS(M, N) = S(M, TN)> S(R, S(M, N))
by the formula
(Gea®™. N (s)(t))(m) = GeoM(s(m))(t)

for s e S(M, TN), t e R, me M.
Claim : GeoS™M, N) (5) e S(R, S(M, N)).

(GeoS™M, N) (s)(t))(m) = Ged"(s(m))(t) = (Ged¥) (s(m), t) =
= (Geo™) "o (s x Id)(m, t),

which is a smooth mapping R x M -—— TN by (M8) for N. This suffices by
the definition of S(R, S(M, N)) in 6.1.

Claim : GeoSM. N (t.s)(r) = GeoS(M. N (s)(tr).
(GeoS™M, N) (t.5)(r))(m) = Ged(t.s(m))(r) = GeoMs(m))(tr) =
= Ged®™, ¥) (s)(tr))(m).
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Claim : & GeoS(B ) (5) = ptTSM, N) (GeoS™M. V) (5), ¢).s.
(84 GeoS™M, N) (5))(m) = evpo &(GeoS™ ¥ (5)) = T(evy) o 6¢(Geo SM: ¥ (5)),
since T(ev,) = ev, by 6.6,

= & (evyo GeoSM. ¥ (5)) = 5, (GeoS™ V) (5)( )(m)) =
= 84Geo(s(m)) = PN (Ged' (s(m)), t).s(m)

by (Mé) for N
= (PETM, V) (GeoSM N(5), t).5)(m).

Claim : GeoS™ ¥ (§ (GeoS™ ¥(s))) = GeoS™: ¥ (5)(.+t) =

(Geo ™M, N)(3, (GeoSTM: N) (s))(r))(m) = Geo" (8, (Geo™™: ¥ (s)))(m))(r)

= GeoN(Gt (Geo (s(m))))(r)
as we just saw,
= Geos(m))(r +t)
by (Mé) for N,
= (Geo S™M: N) ()¢ + t))(m).
So (M6) is satisfied. QED
7.6. Remark. If N is a manifold, and if M, P are premanifolds, then
S(P, S(M, N) ) satisfies (M1) - (M3) by 6.1 and the tangent space is of
the same form. So we may iterate and may consider smooth mappings
from and into S(P, S(M, N) ), as in 6.2. This will be essential for our
next steps.
7.7. Theorem. Let M be a manifold. Then there is a unique mapping
wy: T2M > T2M

(called the canonical flip mapping) with the following property :

(1) The following diagram commutes :

S(R, S(R, M))

SR,
‘/{ \ &

(a) S(R, TM) S(R, TM)
N e
TeM MM T2m

Furthermore My is smooth and has the following properties :

(2) If M, N are manifolds, then for any smooth mapping f : M > N we
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have T2f upM = nNo T2f.
(3) uMo UN= IdTQM
(4) wmen = W1 X uN -
(5) wy is an isomorphism between the two vector bundles
(T°M, T61,), TM)  and  (T?M, Ty, TM)

(i.e. a fibrewise linear diffeomorphism, not necessarily commuting with
the parallel transports), so in particular we have

Wyo T(O) = Opy: TM ~T?M,  T(y) o hy= Ty, Toyo My = Tly).
(6) L T?R > TR is given by
ung(xl, X535 X35 Xg)= (X35 X35 X5 Xg)
and for each f € S(R?, M) we have
Uy o T2f = T2f o ug, .
This property characterizes wny uniquely.
Proof. First of all we recall that
P : SR, M) x Rx TM > TM

is smooth. We saw this in the beginning of the proof of Theorem 7.3.
The following diagram commutes :

pim
SR, M) xR M ™
() Pi1,2 l Ty

SR, M)x R ev M

Then ev : S(R, M) x R + M is smooth, since
ev =Ty o Ptmo (IdS(R, M)xR? OM° evy o prl)

and the mapping

(IdS(R,M)xR’ Oy o €Yy opr)

is smooth by 6.6 and 5.1. Note that we know already that S(R,M) is a
premanifold. We will see that smoothness of

ev:SR, Mx R>M

suffices to construct uy. First we want to investigate T(ev) .
Consider the following commutative diagram (c). We have
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Idx (IdR,.)

S(RZ, M x S(R, R) ~S(R%, M x SR, R?)

SR, S(R, M))xSR, R) omposition

S(R, S(R, M)x R) (ev), L S(R, M)
sol lao
T(S(R, M) x R T(ev)

S(R, TM) x R

D
(T()vo) X(SO

> TM

8 (ev,(cy, c2)) =8 (€ 7 o (idg, c2)) = T(E 10 (idg, c2))(0, 1)) =
= Té; o (idgg, Te)0, 1) = T&(0, 1 ; 8p¢) =
= T&((0, 1 3 0c0)) + (0, 038pcy)) = T§ o Aplc(O)* T(q (NS oc)
= (8p c)(cy(0) + T(cy(0N(Sy cp)
= (evy o (idgp ) X TR) T €2 0 (T o SR, Ty) x IdrpI(& 1,80 ),

where ev;: S(R, TM) x R »TM is smooth by the argument above ap-
plied to the manifold TM (by 7.3) and where

ev,: S(TR, TM)x TR>TM

is not known to be smooth. So the smooth mapping T(ev) can be written
- T(ev) = ev ;o (ldgip ) X TR) #, €2 o (To S(R,my) x Id7g).
It follows that

evyo (T o SR, myx Idpp): S(R, TM) x TR +TM
is smooth. But then

To SR, my) = S(TR, ev, o (T o S(R, Ty) xIdg)o ins :

S(Ry, TM) ~S(TR, S(R, TM) x TR) »S(TR, TM)

is smooth by 7.5 and 6.4. Finally we conclude that
T:S5R, M)+ S(TR, TM)

is smooth, since

T =(T o SR, my)) o S(R, Oy : SR, M)> S(R, TM) » S(TR, TM).
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This implies in turn that for all t € R the mapping & :S(R, M) = TM
is smooth, since
8¢(c) = Te(0, 1) = (ev(p 1) o T)c)

and ev(p, 1) is smooth by 6.6.
Now we investigate the following diagram, which clearly commutes :

3(R2],| M)

T()e Ao SR, S(R, M)

S(R ™)
(d) ’
S(R, TM) >TM
x _ - iy -
™~

where
Ac i R>TRZ?, Ap(u) =(t, 1; 09 e TRXTR
=(t,u 1, 0) e TR? as in 6.1

Be: R>TR?, Bi(uw) =(u, 05t 1) e TRxTR
=(u t, 0, 1) e T R

We have to show that, in diagram (d), the mapping T(8;) factors over

& . We know that 8§+ is surjective (Remark following 2.1). So let ¢ be
in S(R, TM). We have to show that T(&)(c) depends only on & c. This

will follow by a diagram chase. Consider Ged™ ™ ®(c) in SR, S(R, M),
constructed as in 7.5. Then of course

§ (Geo SR M (¢)) = .
8 o (8:),(GeoSR M(c)) = 6, (T((Geo SR M (c))) o By =
. = 8o(T((GeoM™ " o(c x Idg) o flip)o By),
since
(Geo™™s (c x Idg) o flip(t, r) = (Geo™ (c(r), t) = GeoMc(r))(t) =
= (GeoSR, M) ()())(r) = (GeoS(R. M) ()¢, r).
So we may continue
§o (8,)(GeoS R M) () = §(T((Ged")?) o (Te x Idpg)o T(flip) (, 0 5 t, 1))
= 8,(T((Ged)?) o (Te x IdR)(t, 15, 0) =& (T(Ged) ) Te(t, 1) ; , 0)
= T?((Geo™) o § o ( &c 5 , 0) = TA(Geo™ NOpy B¢ ) 5 0, 0, 1, O).
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This last expression depends only on §; ¢. So we see that in dlagram
(d) the mapping T(84) factors over §; to a mapping " M » T2M,
If we put t=0 we get diagram (a). The mapping #y is uniquely given
by (1) since it is the unique mapping fitting into diagram (d) (T (& )
is unique and §;is surjective) for t = 0. It is easy to see that ny fits into
diagram (d) for all t . Note the formula for uy which we derived
above :

u(®) = TA(Geo™)04; 0, 0, 1, 0).

This shows that uy is smooth.
(2) Let f e S(M, N) . Then the following diagram commutes :

S(R, M) S(R, ) . SR, N)
(e) 8 S
™ f TN

Put
:=(0,0;1,0;0,1;0,0 = T(4)0, 1) e T?R?,

and apply the functor S(R, ) to diagrgm (e) to get the following
diagram :

S(R2 M) —_fx L s(R2, N -

8
SR, M)<2 S(R,S(R, M)ﬁﬁwﬁ, SR, N) 2 TSR, NN
WQ' | R, S(R, f) [
S sR, M) S(R, |8y SR, &) SR,
(f) sR, TM) —>Rs TO_gr TN)

150 So
W
~ TN —2 TN
>

]

TQ M My M TZ f

T°f
The outermost quadrangle commutes :
T2f o(T2().0)g) = T°F o T?g. a= T(TF o Tgla

= T4f o g). a = (T2 ).a)(F ().
The mapping
8 ¢ S(Ry, S(R, M)) > S(R, TM)

is surjective since S(R, M) is a premanifold by 7.5, so the mapping

8o 8o ¢ S(Ry SR, M) » T2M
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is surjective. Thus we may conclude that the lowest quadrangle in dia-

gram (f) commutes :

T2
T2M — 2N
(g) an l "y
T2M T2f T2N

So (2) holds.
(3) Claim : The following diagram commutes

s(R2, My __S(flip, M) s(;v, M)

R, S(R, M) — ) | (R, SR, M)

(h)
T( )oBO S(R, 60)\\ 4 T( )oAO
S(R, TM)
where
c(t)(r) = clr)(t).

For we have

60(6) = T(é ) f“p) ) AO= Té ) T(fh'p) ) (O’ 1 ;s OR( )) =

Té o (OR() ; O, 1) = Té [} BO = S(R, (SO)(C).

Now consider the following diagram :

A A

Id
0 s, M) (PP | gr2 vy _FIRDY TR2, M)
l A
S(R, S(R, M))

SR, S(R, M)  S(R, S(R, M)
S(R:ﬁo\ 80 SR8 ) ,./60

So
S(R, T™M) S(R, TM) S(R, T™M)
50 l‘so 160
"y 2 L 2
T“M - T<M » T“M
Here
(flip)* o (Flip)* = Id, 50 wy o ny=Id

since &, o 8, is surjective.
(4) That .= "y XUy follows from the diagram (j) (on page 88).

(5) Consider the diagram (k) (on page 88). From this diagram it fol-

lows that
T(TfM) ) u'M:T[IM .

Since wy = uy by (3), we conclude that
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S(R, MxN) S(RZ, M xS(R4 N)
A "X"
S(R, S(Ry,MxN) . 5(R, S(R, M))x S(R, S(R, N))

. S $
v / SR, 59 ,V S(R, 89

S(R, T(MxN)) S(R, TM)xS(R, TN)
S(R, T(MxN)) , ~ S(R, TM)x S(R, TN)
60 l@o
T2(MxIN) %o » T2M xT°N R
M x N L Hm
T2(MxN) T2Mx 12N
So
(k)
SR, TM) ~__ S(R, TM)
T(evy)=evy
60 ™ — 60
o Ty
T2M "o My M

Moo Yy = T(My).
So ny is fibre preserving for the two fibrations
(T2M, Ty, TM), (T2M, T(my), TM).

It remains to show that uy is fibre linear. Isomorphism follows then
since ny is a diffeomorphism. We consider the following diagram :

S(Ry, TM) T(% ) - T2M

W N‘ %
m
= Sgl(‘R,M % M) T2M Y
\%A
§

SR, M) 0 ~TM

Here the top triangle commutes because it is part of diagram (d). From
5.3 we know that

+ +IM x TM >TM
M
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is smooth. + is fibre linear, so a glance at diagram (a) in 5.2 shows

that T
T (+TTM) = +7(my)
Let c e S(R,M) and let
C7s Co€S(Ry TM) =T R, ) L(c).
T( 60) is fibre linear by 3.3 and 7.5, so we have :
T(Sp)(c; +"S(R, &) = T(8).q +rr T(8p ).
= ”M50(01) g M 0 (C2)-

Solc; +Tr5(R %(“(R,

=8y o S(R, i )(Cl, c) = T( iy ) o & (cz, )

(Cl) C 2))

= Trimy) (8peps $ped) = %€ty S0 €2+

So finally we get :

(S ocz) +"IM wy(Soaq) = T )(CIJ?TS(R M)Cz)

= Uyo 60 (Cl+_n_ S(R, Cz) = H’1\4(60 Cl"’T(ﬂ )60 C2)'

M)

So ny is flbre additive. Fibre linearity follows then by fibre continuity
for the C®-curve topology.

(6) ngz: T2R > T2R is given by
URX gy X5 X35 Xg) = (X75 X35 X5, Xg)
since diagram (a) says in this case :

feCR2, R)=5R, S(R, R?))

% SR, 8y

(f (0, ), (0 ) (r(, o), ( 0)

(0, 0), 2L " (o 0), -, 0, “ 0 0)) /50

(F(0, 0), (o 0 55 ©, 0, 521 0, 0

Then " )
HMon:TfoHRz

is a special case of property (2). It remains to show that wy is the only
mapping A : T°M » T°M  with the property
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Xoo T2f=T2fony, forall  fe S(RZ, M),
where u g2 is given by the formula above. We will show that any X with
this property fits commutingly into the following diagram, which is dia~
gram (a). So by uniqueness in (1) the assertion follows then.

_S(RZ2, M)
T()oAy 5
S(R, SR, M) T()-Bo

(m)
E/ \Q P
SR, ™™) S(R, TM)
1 x

Let ¢ eS(R, S(R, M)).
Soo SR, S)c) = 8,(TE o By) = T(TE o B0, 1) = T2 o T(BY)(O, 1)
= T28(0,0;0,1;1,0;0, 0 =T?¢ o ug2(0, 051,050, 1;0,0)
= Ao T2(0,0;1,0;0,1;0,0)0 = \oT?¢s T(ANO, 1) =

= )\ ) T(Té o /%)(O, 1) = )\ [} 60 [} 6O(C)-
QED

7.8. Theorem. If M is a premanifold and N is a manifold, then the map-
ping T : S(M, N) ->S5(TM, TN) is smooth.

Proof. Consider the following diagram :
S(ORX Idm » TN) o T

S(Rx M, N) » S(Rx TlM, TN)
(8) [N -
SR, S(M, N)) SR, T | (R, s(TM, TNNZ
Q?
o

T( ) Ap So So
S(M, TN) S(TM, wy) o T serm, T2N)

Let us check that this diagram commutes. Let
c e S(R, S(M, N)), EeTM.
(8y o S(R,TICNE) = TUS(R, TIc)) o A(E) =
= T(TE o (0 Idyy ) o A 8) = T2E o (TOpx Id ), O, 1 5 OF)

= T23((0, 0 5 1, 0), O ).
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(ny o T(8GNE) =ny o T(TE o AQN(E) = yo TP¢ o TA(E)
by 7T72N0T26(O, 150,05 T(0,).8)=T2Co np {0, 1;0,0; T(Q).E)
= T28(nR(0, 1 ; 0, 0), ny oT(OM(E)) by 7.7.4
= T2¢(0, 0 ; 1, 0), Opy(E)) by 7.7.5 and 6.
So diagram (a) commutes. This says that
T :S(M, N) »S(TM, TN)
is 1 and T(T) = (n,), o T, in more detail,
T(S(M, N) —I— s(TM, TN))
- (S(M, TN) —~ s(TM, T2N) —CW% s 5T, T2,

By 7.3, TN is a manifold again, so we may apply the proof up to now
to see that

T :S(M, TN) ~S(TM, T2N)
is Sl, but then T : S(M, N) >S(TM, TN) is s2 By induction we see that
T is smooth as claimed. QED
7.9. Theorem. If M is a premanifold and N is a manifold, then the eval-

uation mapping ev : M x S(M, N) =N is smooth.

Proof. Consider the following diagram :

S(R,M) x S(RxM, N) (Idg,) x1d | (R, R xM) x S(Rx M, N)
S(R, M) xS(R, S(M, N)) composition
SR, M Sty ) SR, ev) - SR, N)
8ox(T( )oAg) Gol l s,
T(ev)

T™ % S(M, TN) ~ TN

where we put for T(ev) the mapping
T(ev) = evo (myxldgy ) )+nNev o (Id pyxT o S(M, ),
T(ev)(E , s) = s(m) N T(my o SUE ).
We show that diagram (a) commutes. Let

c = (cz, co) € S(R, MxS(M, N)).
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T(eV)(CSOC) = T(ev)( (SOC.Z’ Té20 A) = T620 %(Cl(o)) +T|-N T(TYNO T62 o AO)(SO Cl)’
where
T(TTNO Té2 o AO)((S Ocl) = T(éQ o Maxm © /AD)( 60(.‘1)
60 OS(R’ eV)(C) = 60(62 o (Id » C_z)) = T(é2 o (Id ) Cl))(o, 1)
=T¢,0 (Id pg, Te )0, 1) =T 50 (0, 1 5 §pcy)
= Té2((0’ 1 y OCI(O)) +'"RXM(O, 0 ;Gocl)
= T62(O, 1 N OCl(O) )+ﬂN Té2(0, 0 N %Cl)
= Téz o AO(C.Z(O)) +TTNT62(O’ 0 ’ 60 Cl).
So diagram (a) commutes, so ev is S.. Since TN is again a manifold,
T(ev) is S, so evis S2 and so on. QED
7.10. Lemma. If M, N are manifolds and P is a premanifold, then the
mapping S(P, ) : S(M, N) > S(S(P, M), S(P, N)) is smooth.
Proof. By Lemma 7.5, the spaces S(P, M) and S(P, N) are premanifolds

so S(S(P, M), S(P, N)) satisfies (M1)-(M3) by 6.1 and we can talk about
smooth mappings in the sense of 6.2.

Claim : The mapping const : R +S(P, R) is smooth and
T(const) = const : TR~>S(P, TR.
For let fe C*(R, R), then
§po (const)(f) = Sy(const o f) = T((const x £)7) o A,
= T((const)” o (f x Idg) o Ay = Tlpr; o (f x1d )0, 1 ;0;) =
= const(TF(0, 1)) : P > TR = const(GO f).
Now consider the following diagram

S(S(P, RxM), S(P, N)

(a) sP, ) S((const, Idg, M))’ S(P, N))
rOua | SRy S, N (5P, )y L S(R, S(SP, M), S(P,N))
°0 § L LQ) T( )oAO
s TN) s, ) S(S(P, M)y S(P, TN))
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The top diagram commutes :
(S((const, Id g/p, y))s S(P, NXS(P, ENXE, 9)
= S(P, &) o (const, id)(t, g) = S(P, &)(const(t), g) = ¢&(t, g())
= ((S(P, ), (c)(t, g).
The outer pentagon commutes :
(8go (S(Py ) (c)(g)p) =
= (T(S(const, Idgip ) )s S(Py ND).S(P, €) o Ag(g))(p)
= (T(S(P, &) o (const, Idsip ) V(0 1 ; O))(p)
= (S(p, T¢) o (T(const), Idpsp y) )+(0, 1 ; Qu))(p)
= (S(P, T&).(const(0, 1), Og))(p) = Té&O, 1 ; Og(p)) = T¢ o Ap(g(p)
= (8ge)(g(p)) = ((8y ) o g)p) = (S(P, S, c)(g))p).
So diagram (a) commutes, so S(P, ) is S and ‘
T(S(P, )) = S(P, )

is also $%, so S(P, ) is S?and so on. QED

7.11. Lemma. If M, N are manifolds, then the mapping
() : S(Ry, S(M, N) >S(M,S(R, N)),
given by &(m)(t) = c(t)(m), is smooth.
‘Proof. For ce S(R, S(M,N)) we have
c = (&, flip)” = SR, &, flip)o ins :
M— S(R, MxR)— SR, R x M)—> S(R, N).
Claim : "~ : S(R, S(M, N)) >SR xM, N) is smooth.
¢ =evo (c xIdpy):R xM— S(M, N)x M — N,
so we have
"= S(R xM, ev) o (.x Idy) :

S(R, S(M, N)) — S( RxM, S(M, N x M) — SR xM, N)
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which is smooth by 7.5, 6.10, 7.9 and 6.4.
Claim : ¥ : S(Mx RyN) > S(M, S(R, N)) is smooth.
g" = S(R, g) o ins : M—— S(R, M xR)— S(R, N),
so we have
v = S(ins, SRy, N)) o S(R, ) :
S(Mx R, N)—>S(S(R, MxR), S(R, N)— S5(M, S(R, N))

which is smooth by 7.10, 7.5, 6.5 and 6.4. So finally

- v

=Y o S(Flip, N) o " :
S(R, SM, N)) »S(Rx M, N) > S(M xR, N) > S(M, S(R, N))

which is smooth. QED

Note that in this lemma M has to be a manifold : otherwise we can-
not form S(S(R, M xR), S(R, N)) without developing a lot more technic-
al background as in §6.

7.12. Lemma. Let M, P be premanifolds and let (E, p, N) be a vector
bundle (so.N is a manifold). Let f : M > N be a smooth mapping. Then
we have a canonical identification of the following two spaces :

S(P, M) S(P, E) = S(P, M _x E) = S(P, f*E).

X
(f,, S(P,N),p,) (£,N,p)

Proof. First note that (S(P, E), p,, S(P, N)) is a pre-vector bundle by 7.5
(or its method of proof), so by 6.7 the space

sP, M)

S(P, E,
i, st p) > E

satisfies (M1)-(M3) ; S(P, f*E) does it, by 6.1. So it makes sense to ask
whether the natural identification of the two spaces makes sense.

Claim : In the setting above we have a diffeomorphism

T(f*E) = (TF)*TE
in more detail

™™ E.

X
(f, N,p)

DecfE
T(F*E) ———————TM x f*E x f¥E = TMx f¥E x E) =
M M M N

E)=TM X T
(Tf,IN, Tp)

=TM TNx E xE) =T TE = (TF)*TE.
X )( 5w E xE (Tf)

M X
(Tf, M, pr, (TE,TN,Tp)
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This bijection clearly gives a fibrewise linear and continuous mapping

T(f*E) ——————— = (TF)*TE
(a) \ /
™

which obviously commutes with the parallel transports of the two
pre-vector bundles over TM, so the identification above is smooth by
Lemma 5.2.

Now we set out to prove the lemma. We have to show that S(P, f*E)
is a pullback. So let X be a premanifold or of the form S(P, Q) and
consider a situation as in the following diagram :

X h

RN
S(P, f*€) — T S(P, E)

(b) Px

f

S(P, M) * S(P, N)

The mapping o exists by the pullback property of f*E = Mﬁ E and is
given by

a (x) = (g(x), h(x)) e S(P, M % E).

We have to show that o is smooth. For that we consider the following
diagram :

S(RxP, MXN E) ——— = S(Rx P, E)
v

s, p*
© 8,7 . S(RxP, M) x J,S(RXP, N)

S(R, X)- - % + SR, S(P, MxE) — 3R, S(P, E))

~

I« S(R, S(P, M)) — L S(R, S(P, N))
s
0 So )
& So
Th — |
XL _ » s, T(M x ) (Thy 25k, TE)
Tg (Tp)-)e\~ 4
s(P, TM) (7)., S, TN)
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In diagram (c) the mapping B is given by the same formula as o above,
and clearly *~ o, a = B.From the claim above we have

=TM T
T(M ;; E) Y;\(I E’

so the mapping Yy may be constructed in the same manner as o above.
The diagram commutes by the universal properties of the pullbacks in-
volved. So o is SI and T (a) =y is of the same form as o, so is §
too, so a is $2 and so on. QED

Remark. In the beginning of the proof we have used a slightly more gen-
eral version of Lemma 6.7. We used the mapping f, = S(P, f) instead of
ey, . But the main point in 6.7 is that T(ev,)=ev, is fibrewise linear
and continuous ;

T(f,) = S(P, Tf)

is it too.

7.13. Theorem. If M, N are manifolds, then the set S(M, N) of all smooth
mappings from M to N is again a manifold.
Proof. (M1)-(M6) have already been checked in 6.1 and 7.5.

(M7) We have to show that

PESM, N) 2 gR, S(M, N))x R~ L(TS(M, N), TS(M, N))
is smooth. Note that by 7.5

(TS(M, N), S(M, N)) = (S(M, TN), my)ys S(M, N))

Tstm, N) »
is a pre-vector bundle, so L(TS(M, N), TS(M, N)) is a premanifold and the
question for smoothness makes sense. Let

a :SMx R, N)> S(M, N)
be given by
alg) = g(, 0) = SIM, evy) .~ (g)

which is smooth by 7.11. Then consider the pullback

(SIM x R, N) x R S(M, TN), Pr; 55 S(Mx R, N} x R)

X
(0, SMN), (Ty),)

which is a pre-vector bundle since o is smooth, S(M, TN) is a pre-vec-
tor bundle over S(M, N) and all spaces are premanifolds by 7.5. Then
consider the mapping

Ptl: stM x R, N) x R

X S(M, TN) > S(M, TN)
(o, S(MN),(Ty),)
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given by
Ptlg, t, s)(m) = PtN(g(, m), t, s(m) = Pt (g% const(t), s)(m).

Ptl is smooth since we may write it as the following sequence of smooth
mappings :

SIMx R, N) x R S(M, TN)

X
(o, StN),(Ty),)
“x const x Idgiy my) smooth by 7.10, 7.11

S(M, S(R, N))x S(M, R) S(M, TN)

{(evy) SN, (T),)

smooth by Lemma 7.12

S(M, S(R, N) x R X TN)
(evo,N, Ty)

S(M, P¢N) smooth by Lemma 6.4

S(M, TN)
Now consider the following mapping :
B:SIM x R, N)x R —> 5(M, N)
given by
B(g, t) = g(, t) = S(M, ev)(g”, const(t)),
which is smooth by 6.4, 7.9 - 7.12, since
B = S(M, ev) o (¥ x const) :
S(M xR, N) x R »S(M, S(R, N))+ S(M,R) = S(M, S(R, N)x R +S(M, N),

Then consider the mapping Pt? which is smoothly given by the following
diagram :

L(S(M, TN), S(M, TN))

(pr2,S?M,N),0t)S(M x R, N) x R
equal ” SM, N) x S(Mx R, N) x R
by 5.21

L(S(M, TN), S(M xR, N)x R S(M, TN)

(0,50, (Ty),)

Id x B
smooth L(S(M, TN), Pt ) S(M,N)

by 5.23

L(S(M, TN), S(M, TN)) /

S(M, N) x S(M, N)
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Finally consider the mapping irs as in the following diagram

SRy (M, N) x R L2 L(S(M, TN), S(M, TN, sty o) SMXR, N)x R

\

(evy opry, S(flip, N) o"opr;, pr)

S(M, N) xS(Mx R, N) x R
which is given by

ifise, ) = Ids_ oy ) © LiSy0)(My TN), Spo (M, TND) ;
the latter space is the fibre of the pre-vector bundle above over

(c(0), € o flip, t). ins is smooth since it may be written as the following
sequence of smooth mappings :

S(R, 5(M, N)) x R
l(evo o pr, S(flip, N) o "o pr,, prz), smooth by 7.11
S(M, N} x S(M x R,N) x R

(dggpy, 7)) s ar)xlR

L(S(M, TN), S(M, TN»(pr2,s)fM,N),0c) SMx R, N) x R
The mapping

(IdS(M/ IN)) 2 S(M, N) >L(S5(M, TN), S(M, TN))
is given by

(dsgy, ) (F) = Ids gy )

as in Lemma 5.22, where we proved that any mapping of this form is
smooth. We have now :

PtTS(M, N) = pt2 | ifs : S(R, S(M, N))x R
> L(S(M, TN), S(M, TN))(pr2 stH ) SMX R, N) x R
> L(S(M, TN), S(M, TN)),

as is easily checked, so ptTs(M, N) is smooth as claimed.
(M8) We have to show that

Geo = Geo ™M, N : 5(M, TN) » SR, S(M, N))
is smooth. In 7.5, (M6), Geo was defined by the formula
(Geo(s)(t))(m) = Geo™(s(m))(t)

for se SIM, TN), t € R, me M. We have
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((Geo) (s, t))(m) = (Geo™(s(m), t) = (Geo" . (s, const(t)(m),
so (Geo)” is given by the following sequence of mappings :

S(M, TN) x R
Idg(y g x const smooth by 7.10

S(M, TN) x S(M, R)

equal by 7.12
S(M, TN xR)

S(M, (Ged")?), smooth by 7.1 and 6.4
SM, S(R, N))

) ~,smooth by 7.11

S(R, S(M, N))

So (Geo)” is smooth. By the lemma in 7.1 this suffices. QED

7.14 Theorem. The category Mf of manifolds and smooth mappings is
cartesian closed. That means :

S(M, S(N, P)) = S(M x N, P) holds naturally in M, N, P € Mf,

Proof. This is a consequence of the fact that S is an internal hom-func-
tor by 7.13 and 6.4 and that ev and ins are smooth in general. For define
—_—

SM, SNy P)) ¢ S(Mx N, P)
by R

f

ev o(f xId) : Mx N— S(N, P) x N— P
and
g" = S(N, g) o ins : M— S(N, M x N)— S(N, P).

These two mappings are natural and inverse to each other. QED

7.15. Corollary. The following natural mappings are smooth :
" S(M, S(N, P)) >S(M x N, P),  ~:S(Mx N, P)~>S(M, S(N, P)),
comp : S(M, N) x S(P, M) ~S(P, N),
S(, ):S(M, M) x S(N', N > S(S(M', N"), S(M, N)),
s 1 S(Mj, Nj)~ SO Mz, T Nj).

Prooof. It suffices to check that carefully chosen associated mappings
are smooth, by cartesian closedness.
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() =evo (ev xId ) : S(M, SN, P))x Mx N + S(N, P)x N > P,
)" =ev:SMx N, P) xMxN =P,
comp” = evo (S(M, N) xev) : S(M, N) x S(P, M) x P ~ S(M, N)x M + N,

S(, ) =comp o (S5(M, M') x comp) :
S(M, M') xS(N', N) xS(M', N') > S(M, M'") x S(M', N) + S(M, N).

()~ is given by the universal product property in the following diagram :

HS(Mi, Nl')X HMl ——————— »HNJ_
prj xprj pL;
S(Mj, /\f,) XM]' Nj

QED

8. Miscellany.

8.1. Let F be a smooth functor from the category of C*-complete loc-
ally convex spaces and continuous linear mappings into the same categ-
ory, of one or several variables, even infinitely many, co- or contra-
variant, as described in 5.4. We recall that F is called C”, if

ML(V;, W) > LIF((Vy);), F(IW3)1))

is a C* -mapping in the sense of §1 (in this formulation F is assumed to
be purely covariant).

Theorem. Let F be a C®-functor as described above, let (E%, p;, M;) be
vector bundles, one for each variable of F. Then (F((E!);), (p;), IM;) is
a vector bundle.

Proof. First note that IIM; is a manifold, by 4.1 and checking (M7), (M8)

(use 1.21). By 5.7 we get a pre-vector bundle and since F is a C* -func-
tor, the parallel transport described in 5.7 is smooth. QED

8.2. Theorem. Consider the situation

FYE p*f . E
(a) f*p p
f
N M

If f is smooth, N is a manifold and (E, p, M) is a vector bundle, then
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the pullback (f*E, f*p, N) is again a vector bundle.

Proof. We just have to show that the parallel transport ptf'E g
smooth. This follows from the diagram :

S(R, N) x R fy x Id ~ SR, M)x R

L(f*E, f*E) ————» L (E, E)

(evp, ev) l (evp, ev)

N x N Fxf mMxM

since
L(f*E, f*E) = (f x f)*L(E, E)

is a pullback in the category pMf of premanifolds. QED
8.3. Corollary. If in the situation of 8.1 all manifolds M; coincide, we
get a vector bundle (F((E),), p, M).

Proof. The pre-vector bundle structure has been described in 5.5. Here
we use a simpler argument :

(F((EL);), p, M) = diag*(f((EL);), (p;), TIM).
1 QED

8.4. Theorem. Let (E, p, M) be a vector bundle. Let

Q:SR, M) xR~ L(E, E)
be a smooth mapping satisfying all the functional equations of (VB2). In
particular (E, Q) is a pre-vector bundle, called (E, p, M), with the same
fibres as E. Suppose furthermore that

0 : SR, M) %, E > S(R, E)

factors as follows :

SR, M)y E —& SR, E)
TMXE —————— c____ - TE
M

Then the identity gives a diffeomorphism J : E> E.

Remark. 1. In some cases property (a) holds automatically, follows from
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the functional equations of Q. _

In general I have only been able to show that the germ of Q(c, v,)
at 0 depends only on the germ of c at 0 and not onc .

2. This result shows that although the smooth structure of a
manifold depends heavily on the parallel transport it is somehow in-
dependent from the particular parallel transport chosen.

Proof. Q is given by
Qlc, v(t) = Qlc, E)(y)-
(,_) is clearly smooth.
Claim : ((VL(E’E)Q)(OM o Cy O, 1))(V) = (pl'jo DeCE ) C)(GOC, V).
= (( VHEEQ)Oy o ¢, 0, 1)(V) = ((pr 3 0 Dec o TQ0y o ¢, 0, 1))(v)
= (eVVo pr3 o Dec o TQ)(OM o Cy O, 1)
= (e, o pryo Dec oTQ o §p)(const(c), Idg)
= (ev, o pry oDec o8y o Q)(const(c), Idg = (ev,o przo Deco & )NQ(c, )
= przo(pry xev, x ev,) oDec o Sy(Q(c, )
= pryo DecE o T(ev,) of (Qlc, )) = pr3 o DecZo &(Q(c, )v)
= prjo DecE oC(GOc, V),
where Dec = DecH(EE) | So the claim follows. Note that C is smooth,
since
Cluyg, vy) = 8 (Q(Geoluy), Nvy)-
Let (c;, o) e S(R, M) X Sconst(Rs E). Then the curve
t b Qlcy 7PtE(c, t) = comp o (Q(cy(-#t), -t), PtE(c;, t)
is a smooth curve in L(E, E), and takes values only in the fibre
LEcy0)» Ecyr0))

so it is a C° -curve in the C* -complete bornological locally convex
space L(Ecl(o), Ec2(0))' By the cartesian closedness proved in §1 the

mapping
t b Q(g, t)~LPtE(c), t).cy(t)

is C® in Ecl(o). So the following diagram makes sense and the top
quadrangle commutes, where
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Alcy, co)(t) = (cp(t), Qlcy, ) LPEE(cy, t)cp ().
Note that

S constRs E) = Seepse (R E)

and that A is invertible, the inverse being given by

A (g, cXt) = (ct0, PtE(cy, £)1.Q(cy, t).cy(t)).
A

S(R, M) Seonst(Rs E)

CaA '%arti
7

S(R, M) ><I\4ScmS

(R, E)

S( R,E) x S(R, ’E)
8o 8’0 501 150 &, 8o
(b) TE TE
l Dec? Dec%
TM § E % E — — B o _ wTM 3, E xF

We will show that a mapping B fits commutingly into this diagram and

we will compute its form. Let
(c1, c2) e S(R, M) X Scons€ R, E).
Then we have :
8o x SoAlcy, ©) = (8ycp, Qleg, OFL.PtE(cy, 0).cy(0),
9ol (Qfcy, rLPeiG, gy (eD)
= (8¢5 5(0), cX0) - pr3 o DecE C(8yc;, c5(0)),
since we may compute as follows :

g—tio (Q(c,, tL.pe(c,, t).c2(t)) =

= (%{Tlo (Qlcy, Jl'PtE(Cl’ t).c(0) * ¢(0),

since
ev: L(E, E) xE > Ey

is bilinear and bounded, x = c;(0).

%|0 (Qlc;, )LPE(c, t) = 37‘0 (PEHEE) (¢, const(c,(0))L.Q(cy, tFL)

= VAEE) (Q(cy, )
3t'o
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= -Qlc;, O LIEEE (Qle;, 0.0(cy, O by 5.25
t'o

= -(VHEE) Q)0 o c, 0, 1) = -pry o DecF o C(Syq, )

by the claim above. So there is a mapping B fitting commutingly into
diagram (b) and may be written as

Bluy, vy wy) = (uy, I(vy), Hw, - pryo DecE o Clu, v,)).

SoJ is St and TI"="B isS? too, so Jis s? and by recursion J is smooth.
Note that

By, v, W) = (u, THVY), THW,) +pryo Ded o Clu, TEHv ).
So diagram (b) makes sense with the arrows A, J, B inverted and the
standard recursion argument shows that 371 is smooth too. QED
8.5. Proposition. Let V be a C “-complete bornological Ics. Then V is a
manifold in a canonical way, where
T,=pn TV =VX V>V, S(R,V)=C%(R,V),
Stc = (c(t), c'(t), Pt™c, t)(c(0), v) = (c(t), v), Geod’(v, w)(t) = v + tw.

Furthermore the smooth maps between C°°m-comp1ete bornological spaces,
viewed at as manifolds, are exactly the C -mappings in the sense of §1.

Proof. (M1)-(M6) is rather trivial. Now we check the last statement :
smooth mappings are clearly C® ; the converse holds by 1.25. Using this
it is clear that PtV is smooth since it respects C* -curves :

PtV : C®(R, V)X R > L(TV, TV) = V xV x L(V, V),
PtTV(c, t) = (c(0), c(t), Idy). QED

8.6. Let M be a manifold. Note that
SM, R) =T(M x R, pr;, M)
is a C®-complete bornological lcs by 5.18. Consider the mapping :
e: M~ SM, R)" = L(S§(M, R), R), given by <f, e(x)>= f(x).

Lemma. €: M > S(M, R)' is smooth, where S(M, R)' is viewed as a man-
ifold in the sense of 8.5.

Proof. Let ¢ € S(R,M). Then
<f, (€ oc)(t)> = F(c(t)),
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S0 -
eroE:oC=chES(R,R):C<R,R),
so €. cis a C*-curve in L(S(M, R), R) by 1.20.3. So

€, : S(R, M) > C*(R, S(M, R)")
makes sense.
Claim : Let
df :=pryo Tf: TM >TR =R x R >R.

Then d : S(M, R) >S(TM, R) is linear and continuous.

S(M, R) ==——=I[(MxR, pp, M)
via f>(Id , f)
(a) dl yM xR
S(TM, R) I'(TMx R, pg, TM) =T (y*(Mx R))

It is easy to check that diagram (a) commutes, where VMR comes from
the constant parallel transport, and 7M*Ris linear and continuous by 5.
20. So the claim follows. Consider the following diagram

u .
S(R, M) €y ~ C®(R,S(M, R))
(b) ) So
™ — S(M, R)'x S(M, R)'

EMomy, d oe™)
We claim that diagram (b) commutes :

So(eti(e) = € (o), &1, & M(c(t)),
<f, L] eMe)s = ev, L | eMe(®) = | (ev.eM (c(t))
? dt'o T FYf dtlo T dtlotf ’
=%} o (F o OO = pry(TH(§,c)) = dfsy <) =

= «df, Em( (Soc)> =<f, (d', QTM)( 6OC)

So diagram (b) commutes, e¥is S and T (e¥) is again &, so € is $? and
by recursion eMis smooth. QED

8.7. Definition. A manifold M is called regular, if the mapping
TEM) : TM > S(M, R)' xS(M, R)'

is injective.

171



P. MICHOR 106

So we require that the functions in S(M, R) separate points in M and
that
Tx(eM): TyM —S(M, R)'

is injective for each xe M. The second condition means : if ce S(R, M)
and for all fe S(M, R) we have (f o c)'(0) = 0, then Spc = 0p)-

8.8. Theorem. Let M be a finite dimensional C*-manifold in the usual
sense (with charts), paracompact and Hausdorff. Then M is a reqular
manifold in our sense.

Proof. M admits a complete Riemannian metric, so it is a premanifold
(see 2.3). The exponential map is clearly smooth, so Geo™ is smooth.
It is not so easy to check that PtT# is smooth. This is done in Lemma
8.9 below. QED

8.9. Lemma. Let (E, p, M) be a finite dimensional C ®-vector bundle in
the usual sense (with charts and locally trivial). If M is paracompact,
then this bundle admits a connection, and the parallel transport PtE
induced by this connection turns out to be smooth :

S(R,M) x R— L(E, E).

Proof. Let C: TMI% E > TE be any linear connection in the usual
sense, i.e. C is C %,

(Tp, Tg) o C = 1d,  Clug, ) : Ex>(Tp) (uy)

is linear in the (TE, Tp, TM) vector bundle structure for each uyx e T M
and
Cl v TxM > (S L(vy)

is linear in the (TE, Tes E) vector bundle structure for all vye Ey .
Then the parallel transport PtE corresponding to this connection is un-
iquely given by the following diagram :

PtE
S(R, M) E ~ S(R, E)
(a) 8¢ x Id S¢
™ xE C - TE
M

where _
Ptie, thvgo) = PEE(C, v )(b).

For this diagram commutes for all t iff

t |> PtE(c, verp)
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is a horizontal curve in TE, so
VUPLE(c, veg)N=0

for the covariant derivative V€ induced by C. It is well known (and a
standard fact of the theory of solutions of ordinary differential equa-
tions) that Ptf maps smooth curves to smooth curves (note that

SR, S(R, M)) = C®(RZ, M) ).
So we have to construct T(P&) or rather T(PtE). We do this with a

suttably chosen connection on (TE, Tp, TM). Consider the connection
C1 given by the diagram :

M X TE - — = = —— = = = — - T%E
(7 M, ™,Tp)
umx Id [
®) M g, 1p) TE "E
T(TM ¥ E) L - T%E

where wuM, ug are the canonical flip mappings which can be given in
local coordinates and so exist and satisfy 7.7.

It is not so difficult now to show that the parallel transport Pt
given by the connection CIis exactly T(PtE) . This process can
be repeated and shows that Ptf is smooth and by general principles PtE
itself is also smooth. QED

8.10. Theorem. Let M be a regular manifold such that T,M is a
finite dimensional vector space for all x e M. Then M is a C ®“-manifold
in the usual sense (with charts) and is Hausdorff.
Proof. The mapping

M M

exp” = exp = Geo" ()1): TM +M

is smooth by 7.1. Fix xe M and consider the mapping exp, : T,M M.

Tolexp ) : {0} x T,M > T,M
is the identity, since

Tolexpy )ov, = Tofexp, )(g_tl o(t-v,)) = Tlexp ). 85 (. v,)

= Splexp, (. v, ) =6, GeoM(vx) = v

x*
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Now consider the mapping
€o expy’ T,M » S(M, R)'.

This is smooth between C% -complete bornological lcs, by 8.6, so it is
C® by 8.5. Since M is regular,

d( € oexp)0) = Tofe o exp,) = Tp e.T (expy) = Tye : TM> S(M, R)'
is injective. Let vj,..., v, be a basis of T,M, then the elements
wi = d(e o exp)(0)(y;)

span an n-dimensional linear subspace of S(M, R ). Choose f; ,..., f, in
S(M, R) such that

<fip, wi>= 855
(see Schaeffer, IV,1.1). Put
F = (f1ee £) € S(M, RO);
then we have a C “-mapping
F oexpy= (erlo € 0€XPyy wuey €V o € o€Xpy) : TxM > R™

such that d(F . exp)(0) is invertible (in fact the identity if T,M has
the basis (v;) ). So by the usual inverse function theorem F . exp, is a
diffeomorphism from a convex neighborhood of zero V, in T,M onto
an open neighborhood of F(x) in R?. So in particular

eprIVX:Vx->M

is injective.

Claim : Letc € S(R,M) with ¢(0) = x . Then there is a piece of a
C ®-curve c;in V, such that c(t) = expycy(t) for small t.

In particular, expy(Vy) is open in M in the natural topology (2.2),

i.e. the C“-curve final topology.
Given ¢ € S(R, M) with ¢(0) = x consider the mapping

0= exp o P, , ):iRx T,M >TM > M,
We have
ol{ol xy = exp,,
S0 € o ¢ has at least rankn at {o} x Vx C Rx T,M . Repeating the arg-
ument involving w; and f; from above we see that € o ¢ has rank 2n in

a convex neighborhood U of {0} x 4 C Rx TuM . We claim that
€ o ¢ has rank n in U. Suppose not, then

dE o Q)(r, v) : R x M » §(M, R'
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spans a (n+1)-dimensional subspace of S(M, R)' ; as above choose
g5 e i€ S(M, R)

such that

s (evg o evgml) o d(e o O)r, V)

ST

is a linear isomorphism from R x T,M onto R?*1, Then for
G = (915 «ees 9p,) € S(M, R*1)

we have ntl

Goyp :Rx ETM+R

a C®-mapping which is a diffeomorphism at (r, v), so it is a diffeomor-
phism in a neighborhood W of (r, v) in R x TuM . Choose C*-curves

Cpy seey Cpepi R > W with cl.(O) =(r, v)
and such that
{(G oeog)(O): i=1, ., n+}
is linear independent in R2*1. Then the curves
Ci=¢9ocij=expo Pt™M(c, , )o c;
are in S(R, M) and
S o¢; = Trr,y) ¢ .cj(0)
are linear independent in Tcp(r,v)M by the choice of ¢;. So
dim Tyr,y) M2 n+l .

But ™
t F*exp Pt (c, tr, tv)

is a smooth curve ¢ with
| c0) =x and ¢&(1) = (r, v),
» PE™(C, 1)+ TxM > Toy(r,u) M
is a linear isomorphism, so
dim Tcp(r,v) M = dim T4M = n.
Contradiction. Thus € o ® has rank n in U. Now remember the mapping

F € S(M, R ) from above, let fe S(M, R be arbitrary and consider
(f, F) € S(M, R™L). Then (f, F)o ¢ has rank nin U, so (f, F) ¢(U)
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is an n-dimensional submanifold of RP*1, containing (f, F) o expx (Vx) ,
which is again an n-dimensional submanifold of RP*l by the choice of
F. So

(f9 F) <) CP(U) = (f, F)O EXPx (VX)
near 0, so

(fy F)(c(t) = (F, F) o @(t, 0) = (f, F) o expx (caA(t)

for some cf(t) e V. . Since
F(c(t)) = Fexpy (cAt)

and F 1s injective on exp, (V,) we see that cdt) does not depend on
the choice of f, so :

cAt) = q(t) for all feS(M, R).

So finally
Fc(t) = F o exp xo c;(t),
i.e.
<f, €oc(t)> = <f, € cexp, oCy{t)>
for all f, so
€ oc(t) = € cexp, c;(t),
)
c(t) = expy, cy(t) for small  t.

c; is C” since
C_Z(t) = (Fo exp VX)-'Z o(F o C)(t)

So the claim follows.

Now we have constructed the following data : for each x e M a
convex neighborhood of zero V, in T,M and a mapping Fye S(M, R(x))
such that

F,o exp,:V, »*Ralx)

is a diffeomorphism onto its image.

Cilaim : The mappings
(expy |V )™t expy (Vy) >V C TyM

for x € M generate a C”-atlas on M.
Let x # y be such that

exp, (V)N exp y(Vy) = U £Q in M.
Then
dim T,M = dim TyM

for we can join x and y by a smooth curve. Put
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Uy = (exp | V)TIW), U, = (exp, ! Y ) (U

We have to show that

(expy tvy)‘l oexpyi Uy > U

is C° . For that consider the mapping

(Fx, Fy) € S(M, R?7),
Then clearly

(Fxs Fy) o expyi Vg > R?2 and (F, Fy) oexpy: Vy > R

have both rank n, are injective, fit together nicely, so they parametrize
a submanifold of R?% , the chart change of which is clearly C*
and coincides with

(expg\\/y)'lo exp, Uy >U, .

Now any mapping in S(M, R) is a smooth function on M with this C -
atlas by construction, so the C%-functions separate points, so M is
Hausdorff. Any curve in S(R, M) is a C%®-curve in this new atlas by
the claim above, and conversely by the construction of the charts. It
is clear that the identity gives a diffeomorphism between the new M
and the old M. Finally note that M is paracompact since it admits a
connection. QED
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