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MANIFOLDS OF SMOOTH MAPS IV: THEOREM OF DE RHAM

by P. MICHOR

CA HIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
Vol. XXI V -1 (1983)

Spaces of smooth mappings between finite dimensional manifolds

are themselves manifolds modelled on nuclear ( LF )-spaces in a canonical

way. In this paper we develop the calculus of differential forms and use it

to prove the theorem of de Rham for such infinite dimensional manifolds :

the de Rham cohomology coincides with singular cohomology with real coef-

ficients and in turn with sheaf cohomology with coefficients in the constant

sheaf R . The essential point is the fact that (NLF)-manifolds (as we chose

to call them - (NLF) for nuclear (LF)) are paracompact and admit smooth

partitions of unity. Note, however, that (NLF)-manifolds are not compactly

generated in general, so spaces of smooth mappings between them turn out

to be not complete and the cotangent bundle does not exist. This drawback

could be overcome by making all spaces compactly generated and using the

calculus of U. Seip [20] devised for this setting. One would loose para-

compactness however. In the last section we investigate the group of all

diffeomorphisms of a locally compact manifold, connect its de Rham coho-

mology with the cohomology of the Lie algebra of all vector fields with

compact support which has been investigated by Gel’fand, Fuks [5] and

we make some observations on its exponential mapping and adjoint repre-
sentation. It turns out that the exponential mapping is not analytic in the

obvious sense.

1. Calculus on (NLF)-spaces and -manifolds

2. Vector fields and differential forms

3. Cohomology and the theorem of de Rham

4. Remarks about cohomology of diffeomorphism groups
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1 . CALCULUS ON (NLF)-SPACES AND -MANIFOLDS.

1.1. DEFINITION. By an (NLF)-space we mean a nuclear (LF)-space, i.e.
a locally convex vector space E which is the strict inductive limit of an

increasing sequence of Frechet spaces

and which is nuclear. So each En is nuclear and therefore separable (see
Pietsch [18]).

Attention: E is not the inductive limit of the spaces En in the

sense of topology ; it is so only in the category of topological vector spa-
ces. For if it were so, it would be compactly generated ; but the space
of test functions on R" is not compactly generated (see Valdivia [23]).

We recall that a mapping f : E - F between locally convex spaces
(or open subsets of these) is called C1c if

exists for all x, y in E , and D f : E x E -&#x3E; F is jointly continuous ; f is

called C2c if D f is C1c, and so on. See Keller [9] for a detailed account

of this.

1.2. THEOREM. Any ( NLF )-space admits C’-partitions o f unity. In par-

ticular it is paracompact.

This result is proved in Michor [14] (8.6) for the space Tc(E) of
smooth sections with compact support of a smooth finite-dimensional vector

bundle E -&#x3E; X . But in the proof there only the following facts are needed:

rc ( E ) is an (LF)-space and is nuclear. So the result above holds too.

1.3. DEFINITION. By an (NLF)-manifold we mean a Hausdorff topological

space M that is a manifold in the Coo -sense modelled on open subsets of
(NLF)-spaces.

In Michor [13, 14], it is shown that the space C°°(X , Y ) of all

smooth mappings f ; X -+ Y between finite-dimensional manifolds is an

(NLF)-manifold.
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Note that (NLF)-manifolds admit C°°c -partitions of unity by 1.2.
The tangent bundle T M is again an (NLF)-manifold, but the natural

transition functions for the cotangent bundle are not of class C°°c , not even
continuous. 

See Michor [14] (Section 9) for a short account of Coo-manifolds. We

will use notation from [14], which is largely self-explanatory.

1.4. The algebra of C’-functions. By Cooc(M) we denote the space of all

Cooc-functions from an (NLF)-manifold into R. We put the « topology of unif-
orm convergence on compact subsets in each derivatives on CO; ( M). So a
net ( f.) converges to f iff ii -&#x3E; f uniformly on each compact in M, dfi -&#x3E; df
uniformly on each compact in T M , ddfi -&#x3E; ddf uniformly on each compact
in T 2M , etc. Here

C°°c ( M) , equipped with this topology, is a locally convex vector space ,
even a locally-multiplicatively-convex algebra in the sense of Michael [12].
I suspect that C°°c ( M ) is not complete in general, since M is not compact-

ly generated.

1.5. Tangent vectors as continuous derivations. Let 6 x c T x M be a tan-

gent vector, then 6 defines a continuous derivation : C°° ( M) -&#x3E; R over
x c

e vx by f |-&#x3E; x(f) - df(Zx). The converse is true on (NLF)-manifolds :

T HEOREM. Let M be an (NLF)-manifold, and let A : C°°c(M) -&#x3E; R be a

continuous derivation over evx, i. e.

T hen there is a uniq ue tangent vector Zx c T x M such that A(f) = df(Zx)
for all f.

PROOF. Let (U, u, E) be a chart of M with x E U and u(x)=0 in E .

Since there are COO -partitions of unity, A(f) only depends on the germ of

f at x . Now choose a C°°c-function O which is 1 on a neighborhood of x

and has support contained in U . Consider the mapping

(the dual of E ).
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This defines a linear functional on E’. We show that it is continuous. Sup-
pose a, - 0 in E’ in the topology of bounded convergence which coincides

with the topology of compact convergence since E is nuclear. Then for

each compact K in M, K n supp O = : Ki is compact in U , so u ( KZ ) is

compact in E , so a i | u (K1) -&#x3E; 0 uniformly, so O . (ai o u ) -&#x3E; 0 uniformly
on K. Now let K be compact in T M , then supp (d O) n K = : KI is com-

pact in rrM-1 ( U ) , so T u ( K1) is compact in E x E , so

converges to 0 uniformly on Tu(K1), so

uniformly on K . This argument can be repeated and shows that

in

Thus A(O.(ai 0 u)) -&#x3E; 0. So the linear functional a |-&#x3E; A(O.(aiou)) is

continuous on E’ and it is therefore represented by an element j6 c E since

E is reflexive. We have

for all

Claim : The tangent vector Zx = ( T u )-1 (0, (3 ) c Tx M represents A . Let

Then We have

and c lea rly

So we have to prove that A(f)=A(g) whenever dfx = d g x. Note that byx x

the derivation property A ( constant) = 0 , so it remains to show the follow-

ing : if f(x)=0 and dfx=0, then A(f)=0. F or such an f let

this is a C°°-function. By Taylor’s Theorem (on R 1 ) we have :

Now E is nuclear, so it has the approximation property, so L( E, E ) =

E @ F’, and there is a net of finite-dimensional continuous linear operators
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( L i ) in L ( E , E ) converging to Id E uniformly on compact subsets. Put

Then clearly g i f C°°c. Claim : gi -&#x3E; g in C°°c(u(U)). Let K be compact in

u(U). The mapping u ( U) -&#x3E; E’ given by

is continuous, so the image of K under this mapping is compact in E’=

L ( E , R), so it is weakly bounded and thus equicontinuous, since E is

barrelled (see Schaeffer [19], III, 4.2). This means that

for all y (K and z c V , a suitable neighborhood of 0 in E. Now let i ,

be such that L i y - y E V for all y 6 K and i &#x3E; io . Then

for all

So g i -&#x3E; g uniformly on compacts of u (U). Since derivatives with respect

to y commute with the integral, the argument above can be repeated for all

derivatives and the second claim is established. Now let

then we have

On the manifold M we have then

in COO (M) by the second claim above. Since A is continuous, we get

since 0 2. f and f have the same germ a t x. On the other hand:
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So qed

2. VECTOR FIELDS AND DIFFERENTIAL FORMS.

2.1. Let us denote the space of all vector fields on the (NLF)-manifold M

by X(M) as usual.

LEMMA. X(M) is a Lie-algebra, the bracket [Z, 771 o f two vector fields
being given by

for

P ROO F. Of course 

is a continuous derivation of the algebra C: ( M), so f 1-* [Z,n](f)(x)
is a continuous derivation over evM, so it is given by a tangent vector

c 6 Tx M by 1.5. It remains to show that xL’ is a Coo-mapping from
M to T M . It suffices to check this on a local chart ( U, u, E ) , and for the

local representatives in U we have

which is visibly C°°c. qed

We equip the space X(M) with the topology of compact convergence
in each derivative. Then it becomes a topological CO; (M )-module

2.2. Dif ferential forms. By a differential form ú) of degree p on M we

mean a Coo-mapping T M X ... X T M -&#x3E; R whichisaltematingand p-linear
M M

on each fibre ( Tx M ) P . Let us denote the space of all p-forms by DP(M).
For w E W QP (M) and O E Wq (M), define w ^ O, Ep+q (M) as usual

by the formula
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for x c M , g i i Tx M, where Sp + q is the full symmetric group of permutations
of p +q symbols. Clearly (0 ^, O is C°°c. Let

a real graded algebra. The natural topology on Q(M) is the direct sum of

the topology of compact convergence in all derivatives.

Warning: It is not true tha t C°°(M) = QD(M) and ldf I ff C°°c(M)} gen-
erate Q(M). They generate a dense subalgebra, however, if each model

space E of M ha s the property that L ( E , E ) admits a bounded ( = equi-

continuous) finite dimensional approximate identity. This is not true for

all nuclear spaces.

2.3. If co c QP ( M ) is a p -form, define the exterior derivative of ú) by Pa-

lais’s global formula

where ei c X(M).
LEMMA. d co is a (p + 1 )-form.

P ROOF. A purely combinatorial computation shows that dw is C°°c(M)-
linear in each variable, and alternating, so on each fibre (T M) p+1 it is

given by a jointly continuous alternating (p + 1)-linear functional. Itremains

to check that doi is Cw . For a local chart ( U, u, E ) on M the local re-

presentative of w is a C°°c-mapping u( U) X EP -* R which is alternating
and p -linear in the last p variables. For x c u (U) and yi c E , considered

as constant vector fields on u( U ) so that [yi, yj] = 0, we get the follow-
ing local representative of dw : 

which is clearly C°°c.

2.4. F or w (OP( M) and e E X(M) define the Lie -derivative 26a) E Q P(M)
by the following formula :
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LEMMA. 2-eoi is again a p-form on M .

P ROO F. A s usual the only problem is the differentiability. Using a local
chart ( U , u , E ) and constant vector fields yi on u ( U ) (so

one easily checks that 3/ m has the following local representative on U :

This is clearly C00. qed

2.5. L EMMA. For E E X(M) the mapping LZ : G (M) -&#x3E; Q(M) is a deriv-
ation, i. e.

P ROO F. A combinatorial computation.

2.6. If Z E X (M) and w E GP(M), let

be defined by

for

LEMMA.

P ROO F . A combinatorial computation.

2.7. ff f : M - N is a Coo-mapping between (NLF)-manifolds, then for any
úJ E DP(M) define f *co £ Q P ( M ) by

for x E M and TJ 6 Tx M. The following diagram shows that f *w is a C;o-
m appin g :
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L EMMA. f *: W (N) -&#x3E; fl(M) is an algebra-homomorphism.

2.8. THEOREM. We have the following formulas :

PROOF. 1. A combinatorial computation.
2. Use 1 and induction on de g w + deg 0 .
3. Follows from the local formula in 2.3, since any second derivative

of a C°°c-mapping is symmetric (see Keller [9] ).
4. Is immediate from 1 .

5. Let (U, u, E), ( V , v, F ) be local charts on M, N respectively,
such that f (U) = V . Denote local representatives by bars. Then for a) in

OPe N) we have

2.9. Let X c X(M) be a vector field which has a local flow, i.e. there is

a C°°c-mapping a : U - M , defined on an open neighborhood U of M X { 0} in

M X R such that

for all
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and moreover

and

whenever one side is defined. (In general, nothing is known about existence

and uniqueness of nonlinear ordinary differential equations in non-normable

locally convex spaces.)

L EMMA. Let a) c BP(M). With the assumptions a bove we may compute the

Lie-derivative as follows :

Here 6 * w can either be viewed as a COO-path in the sheaf of local p-forms
on M , or the derivative above can be evaluated pointwise, since evaluation

at a point is linear and continuous.

P ROO F. For /6 C°°c(M) = 00 (M) there is a global proof:

Now let ill (OP( M). Take any local chart ( U, u, E ) of M , let

be the local representations on U. Then we may compute as follows :

since different partial derivatives commute, see Keller [9]. This is the

local formula for KZw of 2.4. qed
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2.10. L EMM A. If Z c Y,(M) admits the local f low a as in 2.9, and if

n E X(M), then we hd ve

Here

PROOF. Let ( U, u, E ) be a local chart on M , then for the local repre-

sentatives we have

by the chain rule and the existence of partial derivatives, see [14], 8.3.
This in turn equals

2.11. L EMM A. Let Z c X(M) admit the local flow a . Then for any w in

UP (M) we have d a*t cv - a *tLZw on the o p en s et where at is defined.

P ROO F. Let x c M , t c R be such that a (x, t) is defined. Then we have

2.12. LEMMA OF POINCARE. A closed differential form on M is locally
exact.

P ROOF. We have to show that for any (1) f ap (M) with d(1) = 0 and any

x c M there is an open neighborhood U of x in M and a form 95 c QP-1 (M )
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such that d O = w I U. Using a local chart (U, u, E) with u (x) = 0, we

may assume that M is an absolutely convex open neighborhood of 0 in the

(NLF)-space E . Consider the C’-mapping

a is no local flow, so for t ; 0 , 

for a time dependent vector field e, which is given by g (x, t ) = 1x. Put
t

B(x, t) = et.x, then B is a local flow, defined for -oo  t  0, and the

generating vector field is just IdM . Now for t &#x3E; 0 we have:

So Worm f or a 11 and is C°° in t . Further
c

more

Choose

REMARK. See Papaghiuc [17 ] for a more elementary proof of this fact in

general locally convex spaces.

3. COHOMOLOGY AND THE THEOREM OF DE RHAM.

3.1. Let M be a (NLF)-manifold. The de Rham cohomology of M is giv-

en by:
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HdRp(M) is a real vector space and HdR(M) = k&#x3E;@0HdRk(M) is an al-

gebra, the product being induced by the exterior product A on W (M) (the

exact forms are an ideal in the closed forms, by 2.8.2).
For a ny C°°c mapping f : M -&#x3E; N between (NLF)-manifolds we get a

cochain complex homomorphism f*: W (N) -&#x3E; (M) (by 2.8.5) and an ind-
uced homomorphism in cohomology

which respects degrees and is an a lgebra homomorphism. f |- f 4 is clear-

ly functorial.

3.2. T HEO REM. The de Rham cohomology of (NLF)-mani folds has the fol-

lowing properties :
1. HdR(point) = 0 .
2. 1 f f g : M - N are C°°c-homotopic mappings (i. e. there is a C o;-map-

ping H : M X R -+ N with H ( . , 0) = f and H ( . , 1) = g), then

3. I f M == a M a is a dis joint union o f o pen submanifolds Ma’ then

for all ; 

4. (Mayer-Vietoris) 1 f ,M = U U V, U , V open, then there is a long 
exa ct sequence

which is natural in the obvious sense.

P ROO F . 1 and 3 are obvious.

2. For t 6 R let j t : M - M X R be the embedding jt(x) = ( x, t ) . For

O E Q P(M x R) consider j*t OE 0 P( M ) . As a function of t , j*t O is a COO

curve in the locally convex space QP (M) with the topology of compact

convergence in all derivatives. Since this space is probably not sequen-

tially complete, the integral with respect to t need not exist. Therefore

for O E QP(M x R ) and Zi E Tx M define
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Claim : I10O E QP(M).

is of class C’. c So for c &#x3E; 0 there are open neighborhoods tli t of 6, i in

T M , V , of 0 in T R such that
t, t t

for all

Let prl : T R = R2 -+ R be the projection, then

is an open cover of [0, 1], so there is a finite subcover

Put Ui = n Ui ,tj. Then for allI j =1

we have

uniformly for t c [ 0, 1 ] . Thus

is continuous. Now the derivative, say

is continuous and the same method as above shows that f10 j*t D O d t is

continuous. A simple argument shows this expression is D f10 j*t O dt . This
procedure may be repeated ; it shows that I10O : TM X ... X TM -&#x3E; R is C°°c.

M M 

So finally we may write 11 cp = f10 j*t* O d t , where the integral exists
in QP(M), an d clearly the map I10 : QP(M x R) -&#x3E; QP(M) is linear and
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continuous. From now on we may just repeat the finite-dimensional proof:
let T = a d d E X(M x R), then T has the global flow

at

and is +t = at o is - So we may compute

by 2.9. Here we use that js : QP(M x R ) -&#x3E; QP(M) is linear and continuous.

Claim 

Finally we may prove 2. Define the homotopy operator h : = I10 o i To H*
where H is the homotopy connecting f and g . Then we have

So

4. Can be proved without difficulty.
Consider the embeddings

and the sequence of cochain complexes
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where

This sequence is exact: on f2 ( U n V) use a partition of unity on M sub-

ordinated to the cover I U, V I . As usual this gives the long exact cohomo-

logy sequence. qed

3.3. THEOREM. L et M be a (NLF)-manifold. Then the de Rham cohomo-

logy of M coincides with the shea f -cohomology of M with coefficients in
the constant sheaf R on M .

P ROO F. Recall that M is paracompact.

is a resolution of the constant sheaf R on M , where QP denotes the sheaf

of local p-forms in M . This is a resolution by the lemma of Poincaré. Since

M admits C°°c-partitions of unity, each QP is a fine sheaf, so the resolu-
tion above is acyclic, and by the general theory of sheaf cohomology the

theorem follows, qed

3.4. TH EO REM. Let M be a (NLF)-mani fold. The de Rham cohomology o f
M coincides with the singular cohomology with coe f ficients in R, an iso-

morphism being induced by integration o f p-forms over COO-singular sim-
p l exes.

P ROO F. Denote by Sk°° the sheaf which is generated by the presheaf of

locally supported singular COO -cochains with coefficients in R. In more

detail : let Sk°° ( U, R) = II R where a: A -&#x3E; k U is any mapping which ext-

ends to a C°°c-mapping from a neighborhood of the standard k.simplex åk
in Rk +1 into U, U open in M. This defines a preshea f. The a ssociated

sheaf is denoted by (,/:0 . Then we have a sequence of sheaves

This sequence is a resolution for, if U is a small open set, say C§9-dif.
feomorphic to an absolutely convex neighborhood of 0 in an (NLF)-space

E , then U is C°°c-contractible to a point. Since C°°c-mappings clearly ind-

uce mappings in the S*°° - cohomology,
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This implies that each associated sequence of stalks is exact, so the se-

quence above is a resolution. A standard argument of sheaf theory (using
the axiom of choice) shows that each Sk°° is a fine sheaf, so we have an

acyclic resolution, and Hk(S*°° (M, R), d) coincides with the sheaf coho-

mology with coefficients in the constant sheaf R .

Furthermore integration of p-forms over C°°c-singular p-simplexes in

M defines a mapping of resolutions

which induces an isomorphism

Now consider the resolution 

of the constant sheaf, where Ck is the usual sheaf induced by the locally
supported singular cochains. Since M is paracompact and locally contrac-

tible, this is an acyclic resolution, and the embedding of C°°c-singular
chains into all singular chains gives a mapping of resolutions

which induces an isomorphism

3.5. REMARK. Note that the Alexander-Spanier cohomology and the Cech

cohomology of a (NLF)-manifold coincide with the singular cohomology.
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4. REMA RKS ABOUT COHOMOLOGY OF DIFFEOMORPHISM GROUPS.

4.1. As shown in Michor [13, 14], the group Diff(X) of all smooth diffeo-

morphisms of a finite dimensional manifold X is an (NLF)-manifold with

C°°c -operations. The subgroup Diffc (X) of all diffeomorphisms with com-

pact support is open in Diff(X). The connected component Diff0(X) of

the identity consists of all diffeomorphisms compactly diffeotopic to the

identity.

4.2. The tangent space TId Diff(X) is the space Tc (TX) of all vector-

fields with compact support on X , with its natural (NLF)-space topology.
This is clearly a topological Lie-algebra. But one may define the Lie bra-

cket on r c (T X) in another way : let e, q c Tc(TX) ; extend them to left

invariant fields LZ, L on Diff(X), and consider

and its value at Id . This gives the same Lie-algebra structure, up to sign
on r c ( T X ), as we will show below.

4.3. For Z E Tc (TX) denote the left invariant vector field on Diff(X) ge-

nerated by Z by Le , and call the right invariant one RZ. For /6 Diff(X),
we have

4.4. LEMM A. For Z, n E Tc(T X ) we have

PROOF. Since the chart structure on

is rather complicated (see [14], 10.13) we prefer to use 2.10.

Since 6 is a vector field with compact support, it has a global flow

a : X x R - X . Since a. has compact support for each t , the mapping
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is of class C°°c. This may be seen as follows : first note that this curve is

continuous, d dt at = Z Oat exists in D(X,TX) for all t and is again cont-

inuous in t , since at takes its values on the set of proper mappings in

C°°(X, X). By recursion t |-&#x3E; at is C°°c-compact support is essential 

h ere, see [14], 11.9. Now define

by

This is a C°°c-mapping. To compute L aL ( f , t ) we may evaluate at x f Xdt
(see [14] 10.15). Then we have

since

So a L is the global flow for the left invariant vector field L . We can
use Lemma 2.10 now to compute [Lg, L1J ]. But first note that

Thus

for s E D f (X, T X ) . N ow we compute

We have used that
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is linear and continuous.

For the proof of the second assertion first note that

is C°°c (by [141, 11.11 ), that Inv* LZ = R(-Z) and that

The last assertion is immediate since the flows of Le, L TJ commute (the
flow of R is B R (f, t) = Bt of, where Bt is the flow of n). qed

4.5. Let us denote for the moment the right translation by f E Diff (X)

p f: Diff (X) -&#x3E; Diff (X), let similarly Àf denote left translation.
A differential form w E Qp(Diff(X)) is called right invariant if

p*fw = w for all /6 Diff(X).
The following results are easily seen to be true.

1. The subspace of all right invariant forms in QP(Diff(M)) is lin-

early and topologically isomorphic to the space AP(Tc’(TX)) of all al-
temating p-linear jointly continuous mappings

Similar for left invariant forms.

Note tha t we have to assume joint continuity, separate continuity
is not enough if Tc(TX) is not metrizable.

2. The subspace of right invariant forms in Q(Diff(M)) is stable

under the exterior derivative d , since d o p * f = p f*. o d . The exterior de-
rivative induces the following operator on the space
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3. For Z f Tc (TX) the space of right invariant forms in Q(Diff (X))
is invariant under the operators LRZ, ,iR and these induce the following
mappings on A(Tc’ (TX)) : 

4. The results of Theorem 2.8 hold for these operators too.

4.6. The exponential mapping of Diff(X) is the mapping

which assigns to each vector field Z E Tc (TX) with compact support the

diffeomorphism with compact support 

where Fl (Z) : X X R - X is the global flow of 6 .

THEOREM..

P ROO F. The global flow Fl(Z) : X X R - X of e is given by the ordinary
differential equation

where

is the composition mapping, which is C°° by [14111.4. The (NLF)--space
c

I’c ( T X ) is a splitting submanifold of C °° (X , TX) by [14], 10.10, and

for any 6 11 c r c ( T X) the tangent vector

is given by
where

is the vertical lift ([14], 1.15.3), since by ([14], 10-5) we may compute
after evaluating a t x E X : 
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Recall that the canonical flip mapping KX : T 2X -+ T2X satisfies

where f : R2 -&#x3E; X is any smooth mapping. Now we compute the tangent map-

ping of the ordinary differential equation a bove :

by [14], 10.14,

So the mapping TZ(Fl(.)t). n : X - T X is given by the ordinary differerr

tial equa tion

with the initia I condition

This differential equa tion has a global solution for each x a nd is C°°c in
x , because we just differentiated a smooth family of global flows at s = 0.

The solution is furthermore the global flow of a vector field. This is seen

as follows : call
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Then at satisfies

This is the f low equation of the vector field

In a local chart on X this field is given by

Since rrX o a t 
= Fl(Z)t we have

and for x c XB( supp 6 Usupp q ).

By the argument used in the beginning of the proof of 4.4 we may conclude
that a: R -&#x3E; C°°(X, TX) is of class C°°c.

After this detailed construction of the tangent to the mapping Fl ,

we return to the proof of the theorem. First note that

is continuous. If 6 is near el then Fl(Z)1 is near Fl(Z1)1 by the a rg-
ument used below to prove 4.8. This holds for all derivatives with respect

to X . Now T Exp : Tc(TX) X Tc (TX) -&#x3E; Dfx, TX) is given by

0 is not continuous, but we need only its flow lines starting from O X ’
and Fl(B(ç, 11 ))1 o O X is indeed continuous. By recursion we get that

Exp is C,4 qed

4.7. It is known that Exp : Tc (TX) -&#x3E; Diff(X) does not contain any open
neighborhood of Id in its image. There is a simple counterexample due to

Omori [15] on Diff(S1). In contrast, the image of Exp still generates

the connected component Diff 0(X) of the identity in Diff (X). A way to

show this is indicated in Epstein [4]. We may suppose that X is connect

ed (otherwise Diff 0(X) is a direct sum of groups). Then by Epstein [4 ] the

commutator group [Diff 0(X), Diff0(X)] is simple and coincides with

Diff0(X) by Thurston [22]. The set Exp(Tc(TX)) is closed under con-
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jugation in Diff(X), so it generates a non trivial normal subgroup which
coincides with Diff0(X). The same result holds for Diff k0(X) (diffeo-

morphisms of class Ck ) if k # dim X + d . This has been shown by Mather,
in [10].

A detailed proof of Thurston’s result has not been published. In
the following we prove a weaker result that suffices for our purpose by a

simple a rgument.

4.8. LEMMA. For any smooth finite dimensional (paracompact), manifold
X , the image of the exponential mapping generates a dense subgroup of

Diff 0(X).
P ROO F. It suffices to prove this theorem for X = R’ , for any /6 Diff 0 (X)
can be written in the form f = f, o ... o Ik , where fi c Diff 0 (X) has sup-
port contained in some chart. A proof of this fact that can be extended to

the non compact case is in Palais-Smale [16], Lemma 3.1.
So let f E Diff0(Rn). Take a smooth curve a from Id to f in

Diff 0(X), so a is a diffeotopy with compact support. Consider the time-

dependent vector field e: R’ x [ 0, 1 ] -&#x3E; Rn given by

e has compact support in R’ x [0, 1]. Now for n c N , let

These are vector fields with compact support. Let

and put

We claim tha t fn -&#x3E; f in Diff0(X). We will use the comparison theorem for

(approximate) solutions of differential equations in the form of Dieudonn6

[2], 1 d.5.6. For that define an, k E Diff 0 (X) by an, k = an, k , k+1 / n where

an, k, t is given by the differential equation
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Let c &#x3E; 0 . Suppose that n is so large that

for all and

k = 0 , 1, .... , n -1 . Put

Then the comparison theorem mentioned above produces the following es -
timate :

Using this estimate we may compute as follows :

So |f (x) - fn (x) |-&#x3E; 0 uniformly for x c Rn.

The same argument may be repeated for each derivative with respect

to x , as in the proof of 4.6. Since In = f = I d off some compact set,

fn -&#x3E; f in Diff(X) . qed

4.9. DEFINITION. Let H*(Tc(TX)) denote the cohomology of the Lie-

algebra of vector fields with compact support with real coefficients, i. e.,

the homology of the cochain complex A(Tc’(TX)) described in 4.5. Ext-
ension of elements in A(Tc(TX)) to right invariant differential forms

on Diff 0(X) gives an embedding A(Tc’(TX)) -&#x3E; Q(Diff 0(X)) and this

in turn induces a natural mapping in cohomology

For a compact connected Lie-group this mapping turns out to be an isomor-

phism in cohomology - the proof uses invariant integration.
Note the following ea sy results :
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since Diff0(X) is connected.

Let

with dill = 0. Then

for a 11

This implies (ù = 0 by the following

SUBL EMMA. Any Z ire ( T X ) can be represented as a finite sum

PROOF. By partition of unity let Z = Z1 + ..., + ZP, where each ei has
support in a chart neighborhood Ui of X . So suppose Z has support in a

chart ( U , u ) of X. Let

with supp

Choose g , h smooth functions with compact support such that gi = u t,
h = 1 on supp (e ). Then

4.10. Substantial information about H *(Tc (TX)) has been obtained by
Gelfand-Fuks [5], who investigated this cohomology and got the following
results:

If X is compact then HP(Tc ( T X ) ) is a finite dimensional real vec-

tor space for each p .

H*(Tc (TS1)) is the tensor product of the polynomial algebra over a

generator in degree 2 and the exterior algebra over a genera tor in degree 3.

H *(Tc(TS2)) has ten generators and H*(Tc(T(S1 x S1))) has 20
generators (with non trivial relations).

Since Diff0(S2) contains SO(3) as a strong deformation retract

(see Smale [21]) the mapping H*(Tc(TS2)) -&#x3E; H*cR(Difffc(S2)) cannot
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be injective.

4.11. The adjoint representation of Diff(X) can be constructed as in the

finite dimensional case, but then a curious thing happens :

is not analytic. The construction follows :

1 . Define conjugation

by Conj(f) (g) = f-1 o g o f . This is a group anti-homomorphism (taken
so to avoid a minus sign in the definition of ad , compare with 4.4).

is a Coo-mapping.c

2. Define

by

Ve have Conj( f) = A f-1 opf, 
where X denotes left translation and p de-

notes right translation (as in 4.5). Thus we have

The mapping

is Coo .c

3. Define ad : re (T X) -+ L(Tc (TX), Tc(TX)) as the tangent vec-
tor part of TId Ad . We will see later that ad(e )q = [6, -q I as usual.

4. LEMMA. d Ad(Exp(tZ) n = Ad(Exp(tZ))[Z,n].
dt

P ROO F.

N ow choose a smooth curve c : R -&#x3E; X with c’(0) = n (x). Then
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where is the canonical flip map. So we may continue

where is the vertical lift and

Forget the base point Ad (Exp (tZ))n and the formula follows, qed

P ROO F . Let t = 0 in the formula of Lemma 4. qed

6. L EMMA. ,

P ROO F. We get
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by the line ( * ) in the proof of Lemma 4

Now combine with Lemma 4 and get the result. qed

7. The result of Lemma 4 can be interpreted as a differential equation
for i

The solution of this differential equation ought to be the series

which is the infinite Taylor expansion of Ad(Exp(tZ)) too; this follows

from repeated application of Lemma 4. But the series S ( t , ç) does not

converge in any sense, for the n th term tn ad (Z)n n(x) contains an n th
n!

derivative of q at x and 77 can be chosen to have a (local) Taylor expan-
sion at x whose coefficients go to infinity arbitrarily fast. Check this

for X = RI .
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