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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETR Y
AND GLOBAL ANAL YSIS II

by Peter MICHOR

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

VV1 . XXV-2 (1984)

RESUME. On d6veloppe une th6orie des vari6t6s diff6rentiables
et des espaces fibr6s vectoriels, ou les courbes diff6rentiables

prennent la place des cartes et atlas, de sorte que la cat6gorie
correspondante soit cartesienne fermée. Dans le cas de dimen-
sion finie, on retrouve les vari6t6s usuelles.

CONTENTS.

Introduction.
1. Kriegl’s convenient setting for differential calculus on locally vector

spaces.
2. Premanifolds and pre-vector bundles.
3. Smooth manifolds.
4. Smoothness of certain structure mappings.
5. Pre-vector bundles in more detail.
6. First steps towards cartesian closedness.
7. Manifolds, vector bundles and cartesian closedness.
8. Miscellany.
References.

Sections 1-4 have been published in Volume XXV-1.

5. PRE - VECTOR BUNDLES IN MORE DETAIL.

5.1. Lemma. L et (E, p, M) be a pre-vector bundles, let OE : M ~E denote
the zero-section, 0 E(x) = Ox E Ex - Then 0 = OE is smooth.

Proof. Consider the following diagram :
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So, 0 is S1,

is again Sl by Theorem 4.13, so 0 is S2 , so TO is S 2, so 0 is S3 and by
recursion 0 is smooth. QED

5.2.&#x3E; Lemma. L et (E, p, M), (F, q, N) be pre-vector bundles and consider
a commuting diagram of the form

such that g is smooth and f is fibrewise a C °° -mapping between

C" -complete bornological lcs and commutes with the parallel transports.
Then f is smooth.

Proof. f commutes with the parallel transports means that, for all g E R,
f E S(R, Ml, we have

Now consider the foltowing diagram :

The first line makes sense because f is fibrewise C"O , so

makes sense. The top quadrangle commutes, :
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So the second line in the diagram makes sense. By dvf we mean the "ver-
tical" derivative of f , y given by

It is clear that the outermost quadrangle commutes. So f is Sl . Now con-
sider the following diagram :

We see that

is a fibre-respecting mapping which is fibrewise CCO and we claim that it
commutes with the parallel transports : For

and

where x- = c(O), we have

If we now take c E (R, TM) with

and

then we have:
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Sfl Tf commutes with the parallel transports, so we may apply the arg-
ument above to show that T-f is Sl ; but then f is S2 and in the same to-
ken Tf is S2 , so f is S3 and so on. QED

5.3. Corollary. Let (E, p, M) be a pre-vector bundle. Then the fibre addi-
tion + : E x E we and the fibre scalar multiplication m p ; 

* R x E - E are
smootr.

Proofs is fibrewise linear and continuous and commutes with the paral-
lel transport, since the parallel transport is fibrewise linear. So by 5.2,
+p is smooth. The same argument applies to

5.4. Let F be a functor from the category BCS of bornological C°°-com-
plete lcs and linear mappings into BCS , of one or several variables, even
infinitely many (but less than the least inaccessible cardinal), co- or con-
travariant.

Examples. Let V, W etc. denote objects in BCS.
L ( V, W) , y the space of continuous linear mappings, with the bor-

nological topology described in §1, is a contra-- covariant bifunctor.
V ii W , the bornological projective tensor product, described in

§1, is a co-cpvariant bifunctor.
The last two functors describe the cartesian closed category BCS.
V’- = L ( V, R ) , the bornological dual space, is a contravariant

functor.
V , the n-fold bornological tensor product, is a covariant n-

functors.

IBnV , then-fold bornological exterior product, i."8., the closed sub-
space of all antisymmetric elements in a V -, is a covariant n-functor.

Definition. A functor as described above is called e C -functor, if for all

objects the mappings

(here expressed for a functor F with one covariant variable) are

CT in the sense of § 1, i.e., map C°icurves to C°icurves.

All the examples above are C°°-functors, since the morphism-map-
pi-ngs are bounded multilinear mappings or polynomial mappings derived
from bounded multilinear mappings.

C°°-functors will play an important role for the theory of vector
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bundles. For pre-vector bundles just functors suffice.

5.5. Theorem. Let F be a functor on the category BCS as described above
in 5.4. Let (Ei, pi , M) be pre-vector bundles over a fihed pr-emanifold M,
one for each variableof F. Then fF((Ei)i EI), p, M) is a pre-vector bundle
in a canonical way, where the fibre

Proof. For the sake of simplicity and clearness let us assume that F has
two variables, one contra- and one covariant, Ff V, W) , contravariant in
V . Then we put

so each fibre is a bornological C °° complete space. So (VBl) holds. Now,
define the parallel transport by

Clearly we have

and for f e 

5.6. Example. Consider the functor e(R, ) : BCS - BCS , assigning to each
bornolog-ical space V the space C°°(R, V) of all 0*-curves in V. This is a

C°°-functor. Let (E, p, R) be a pre-vector bundle. Applying the functor

COO(R, ) to this vector bundle we get the vector bundle

with the parallel transport



118

More generally, we may take any C’-complete bornological space instead
of R to get the bundles (SOJnSt(V, E), p, M).

5.7. Theorem. Let F be a functor on the category BCS as described in
5.4. Let (Eil pi, Mi) be pre-vector bundles, one for each variable of F.
Then

is a pre-vector bundle in a canonical way, where for x = (xi) the fibre
is given by F((Ei))X = F((E R. Iv
Proof. Let us assume that F is purely covariant here. Note first that the
product. R M - is a premanif old by 4.1. c E S(R, II Mi) is given byiEI 

for all i.

Define parallel transport by

then by the functor property of F it is clear that (VB2) is satisfied.
(VBI) is clear by construction. ff F has contravariant variables too, then

we put ptEtc , t)l into each contravariant variable. QED

5.8. Example. Let (El, Pi, Me) be pre-vector bundles for 1 = 1, 2, and
consider the functor L( V, W). Then we get the vector bundle

the fibre over (x1, x2) being given by

and the parallel transport being given by

for

5.9. Lemma. Let (E, p, M) be a pre-vector bundles, then

is a pre-vector bundle again, since it can be written as a pullbacks in the
form
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(cf. 5.8, 4.3, 4.2). So it is a premanifold by 2.6. Then the mapping

is smooth.

Proof.

and in this fibration ev is fibrewise bilinear and continuous (note that on
each fibre Exx L(Ex, Ey) we have the bornologicalization of the product
topology), so a C -mapping. We claim that ev commutes with the paral-
lel transports. For let (c1, c ,)e S(R, MxM),

So we may use Lemma 5.2 to conclude that ev is smooth. The form of

T(ev) can be read off the diagrams in 5.2. QED

5. 10. Lemma. If (E1, pi, Mi) are pre-vector bundles for i = 1, 2, 3, then:

is again a pre-vector bundle since we may vvrite it in the form :

Then the composition

is smooth.

Proof.
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commutes and in this fibration comp is fibrewise bilinear and continuous,
so C" . A computation similar to that in the proof of 5.9 shows that comp
commutes with the parallel transports. So by Lemma 5.2 comp is smooth.

QED

5. 11. The covariant derivative. Let (E, p, M) be a pre-vector bundle, let
s : N --+ E be a smooth mapping and put f := p 

° s . Then we have the

following commutative diagram 

Consequently s is called a section over f. From this we get the following
commutative diagram : .

Definition. In the situation above the covariant derivative of s is defined

by :

Then for uX E TxN we have

Of course s : TXN ---+ Ef(x) is linear and even continuous, since it

is smooth, so maps Coo-curves into C 00-curves, so is bounded by §1. This
notion of covariant derivative of course depends heavily on the parallel
transport of E.

5.12. Lemma. V has all the properties of the classical linear covariant

derivative, as there are :

1. Let sl, s2 : N ---+E be two sections over f : N ---+M. Then

is again a section over f by 5.2 and we have
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2. If s is a sections over f and g E S(N, R), then g.s = np (s, g) is
again a sections over f by 5.3 and we have

where

3. Vs : TN ---+ E induces a continuous linear mapping TxN ---+ Ef(x)
for each x e N.

Proof. 1. Writing Dec = DecE , we have

for short. Here, A is given by Dec o T(mp) = A o (Dec x Id). See 5.2 for
the form of A .

3 has already been proved in 5.11. QED

5. 13. Let c E S(R, E), then

i.e.,

Let a/ at = ( t, 1) denote the unit tangent vector at t in R.

Lemma.

Proof.
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5.14. Lemma. If s : N ---+ E is a section over f : N -+ M and g : P -+ N is a
smooth mapping, then V(s 0 g) = V soT g.

Proof.

5.15. Corollary. If s : N - E is a section over f : N -*A4., then for any c
in S(R, N), we have

This is a convenient mean to compute covariant derivatives.

Proof.

by 5.14 above. Put

Then C2: R-+ E f( c(0)) . Since

c2 is a COO -curve. Then by 5.13 we have :

5.16. Theorem. Let (E, p, M) be a pre-vector bundle with parallel trans-
port Pt and covariant derivative V = VE. Then for any c e S(R, M) and
v x E Ex with x = c(O) the smooth curve

in S(R, E) is the unique solution of the "ordinary differential equation"

for

Definition. Let us call a smooth section s : N --+ E over f : N --+ M paral-
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lel with respect to Pt iff

then this theorem says that t --+ Pt(c, t).vx is the unique parallel section
over c with initial value vx.

Proof.

by 5.13. So t |--+ Pt(c, t). v x is a solution. Now suppose that s E S(R, E)
is any other solution. Since p o s = c we have s - Cart E (c, c) for unique
c E S(R, EX ). But then we have

by 5.13 again. But then d c(t) - 0 in EX for all t, since each Pt(c, t) is an

isomorphism. So

Remark. This theorem might one lead to suspect that the condition

in (VB2) is equivalent to the following weaker condition :

for all s , t in R. But we have used the stronger condition in the

given proof of Theorem 2.6 in a very essential way (in 2.9 and 2.13) and
the whole differential structure on E depends on this.

5.17. Definition. Let (E, p, M) be a pre-vector bundle. Denote by

the space of all smooth sections of p, i.e.,

Likewise denote by T r(E) - r r(E, p, M) the space of all SLsections of p .

Lemma. If (E, p, M) is a pre-vector bundle, then T1(E, p, M), the space
of all Sl-sections of p, is a bornological Coo -complete les in the point-
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linear structure and with a naturally given topology.

Proof. By Lemmas 5.1, 5.2, 5.3, the space r 1(E) is a vector space in the

pointwise linear topology. Now we put a topology on T1(E) . For each
c E S(R, M) consider the linear mapping

given by

Since and

we see that B(c) (s) is, indeed, a C°°-curve in Ec(o) . Now equip r l(E)
with the initial topology with respect to all mappings 

for all

This topology is not bornological in general, so we take the associated
bornological topology. The initial topology is locally convex since all the

mappings B(c) are linear and the topologies on the spaces C °° (R, E C(0))
are locally convex. It remains to show that r (E) is C -complete. Let
sn be a Mackey Cauchy sequence in r1 (E) . Then sn is a Mackey Cauchy
sequence in the initial topology too, since any locally convex topology and
its bornologicalized topology have the same Mackey sequences (see §1).
Since all the mappings B(c) are bounded, they map sn to Mackey sequen-
ces. For c = const(x), x E M,

in E, , so s4x) is a Mackey Cauchy sequence in Ex and converges to some
element s(X) in EX , because Ex is Coo -complete. Clearly s : M --+ E is a
section.

Claim. For c e S(R, M), s o c E S(R, E).
For B(c)(sn) is a Mackey Cauchy sequence in C°°(R, Ec(0)), so it con-

verges uniformly on compacts in R, in each derivative separately, and it

converges to

since it converges to this limit in the weaker topology of pointwise con-
vergence. So

and the claim is proved.
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So this last expression depends only on 60c, since the sequence above

depends only on 00 c (all snare S1 ). But this means exactly that s

is S1, and an element of rl(E) . By a standard argument sn - s converges
to 0 in the initial topology and is even a Mackey sequence in the

initial topology, so it is a Mackey sequence in the bornologicalized top-
ology of T1(E) ; so s - s converges to 0 in r1(E) , so s --+ s in T1 (E).

n 
QED 

n

5.18. Lemma. If (E, p, M) is a pre-vector bundle, then the space r(E, p, M)
of all smooth sections of p is a bornological, C °°-complete lcs in

the pointwise linear structure and a canonically given topology.

Proof. By 5.1 - 5.3, r (E) is a vector sp.ace in the pointwise linear struc-
ture.

Claim. The mapping

is linear and injective. Injective is clear.

Note that (TE, Tp, TM) is a pre-vector bundle, it is isomorphic (via Dec )
to

For any s e T (E, p, M) we have

by5.11.So

by 5.2 (a) and the claim follows. Now consider the mappings

which give a linear embedding .

°°

The latter space is a bornological C -complete lcs by Lemma 5.17 above
and the categorical properties of §1. We equip r (E) with the subspace
topology induced by this embedding. This need not be bornological in gen-
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eral, so we consider the bornologicalized topology. It remains to show
that it is Coo-complete. So let sn be a Mackey-Cauchy sequence in T (E) ;
then it is a Mackey-Cauchy sequence in the weaker subspace topology,
but this means that Tm(sn) is a Mackey-Cauchy sequence in

By 5.17 Tm(sn) converges to an element Tms in T1(TmE, Tmp, TmM) for each m
and from the proof of 5.17 it follows that

So s is smooth, is in r (E) . By the same argument as in the end of the

proof of 5.17 we see that sn converges to s in r (E). QED

5.19. Lemma. Let (E, p, M), (F, q, M) be pre-vector bundles over the

same premanifold M. L et f : E-* -+ F be a fibre respecting mapping which
is fibrewise linear and continuous and which commutes with the respec-
ti ve parall el transports (i. e., 

’

for all c and t). Then the induced mapping

is linear and continuous.

Proof. Let c E S (R, M ). Then 8(c) : T (F) --+ C’ (R, Fx) is one of the gener-
ating mappings for the r1-topology, , where x = c(0). For s E T (E) we have

where

is clearly linear and continuous.* So the following diagram commutes for
all C E S(R, M):

This implies that f * : T1 (E) -+ T1 (F) is continuous.
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Now by Lemma 5.2, f : E + F is smooth and a glance at the diagrams
in 5.2 shows that

is again fibre respecting, fibrewise linear and continuous, and commutes
with the respective parallel transports (given in 4.15). So by the first

part of the proof we conclude that

is linear and continuous. The following diagram obviously commutes :

We can repeat the last argument and conclude by recursion that

is continuous indeed. QED

5.20. Corollary. Let (E, p, M) be a pre-vector bundle. Then the covariant
derivative is a linear and continuous mapping

Proof.

T is linear and continuous by the definition of the topology on F(E, p, M)
in 5.18, (pr3 o Dec)* is linear and continuous by Lemma 5.19 above, since

is fibrewise linear and continuous and commutes with the respective par-
allel transports. Note that
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and the mapping pr3 above is actually pr1, 3 . This comes from the fact
that V s : TM +E is a section over 7M , but we look at VS as a section of

the pre-vector bundle TI M* E using a universal pullback property. QED

5.21. Lemma. L et (E, p, M), (F, q,, N) be pre-vector bund l es and l et f :

P + M, g : Q + N be smooth mappings, where P, Q are premanifolds. Then
we have an (parallel transport respecting) isomorphism of pre-vector bun-
dles over P x Q :

Proof. All three sets are pre-vector bundles over P x Q , they coincide
fibrewise, and they have the same parallel transports by 5.7. By
Lemma 5.2 it follows that the identity mapping is then smooth. QED

5.22. Lemma. Let

be smooth mappings, f fibre linear, where (E, p, M) and (F, q, N) are pre-
vector bundles. Define the mapping

by

Then f is smooth.

Proof. Let

for c e 5( R, M).
Claim. For c E S( R, M), A (c) E %nst(R, L(E, F)).

By §1 it suffices to show that for each v E Ec(0)) the mapping

is in C 00 (R, Fgc(0) ). But this is the case since we have :

So the top triangle of the following diagram makes sense :
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We claim that a mapping B fits commutingly into this diagram.
Let c E S(R, M ). Then we have :

So

which depends only on O0c. Now put

then we have a commuting diagram

of smooth mappings such that h is fibre linear in the fibration given by
the diagram. We can write B as the f.ollowing sequence of mappings :
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So we see by diagram (a) that f is 5 . The mapp ing B (and so T(f) ) is

again S 1 since its components f , h 3re, , so f is S2 and so on. QED

5.23. Corollary. L et (Ei , pi, Mi) be pre-vector bundles for 1 = 1, 2, 3. Let

be smooth mappings with f fibre linear. Then the mapping

is smooth.

Proof. The following diagram clearly commutes, so by Lemma 5.22 and
5.10 the mapping L(E1, f) is smooth.

5.24. Lemma. 1. Let (f, g) : N + E XM(E, E) be a smooth mapping, where
N is a premanifold and (E, p, M) is a pre-vector bundle. Then

2. Let be a smooth mapping,
where N is a premanifold and (E1, pi, M1 ) are pre-vector bundles for i =

l, 2, 3, then we have

Proof. By 5.9 and 5.2 we have the following commutative diagram :
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where

and dv is the vertical derivative. Thus

So for

we have

since ev is fibrewise bilinear and bounded. Now consider the smooth map-
pings :

and

So we can compute as follows :

in short hand. So assertion 1 is proved. Assertion 2 is completely similar.
QED

. 
5.25. Corollary. Let f : N -+- L(E, E) be a smooth mapping, N a premani-
fold, (E, p, M) a pre-vector bundle. Suppose furthermore that f(n) is in-
vertible in L( p1f(n)’ Ep2f(n) for each n E N, and that the mapping

is again smooth. Then we have :
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or

Proof.

in the notation of 5.22.

by the proof of 5.22; this is an element in L(Eplf(n), Eplf(n)) which equalsthe constant mapping 0plf(n) So 

So

by 5.24.2, and

6. FIRST STEPS TOWARDS CARTESIAN CLOSEDNESS.

6.1. Proposition. If M, N are premanifolds, then S(M, N), the set of all

smooth mappings from M to N, satisfies axioms (Ml)-(M3) in a natural

way.

Proof. Put

Then it remains to prove that

the space of all sections over f, is a bornological COO -complete lcs. But
we have a canonical isomorphism
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induced by the universal property of the pullback :

r (f*TN, f"*rrN, M) is a bornological f -complete lcs by 5.18, and we car-
ry its structure over to Sf(M, TN) - the pointwise linear structures co-

incide. So we have proved that (MI) holds.

(M 2) Let S (R, S(M, N)) consist of all mappings c : R -* S(M , N) such
that the associated mapping

given by

is in So we have bijections :

given by
and

For we have

so

Here R x M bears the premanifold structure of 4.1. S(R, S(M, N)) cont-

ains all constant mappings, since for g E S(M, N) we have :

where

(M3,) For t e R put

or

Then At E S(M, T R xTM). Then define

for ceS(R, S(M, N)).

Claim
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Claim : If and then

Claim : If c e S(R, S(M, N)) with 6 tc = 0c,(t) for all t , then c is

constant.

where ins (m) : R + R x M is given by ins(m)(t) = (t, m). Now

So by (M3) for the premanifold N we conclude that

in N, i.e.,

does not depend on t. So c(t) does not depend on t,

6.2. If M , N are premanifolds, then TS(M, N) = S(M, TN) is again of the
form S(M, P) , so it satifies (Ml)-(M3) too. Therefore we may continue
and get the whole sequence of iterated tangent bundles :

So we may speak of smooth mappings between objects of the form S(M,N)
for premanifolds M, N , by just using Definition 3.1.

6.3. Lemma. If M, N, P are premanifolds, then the set S(M, N) x P sat-
isfies (Ml)-(M3) in a canonical way, and
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is of the same form.

Proof. Look at the proof of Theorem 4.1 and proceed in the same manner.

6.4. Lemma. If M, N, P are premanifolds and f E S(M, N) then the follow-
ing two mappings are smooth in the sense of 6.2 :

Proof. Consider the following diagram :

This diagram commutes :

Therefore Ts(f, P) = S(f, TP) and we may iterate and conclude that

S(f, P) is smooth. Now consider the following diagram :

Let us check that (b) commutes :
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Therefore TS(P, f) = S(P, Tf) , and by recursion we see that 5(P, f)
is smooth. QED

6.5. Lemma. If M, N are premanifolds, then the insertion mapping

jS smooth. s

Proof. We use the diagram :

This diagram commutes :

Therefore ins is 51 and

is again S’ by 6.3 and induction, so we may iterate and conclude that
ins is smooth. QED

6.6. Lemma. If M, N are premanifolds, then for any m E M the mapping
evm : S(M, N) +N is smooth in the sense of 6.2.

Proof. Consider the following diagram :
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Let us check that this diagram commutes :

Note that we used only ins(m) : R + R x M and not ins, and 6.4. If
we put t = 0 in (a) we see that evm is S1 and T(evm) = evm . So by recur-
sion evm is smooth. QED

6.7. Lemma. L et M, N be premanifolds, and let (E, p, lvl) be a pre-vector
bundle. Then for any n E N the space

satisfies (Ml)-(M3) in a canonical way, and the tangent space is of the
same form.

Proofi. (Ml) Put

Then

where v = Vf(n) . This is a closed linear subspace of St(N, TM) x TvE , 
since it is the kernel of the linear continuous mapping

So it is a bornological COO -complete vector space with the bornologized
subspace topology.

(M2)+(M3) We choose the following setting :
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It is easy to check that all requirements of (M2) and (M3) are satisfied.
QED

Remark. Since the tangent space is of the same form again we have the
whole tower of iterated tangent bundles and the notion of smooth map-
pings makes sense, as in 6.2.

Note that the proof of (Ml) does not work for a general smooth
f : S(N, P)+ M instead of evn , since we do not know that T f is fibre
linear (6o surjective depends on Geo in 2.1 and was used in 3.1).

6.8. Lemma. In the setting of L emma 6.6 the fibred product

has the universal property of a pullback with respect to smooth mappings.

Proof. Let X be a premanifold or of the form S(N, M), or even itself a
fibred product as above, and consider smooth mappings f, g in the situa-
tion of the following diagram :

Now look at diagram (b) below. It shows that the projections pr1 , pr2,
and (g, f) are of class S1 and their tangent mappings are of the

same form. So by recursion all these mappings are smooth. QED

6.9. Lemma. Let (E, p, M) be a pre-vector bundle. Then the mapping

given by (f, g)--+ f x g, is smooth.

Poof. 7 is fibrewise continuous and linear, so fibrewise a COO -mapping,
and clearly commutes with the parallel transports. So we may use 5.2.

QED

6.10. Lemma. Let M, N, P, Q be premanifolds. Let f : P -+- Q be
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Diagram (b) of Lemma 6.8.
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smooth. Then the mapping

is smooth.

Proof. Consider the following diagram :

A little computation shows that this diagram commutes. Then (. x f ) is
Si an d 

which is Sl too, so (. x f) is s2 and so on. QED

7. Manifolds, Vector bundles and cartesian closedness.

7.1. Definition. A premanifold M is called a manifold, if its defining pa-
rallel transport Pt T M and geodesic structure Geo satisfy the following
further requirements (besides (Ml)-(M6) of 2.1) :

TM
(M7) Pt S( R, M) x R .L(TM, TM) is smooth.

(M8) Geo : TM +S(R, M) is smooth.

Condition (M8) is equivalent to either one of the two following
conditions :

and

are smooth.

The mapping exp = expM is called the exponential mapping for the

geodesic structure Geo = Geo M .

Proof. If Geo is smooth, then by the formula above exp is smooth, and in
turn

is smooth, since by (M6) we have

On the other hand
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so Geo is smooth if (Geo)" is it. QED

7.2. Definition. A pre-vector bundle (E, p, M) is called a vector bundle
if M is a manifold and the following condition holds for the defining par-
allel transport of the pre-vector bundle :

(VB3) PtE : S(R, M) x R - L(E, E) is smooth.

Remark. We have shown in 5.16 that

is the unique smooth solution in E of the ordinary differential equation
0 s = 0. This may be a way to show that some premanifolds are already
manifolds. I have no results in this direction.

7.3. Theorem. L et (E, p, M) be a vector bundle over a manifold M. Then
the total space E (with its premanifold structure from 2.6) is actually a
manifold.

Proof. (Ml)-(M6) hold by Theorem 2.6.

is smooth by (VB3) for (E, p, M). Define

by

Then ptE is smooth in the sense of 6.7, since

and the fibre linear evaluation is smooth by Lemma 5.9. Likewise

is smooth. By (2.15) we have

so PtTE is smooth and we have the diagram :
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pt TE is fibre linear in the fibration given by (a). Note that diagram (a)
implies that ev : S( R, E) x R -+ E is smooth for

and the mapping (Id, 0TE o evo o prl) is smooth by Lemma 6.8.

It is rather complicated to show that smoothness of Pr implies
smoothness of Pt TE directly. Consider the isomorphism of pre-vector
bundles and differentiable structures

This implies an isomorphisrn of pre-vector bundles over E x E:

By (2.15) the parallel transport on TE is given by the following
sequence of mappings :

(ev is smooth, see above, evo is
smooth by 6.5, J is smooth by 6.8)

So Pt 
TE 

is smooth.

(M8) GeoE : TE + S(R, E) is given by (2.16),

The last expression is smooth in all appearing variables, since PtE and

Geo are smooth and by 5.3. So
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is smooth and thus (GeoF) : TE x R - E too. By the Lemma in 7.1 this

suffices. QED

7.4. Proposition. ,Let (E, p, M) be a vector bundle. Then the space
C°°(R) T(E)) of all C°°-curves in the bornological Coo-complete space
I (E) corresponds exactly to the space 5 pr (Rx M, E) of all smooth map-
pings g : R xM + E with p o g(t, x) = x. 

Proof. Let g : R -+ T (E) be a C c-curve. Then

is a mapping satisfying p o g(t, x) - x.

Claim : 6 is smooth. Let c E S(R, M), put c(0) = x . Consider the

mapping B(c) : r (E) -+-C OO(R, Ex) from the proof of 5.17 -this is one of
the generating mappings for the I"-topology. So B(c) is linear and contin-
uous. For s E r(E) we had

So

is a Coo-curve in C°°(R, EX ), given by 

But now we are in the setting of §1, and by the cartesian closedness of
the category of C°°-mappings and bornological C"-complete vector

spaces the mapping

is a C ’-mapping R2 --+ Ex. Thus the mapping

given by

makes sense. Now consider the following diagram (a) on page 78, in which
the mapping R is given by
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A little computation shows that this diagram commutes. So 6 is 9. By 5.
20 the mapping

is linear and continuous, so

is again a Coo -curve. If we apply the argument above to the curve Vog
we see that the mapping 

is Sl. Likewise g’ : R + r(E) is a C°° -curve, so by the argument above,
the mapping

is 51. So all the ingredients of the mapping R are S 1 so R is 51 and Tg
is S1. Now by the whole argument above the two critical mappings in R
turn out to be S2, so g is S3. This can be repeated, so g is smooth and the

claim is proved.

Conversely, let h : R x M -+- E be smooth with p 0 h = pr. Then

is smooth, so h’(t) c IYE) . We have to show that h v : R -+-T(E) is a Co -
curve. Let c E S(R, M), put again x = c(O). Then

The last expression, viewed as a function of s, t, is smooth R2 -+- E
(the mapping
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is smooth, since it coincides with

and takes its values only in the fibre EX . So it maps C°° -curves in R2 to
smooth curves in E lying in the fibre Ex , but these latter are exactly the
C°°-curves in Ex by the definition of CartE in 2.8. By §1 this suffices to
see that

is a C °°-mapping R2 - Ex. This means that

is C °°. By cartesian closedness the mapping

is C°° then. So h v : R + r (E) is COO if T(E) bears the initial topology
with respect to all mappings of the form B(c) , and is C°° too if we bor-

nologize this topology. So hv : R + il(E) is C °°. Now finally

coincides with the mapping

which is C °° by the argument above. This can be repeated and shows that
h’ : : R - r(E) is Coo. QED

7.5. Lemma. Let M be a premanifold, let N be a manifold. Then S(M, N)
is a premanifold.

Proof. (Ml)-(M3) have been checked in 6.1.

(M4) Construction of the parallel transport for S(M, N) . For

c e S( R, S(M, N)) we define

by

Claim. For we have



146

That Pt TN is smooth was shown in the proof of Theorem 7.3.

given by

is smooth since

and all components are smooth by 6.4 and 6.5. The claim follows.

Claim.

is continuous and linear, where

as bornological C ’-complete vector spaces.
ptTS(M, N(c, t) is clearly linear since the linear structure

is the pointwise one. To show that it is continuous (= bounded) it suffices

to show that it maps C°° -curves to C°° -curves by §1. By Proposition 7.4

So let g : R -+- Sc(0) (M, TN) be a C ’-curve, then 9 : R x M --+- TN is

smooth, and :

this is a smooth function of (s, m) . So

is a
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All requirements of (M4) are satisfied.

(M5) Let c E S(R, S(M, N )). We have that

as a function of t is in C°°(R, Sc(o)S(M, TN)). By Proposition 7.4 it

suffices to show that 

is a smooth mapping R x M -+- T N

This last expression is smooth in (t, m) ; that

is a smooth mapping R x M -+- S( R, N) can be checked similarly as
smoothness of c at the beginning of this proof.

(M6) We define

by the formula

for seS(M, T N), t E R, m e M.

Claim : GeoS(M, N) (s) e S(R, S(M, N)).

which is a smooth mapping R x M ---&#x3E; TN by (M8) for N. This suffices by
the definition of S(R, S(M, N)) in 6.1.
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Claim :

by (M6) for N

Claim :

as we just saw,

by (M6) for N,

So (M6) is satisfied.

7.6. Remark. If N is a manifold, and if M , P are premanifolds, then
S(P, S(M, N) ) satisfies (Ml) - (M3) by 6.1 and the tangent space is of
the same ’form. So we may iterate and may consider smooth mappings
from and into S(P, S(M, N) ) , as in 6.2. This will be essential for our
next steps.

7.7. Theorem. Let M be a manifold. Then there is a unique mapping

(called the canonical flip mapping) with the following property :
(1) The following diagram commutes :

Furthermore n M is smooth and has the following properties :
(2) If M, N are manifolds, then for any smooth mapping f : M -+- N we
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have

is an isomorphism bet ween the t wo vector bundles

(i.e. a fibrewise linear diffeomorphism, not necessarily commuting with
the parallel transports), so in particular we have

is given by

and for each

This property characterizes uM uniquely.

Proof. First of all we recall that

is smooth. We saw this in the beginning of the proof of Theorem 7.3.
The following diagram commutes :

Then is smooth, since

and the mapping

is smooth by 6.6 and 5.1. Note that we know already that S (R, M ) is a

premanifold. We will see that smoothness of

suffices to construct xm. First we want to investigate T(ev) .
Consider the following commutative diagram (c). We have
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where ev 1: S( R, TM) x R -+- TM is smooth by the argument above ap-
plied to the manifold TM (by 7.3) and where

is not known to be smooth. So the smooth mapping T(ev) can be written
as

It follows that

is smooth. But then

is smooth by 7.5 and 6.4. Finally we conclude that

is smooth, since
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This implies in turn that for all t E R the mapping Dt : S(R, M) --+ TM
is smooth, since

and ev(0 1) is smooth by 6.6.
Now we investigate the following diagram, which clearly commutes :

where

We have to show that, in diagram (d), the mapping T(6t ) factors over
6t . We know that 6 t is surjective (Remark following 2.1). So let c be
in S(R, TM). We have to show that T ( Dt)(c) depends only on 6t c . This

will follow by a diagram chase. Consider Geo , M)(c) in S(R, S(R, M)),
constructed as in 7.5. Then of course

since

So we may continue
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This last expression depends only on 6t c. So we see that in diagram
(d) the mapping T (D t) factors over 6t to a mapping AM: T2M -+ T2M .
If we put t = 0 we get diagram (a). The mapping )( M is uniquely given
by (1) since it is the unique mapping fitting into diagram (d) (T (6t )
is unique and 6t is surjective) for t = 0. It is easy to see that hm fits into
diagram (d) for all t . O Note the formula for xM which we derived
above :

This shows that xm is smooth.

(2) Let f E S(M, N) . Then the following diagram commutes :

Put

and apply the functor S (R, ) to diagram (e) to get the following
diagram :

The outermost quadrangle commutes :

The mapping

is surjective since S(R, M) is a premanifold by 7.5, so the mapping
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is surjective. Thus we may conclude that the lowest quadrangle in dia-

gram (f) commutes :

So (2) holds.

(3) Claim : The following diagram commutes :

where

For we have

Now consider the following diagram :

since is surjective.

(4) That u M xN=uM x u N follows from the diagram (j) (on page 88).
(5) Consider the diagram (k) (on page 88). From this diagram it fol-

lows that

Since xM-1 = xM by (3), we conclude that
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So uM is fibre preserving for the two fibrations

It remains to show that Am is fibre linear. Isomorphism follows then
since Am is a diffeomorphism. We consider the following diagram :

Here the top triangle commutes because it is part of diagram (d). From
5.3 we know that
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is smooth. +, its fibre linear, so a glance at diagram (a) in 5.2 shows

that 
M

Let c e S(R, M ) and let

T( D0) is fibre linear by 3.3 and 7.5, so we have :

So finally we get :

So KM is fibre additive. Fibre linearity follows then by fibre continuity
for the C°° -curve topology.

is given by

since diagram (a) says in this case :

Then

is a special case of property (2). It remains to show that Am is the only
mapping X : T2 M --+ T¿fv1 with the property
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where u R2 2 is given by the formula above. We will show that any X with
this property fits commutingly into the following diagram, which is dia-

gram (a). So by uniqueness in (1) the assertion follows then.

Let

7.8. Theorem. If M is a premanifold and N is a manifold, then the map-
ping T : S(M, N) -*S(TM, TN) is smooth.

Proof. Consider the following diagram :

Let us check that this diagram commutes. Let
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So diagram (a) commutes. This says that

is S1 and T(T) - (xN)*o . T, in more detail,

By 7.3, TN is a manifold again, so we may apply the proof up to now

to see that

is S1, but then T : S(M, N) +S(TM, TN) is S2 By induction we see that
T is smooth as claimed. QED

7.9. Theorem. If M is a premanifold and N is a manifold, then the eval-
uation mapping ev : M x S(M, N) -N is smooth.

Proof. Consider the following diagram :

where we put for T(ev) the mapping

We show that diagram (a) commutes. Let
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where

So diagram (a) commutes, so ev is S1 . Since TN is again a manifold,
T(ev) is S1, so ev is S2 and so on. QED

7.10. Lemma. If M, N are manifolds and P is a premanifold, then the
mapping S(P, ) : S(M, N) -+- S(S(PJ M), S(P, N)) is smooth.

Proof. By Lemma 7.5, the spaces S(P, M) and S(P, N) are premanifolds
so S(S(P, M), S(P, N)) satisfies (Ml)-(M3) by 6.1 and we can talk about
smooth mappings in the sense of 6.2.

Claim : The mapping const : R -+- S( P, R) is smooth and

For let f E C °°(R, R), then

Now consider the following diagram
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The top diagram commutes :

The outer pentagon commutes :

So diagram (a) commutes, so and

is also S1, so S(p, ) is S 2 and so on.

7.11. Lemma. If M, N are manifolds, then the mapping

given by c(m)(t) = c(t)(m), is smooth.

Proof. For c e S( R, S(M, N)) we have

so we have
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which is smooth by 7.5, 6.10, 7.9 and 6.4.

Claim is smooth.

so we have

which is smooth by 7.10, 7.5, 6.5 and 6.4. So finally

which is smooth. QED

Note that in this lemma M has to be a manifold : otherwise we can-
not form S(S( R, M xR), S(R, N)) without developing a lot more technic-
al background as in §6.

7.12. Lemma. Let M, P be premanifolds and let (E, p, N) be a vector
bundle (so . N is a manifold). Let f : M - N be a smooth mapping. Then
we have a canonical identification of the following two spaces :

Proof. First note that (S(P, E), p., S(P, N)) is a pre-vector bundle by 7.5
(or its method of proof), so by 6.7 the space

satisfies (Ml)-(M3) ; S(f’, f*E) does it, by 6.1. So it makes sense to ask
whether the natural identification of the two spaces makes sense.

Claim : In the setting above we have a diffeomorphism

in more detail
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This bijection clearly gives a fibrewise linear and continuous mapping

which obviously commutes with the parallel transports of the two

pre-vector bundles over TM, so the identification above is smooth by
Lemma 5.2.

Now we set out to prove the lemma. We have to show that S(P, f*E)
is a pullback. So let X be a premanifold or of the form S(P, Q) and
consider a situation as in the following diagram :

The mapping a exists by the pullback property of f *E = M xN E and is

given by

We have to show that a is smooth. For that we consider the following
diagram :
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In diagram (c) the mapping (3 is given by the same formula as a above,
and clearly " o a = B. From the claim above we have

so the mapping y may be constructed in the same manner as a above.
The diagram commutes by the universal properties of the pullbacks in-
volved. So a is S1 and T ( a) =. y is of the same form as a , so is S1
too, so a is S2 and so on. QED

Remark. In the beginning of the proof we have used a slightly more gen-
eral version of Lemma 6.7. We used the mapping f * = S(P, f) instead of

ev, . But the main point in 6.7 is that T(evn) = ev, is fibrewise linear
and continuous ;

is it too.

7.13. Theorem. If M, N are manifolds, then the set S(M, N) of all smooth
mappings from M to N is again a manifold.

Proof. (Ml)-(M6) have already been checked in 6.1 and 7.5.

(M7) We have to show that

is smooth. Note that by 7.5

is a pre-vector bundle, so L(TS(M, N), TS(M, N)) is a premanifold and the
question for smoothness makes sense. Let

be given by

which is smooth by 7.11. Then consider the pullback

which is a pre-vector bundle since a is smooth, S(M, TN) is a pre-vec-
tor bundle over S(M, N) and all spaces are premanifolds by 7.5. Then
consider the mapping
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given by

Ptl is smooth since we may write it as the following sequence of smooth

mappings :

smooth by 7.10, 7.11

smooth by Lemma 7.12

smooth by Lemma 6.4

Now consider the following mapping :

given by

which is smooth by 6.4, 7.9 - 7.12, since

Then consider the mapping Pt2 which is smoothly given by the following
diagram :
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Finally consider the mapping ir,,3 as in the following diagram

the latter space is the fibre of the pre-vector bundle above over

(c(0), 6 - flip, t). ins is smooth since it may be written as the following
sequence of smooth mappings : 

smooth by 7.11

The mapping

is given by

as in Lemma 5.22, where we proved that any mapping of this form is
smooth. We have now :

as is easily checked, so ptTS(M, N) is smooth as claimed.

(M8) We have to show that

is smooth. In 7.5, (M6), Geo was defined by the formula

for M. We have
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so (Geo)" is given by the following sequence of mappings :

smooth by 7.10

equal by 7.12

smooth by 7.l and 6.4

, smooth by 7.11

So (Geo)" is smooth. By the lemma in 7.1 this suffices.

7.14 Theorem. The category Mf of manifolds and smooth mappings is
cartesian closed. That means :

S(M, S(N, P)) = S(M x N, P) holds naturally in M, N, P E Mf.

Proof. This is a consequence of the fact that S is an internal hom-func-
tor by 7.13 and 6.4 and that ev and ins are smooth in general. For define

by

and

These two mappings are natural and inverse to each other. QED

7.15. Corollary. The following natural mappings are smooth :

Prooof. It suffices to check that carefully chosen associated mappings
are smooth, by cartesian closedness.
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(nr’ is given by the universal product property in the following diagram :

8. Miscellany.

8.1. Let F be a smooth functor from the category of C°°-complete loc-
ally convex spaces and continuous linear mappings into the same categ-
ory, of one or several variables, even infinitely many, co- or contra-

variant, as described in 5.4. We recall that F is called C°° , if

is a COO -mapping in the sense of §1 (in this formulation F is assumed to
be purely covariant).

Theorem. Let F be a C°° -functor as described above, let (E1, pi, Mi) be
vector bundles, one for each variable of F. Then (F((E1)i), (pi), IlMi) is
a vector bundle.

Proof. First note that IIMi is a manifold, by 4.1 and checking (M7), (M8)
(use 1.21). By 5.7 we get a pre-vector bundle and since F is a C°° -func-
tor, the parallel transport described in 5.7 is smooth. QED

8.2. Theorem. Consider the situation

If f is smooth, N is a manifold and (E, p, M) is a vector bundle, then
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t.he pullback (f*E, f*p, N) is again a vector bundle.

Proof. We just have to show that the parallel transport Pt f*E is

smooth. This follows from the diagram :

since

is a pullback in the category pMf of premanifolds. QED

8.3. Corollary. If in the situation of 8.1 all manifolds Mi coincide, we
get a vector bundle (F((Ei)i), p, M). ,

Proof. The pre-vector bundle structure has been described in 5.5. Here
we use a simpler argument :

8.4. Theorem. L et (E, p, M) be a vector bundle. Let

be a smooth mapping satisfying all the functional equations of (VB2). In
particular (E, Q) is a pre-vector bundle, called (E, p, M), with the same
fibres as E. Suppose furthermore that

factors as follows :

Then the identity gives a diffeomorphism 3 : E -+- E..

Remark. 1. In some cases property (a) holds automatically, follows from
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the functional equations of Q . 
_

In general I have only been able to show that the germ of Q(c, vx)
at 0 depends only on the germ of c at 0 and not on c .

2. This result shows that although the smooth structure of a

manifold depends heavily on the parallel transport it is somehow in-

dependent from the particular parallel transport chosen.

Proof. Q is given by

Q is clearly smooth.

where Dec = DecL(E,E) . So the claim follows. Note that C is smooth,
since

Let (c i, c2) 6 S(R, M) x Sconst(R, E). Then the curve
M

is a smooth curve in L(E, E), and takes values only in the fibre

so it is a Cfi -curve in the COO -complete bornological locally convex

space L(Ec1(OJ’ EC2(0)). By the cartesian closedness proved in §1 the

mapping

is C°° in EC1(OJ. So the following diagram makes sense and the top
quadrangle commutes, where
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Note that

and that A is invertible, the inverse being given by

We will show that a mapping B fits commutingly into this diagram and
we will compute its form. Let

Then we have :

since we may compute as follows :

since

is bilinear and bounded, x = c1(0).
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by the claim above. So there is a mapping B fitting commutingly into
diagram (b) and may be written as

So J is Sl and TJ "=" B is S1 too, so J is S2 and by recursion J is smooth.
Note that

So diagram (b) makes sense with the arrows A, J B inverted and the
standard recursion argument shows that 3- is smooth too. QED

8.5. Proposition. L et V be a Coo-complete bornological lcs. Then V is a
manifold in a canonical way, where

Furthermore the smooth maps bet ween COO -complete bornological spaces,
viewed at as manifolds, are exactly the COO -mappings in the sense of §1. 

Proof. (Ml)-(M6) is rather trivial. Now we check the last statement :

smooth mappings are clearly Coo; the converse holds by 1.25. Using this
it is clear that PtTv is smooth since it respects COO - c ur v e s :

8.6. Let M be a manifold. Note that

is a C m-complete bornological Ics by 5.18. Consider the mapping :

given by

Lemma, e : M -+ S(M, R)’ is smooth, where S(M, R)’ is viewed as a man-
ifold in the sense of 8.5.

Proof. Let c E S(R, M ). Then
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so

so E o c is a C 00 - cur v e in L (S(M, R), R) by 1.20.3. So

makes sense.

Claim : Let

Then d : S(M, R) --+ S(TM, R) is linear and continuous.

It is easy to check that diagram (a) commutes, where V comes from
the constant parallel transport, and OM xR is linear and continuous by 5.
20. So the claim follows. Consider the following diagram

We claim that diagram (b) commutes :

So diagram (b) commutes, EM is 51 and T ( EM) is again Sz, so EM is 52 and
by recursion E is smooth. QED

8.7. Definition. A manifold M is called regular, if the mapping

is injective.
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So we require that the functions in S(M, R) separate points in M and
that

is injective for each x e M . The second condition means : if c E S(R, M)
and for all f e 5(M, R) we have (f o c)’(0) = 0, then 60c = 0 C(0)

8.8. Theorem. Let M be a finite dimensional C°°-manifold in the usual
sense (with charts), paracompact and Hausdorff. Then M is a regular
manifold in our sense.

Proof. M admits a complete Riemannian metric, so it is a premanifold
(see 2.3). The exponential map is clearly smooth, so Geo M is smooth.
It is not so easy to check that PtTM is smooth. This is done in Lemma
8.9 below. QED

8.9. Lemma. Let (E, p, M) be a finite dimensional C°°-vector bundle in
the usual sense (with charts and locally trivial). If M is paracompact,
then this bundle admits a connection, and the parallel transport PtE
induced by this connection turns out to be smooth :

Proof. Let C : TM E -+- TE be any linear connection in the usual

sense, i.e. C is C 00,

is linear in the (TE, Tp, TM) vector bundle structure for each ux E TxM
and 

is linear in the (TE, RE, E) vector bundle structure for all vxE E, .
Then the parallel transport Pt E corresponding to this connection is un-

iquely given by the following diagram :

where

For this diagram commutes for all t iff
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is a horizontal curve in TE, so

for the covariant derivative VC induced by C. It is well known (and a
standard fact of the theory of solutions of ordinary differential equa-
tions) that PtE maps smooth curves to smooth curves (note that

So we have to construct T(PtE) or rather T(PtE). We do this with a

suitably chosen connection on (TE, T p, TM). Consider the connection
C 1 given by the diagram :

where uM , uE are the canonical flip mappings which can be given in
local coordinates and so exist and satisfy 7.7. 

It is not so difficult now to show that the parallel transport Pt
given by the connection C1 is exactly T(Pt E) . This process can

be repeated and shows that ptE is smooth and by general principles Put E
itself is also smooth. QED

8.10. Theorem. Let M be a regular manifold such that TXM is a

finite dimensional vector space for all x E M. Then M is a C °°-manifold
in the usual sense (with charts) and is Hausdorff.

Proof. The mapping

is smooth by 7.1. Fix xe M and consider the mapping expx: TXM -+M.

is the identity, since
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Now consider the mapping

This is smooth between C°° -complete bornological lcs, by 8.6, so it is
COO by 8.5. Since M is regular,

is injective. Let vl,..., vn be a basis of TxM, then the elements

span an n -dimensional linear subspace of S(M, R ). Choose f1 ,..., fn in

S(M, R) such that

(see Schaef f er, IV,1.1). Put

then we have a C 00-mapping

such that d(F 0 expx)(O) is invertible (in fact the identity if TX M has

the basis (vi) ). So by the usual inverse function theorem F o expx is a

diffeomorphism from a convex neighborhood of zero VX in Tx M onto
an open neighborhood of F(x) in Rn . So in particular

is injective.

Claim : Let c e S( R, M ) with c(O) = x . Then there is a piece of a
C °°-curve c1 in VX such that c(t) = expxc1(t) for small t.

In particular, expx(Vx) is open in M in the natural topology (2.2),
i.e. the C °°-curve final topology.

Given c e S(R, M) with c(O) = x consider the mapping

We have

so E o (p has at least rank n at 101 x Vx C R x TxM . Repeating the arg-
ument involving wi and fi from above we see that e o (p has rank &#x3E;n in
a convex neighborhood U of 101 x Vx C R x TxM . We claim that
e o cp has rank n in U. Suppose not, then
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spans a (n+1)-dimensional subspace of S(M, F0’ ; as above choose

such that
s

is a linear isomorphism from R x TXM onto Rn+1 . Then for

we have

a C°° -mapping which is a diffeomorphism at (r, v), so it is a diffeomor-

phism in a neighborhood of (r, v) in R x TxM . Choose COO -curves

with

and such that

is linear independent in Rll+ 1 . Then the curves 
,

are in S( R, M) and

are linear independent in T cp( r, v) M by the choice of ei . So

But

is a smooth curve c with

so

is a linear isomorphism, so

Contradiction. Thus E o cp has rank n in U. Now remember the mapping
F E S(M, R ) from above, let f E S(M, R) be arbitrary and consider

(f, F) e S(M, Rn+1 ). Then (f, F) o cp has rank n in U , so (f, F)(p(U)
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is an n-dimensional submanifold of Rn+1, containing (f, F) o expx (Vx) ,
which is again an n-dimensional submanifold of Rn+1 by the choice of
F . So

near 0, so

for some cf(t) E Vx . o Since

and F is injective on expx (Vx) we see that cf(t) does not depend on
the choice of f , so 

for all

So finally

i.e.

f or all f , so

so

for small

since

So the claim follows.

Now we have constructed the following data : for each x E M a

convex neighborhood of zero Vx in TxM and a mapping Fx E S(M, Rn(x))
such that

is a diffeomorphism onto its image.

Claim : The mappings

f or x E M generate a C °° -atlas on M.
Let x / y be such that

in
Then

for we can join x and y by a smooth curve. Put
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We have to show that

is C°° . For that consider the mapping

Then clearly

have both rank n , are injective, fit together nicely, so they parametrize
a submanifold of R2n , the chart change of which is clearly COO
and coincides with

Now any mapping in S(M, R) is a smooth function on M with this C°° -
atlas by construction, so the COO -functions separate points, so M is
Hausdorff. Any curve in S( R, M) is a COO -curve in this new atlas by
the claim above, and conversely by the construction of the charts. It
is clear that the identity gives a diffeomorphism between the new M
and the old M. Finally note that M is paracompact since it admits a
connection. QED
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