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CAHIERS DE TOPOLOGIE Vol. XXII1-4 (1982)
ET GEOMETRIE DIFFERENTIELLE

SPECTRA OF DIFFERENTIAL RINGS
by William F. KEIGHER

1. INTRODUCTION,

In this paper we propose to compare the various local spectra of
differential rings which have been defined recently in the general setting
of a topos in the sense of [4]. In particular, there have been two different
notions of the local spectrum of a differential ring A in topos & which
have been considered, one by the author in [9] (which we shall referto as
the full spectrum) and the other by M. Bunge in [ 2] (called the differential
spectrum). In this paper we propose a third spectrum which in a certain
sense is intermediate to the other two and has certain advantages which
the other two lack.

We recall that the (local) spectrum of a commutative ring 4 in the
classical sense (i.e., the topos & is the category S of sets) is the pair
( Spec A4, ;1) where Spec A is the set of prime ideals of 4 with the Zariski
topology and A is the usual structural sheaf on Spec A, so that A is a
local ring in the topos Shv(SpecA ). The importance of the spectrum is
that it serves as a model for the geometric objects one considers in al-
gebraic geometry, since any scheme in the sense of Grothendieck is local-
ly isomorphic to the spectrum of some commutative ring A . In this way
global properties of schemes are related to local properties of the spectra,
and it is this global-to-local relationship which has yielded many fruitful
results in the last twenty years.

Ideally, the spectrum of a differential ring should play the same
role in the generalized sense of considering differential equations as does
the usual spectrum of a commutative ring when one considers algebraic
equations in the same generalized setting.

In this vein, differential algebra may be considered either as com-
mutative algebra together with the added «differential» structure of deriva-
tions, or as an extension of commutative algebra by viewing commutative
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W.F. KEIGHER 2

algebra as a special case of differential algebra, in which the derivations
are trivial. It seems reasonable, therefore, that the spectrum of a differen-
tial ring should both reflect the differential structure present and reduce
to the usual spectrum of a commutative ring in the case of trivial deriva-
tions. To a certain extent, both the full spectrum and the differential spec-
trum satisfy these criteria.

When one considers differential algebra as commutative algebra
with addition differential structure, it is apparent that the differential ver-
sions of many of the standard results in commutative algebrano longer are
valid. For example, the radical of a differential ideal is not necessarily
a differential ideal [6, Example page 12], and more importantly for our
purposes, a maximal differential ideal is not necessarily a prime differential
ideal [1, page 310]. More generally, one observes that certain results in
differential algebra are valid only in characteristic zero and fail in positive
characteristic (e. g., the counterexamples cited above exist in positive
characteristic). However, if one assumes in addition that the differential
ring is an algebra over the field Q of rational numbers or more generally
is special in the sense of [8], then the differential versions of these and
many other results from commutative algebra are valid.

Therefore, it is apparent that, unless one restricts attention to dif-
ferential rings over Q, the notion of prime differential ideal is unneces-
sarily restrictive (excluding as it does maximal differential ideals). On
the other hand, the notion of prime ideal is too general in the sense that it
does not reflect the differential structure at hand. For example, the quotient
of a differential ting by a prime ideal which is not differential is not a dif-
ferential ring. With these shortcomings in mind, it is clear that the general-
ization to differential algebra of the basic ingredient of the spectrum, i.e.,
the prime ideal, should include the maximal differential ideals, should re-
flect the differential structure and should reduce to the usual prime ideal
in the case of a trivial derivation. These considerations lead to the notion
of a quasi-prime ideal as defined in [8], i.e., an ideal is quasi-prime if it

is maximal among differential ideals which are disjoint from a multiplica-
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tive subset of the differential ring. Since the full spectrum is defined by
taking all prime ideals, and the differential spectrum is defined by taking
only prime differential ideals (which are quasi-prime), the quasi-spectrum
(to be defined by taking quasi-prime ideals) will be intermediate to the
other two spectra. In particular the differential spectrum of a non-trivial
differential ring may be vacuous (consider, for example, the quotient of a
differential ring by a maximal (but not prime) differential ideal); the quasi-
spectrum is free from this sort of pathology. On the other hand, the full
spectrum may contain non-differential ideals, while the quasi-spectrum is
more closely related to the differential ideal structure of the differential

ring,

2. PRELIMINARIE S.
Throughout we assume that & is a topos with a natural numbers
object N. We recall from [9] that a differential ring A in & consists of

an object 4 in & and morphisms
+: AXA->A, X: AXA-5A, 0:1- A4, e:1+A and d: 4> A

such that (4, +,X,0,e) is a commutative ring in & and d is a deriva-

tionon A4, i.e.,
d(a+b)=da+db and d(ab) =dab + adb

for any a, be A. If A and B are differential rings in & then a morphism
of differential rings f: A > B is a ring morphism which commutes with the
derivations. The category of differential rings in & will be denoted by
Diff(&) .

In [9] it was shown that the forgetful functor Diff (&) » Ann(&)
is comonadic, where Ann (&) denotes the category of commutative rings
in &. As a consequence, there is a bijection between the set of derivations
on A and the set of ring morphisms 4 - AN which are costructure morph-
isms. Specifically, any derivation d: A » A determines the costructure
morphism a: 4 » AN where foranyaed andne N, a(a)(n) = d™)a is

the n-th derivative of a, i. €.,

d(®a =g and d™*1)a =d(d™a) for n>o.
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Conversely, any costructure morphism g: 4 » AN determines the derivation

d: A~ A given as the composite

A a AN AS AN AO AI = A

where 0: 1 >N and s: N> N are the given morphisms of N.

We also note that the ring AN s very closely related to the ring
of formal power series in one variable over 4, and the costructure morph-
isma: A-> AN corresponding to the derivation d: A » A is likewise relat-

ed to a «Taylor series expansion»; for details in the case & =39, cf. [7].

Now suppose that A is a differential ring in &. Since (-) N has a

right adjoint, it induces a morphism Q4 Q.AN , namely
(X>4) b XN >s 4N,

We define the differential of any subobject X >~ A to be the pullback

XA xN
A a AN
and we will say that a subobject X > A is differential if the diagram
X xN
A—a 4N

is a pullback. If X>» 4 and Y >— A are subobjects of 4, we write
X< Y to mean there is a (unique) monomorphism X Y in &/A. The ba-

sic properties of the differential are given in the following

PROPOSITION. Let A be a differential ringin &.

LIf X>—>A, then XA < X and (Xp\)p = XA

2. XA =X iff X>— A is differential.

3. If X>> A and Y > A are such that X< Y, then XA <Y ).

4. If { X;>> A} is a family of subobjects of A such that N X;>— A
exists, then (nXi)A = ﬁ(Xi)A .

5.If f: A> B is amorphism of differential rings in & and the diagram
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[,

A——

is apullback, then the diagram

XA YA

T

A— B

is a pullback.

P ROOF. The proof is elementary and follows immediately from the defini-

tions.

We recall from [8] that in the case & = S, the differential of a
subset of a differential ring has many of the same properties as the subset.
In particular, the differential /o of an ideal [ is a differential ideal, name-
ly the largest differential ideal contained in /. However, the differential
PAof a prime ideal P is not, in general, a prime differential ideal, but in-
stead a quasi-prime ideal. In particular, we recall the following, in which

r(l) denotes the radical of |,

P ROPOSITION. Let A be a differential ring in 8. The following are equi-
valent:

(1) Q is a quasi-prime ideal in A.

(2) Q is aprimary idealin 4 and Q =r(Q)\-

(3) r(Q) is aprime ideal in A and Q =r(Q)p-

(4) There is a prime ideal P in A such that Q = P .

Hence we will say that an ideal | in a differential ring 4 in & is a
quasi-prime idedl if r(1) is a prime idealin A and [ = r(I) p , where r(1)
denotes the radical of /| as in [11]. We note that if & is a topos satis-
fying De Motgan's law as in [5] and if Zorn's Lemma holds in & (for ex-
ample if & is generated by subobjects of ] and defined over a topos of
sets in which the Axiom of Choice holds), then the proof of the equivalence

of (1)-(4) in the above proposition can be carried over in &. However, we
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do not need these extra hypotheses on &, as it is only the properties that

r(1) be prime and [ =r(I)p which we need to obtain the quasi-spectrum.

3. THE QUASI-SPECTRUM.

Following the notation of [ 2], we let DR denote the theory of dif-
ferential rings. As in [2], if DLR denotes the quotient theory of differen-
tial local rings (i. e., differential rings which have a unique maximal ideal
which is differential), then the differential local spectrum is obtained from
Theorem 6.58 of [4, page 206] by taking the class of admissible morphisms
to be that of all differential local morphisms of differential local rings. In
particular, for a differential ring A, DSpecA consists of the set of all
differential prime ideals in A with the Zariski topology, and the structural
sheaf is the usual structural sheaf 4 restricted to D Spec A (which is a
differential local ring, since its stalk at any P e DSecAd is Ap,adif-
ferential local ring).

If we let L+DR denote the quotient theory of DR obtained by add-

ing the sequent
(Local) ((a+b)elU) => ((aelU)v(bel)),

so that a local+ differential ring is a differential ring having a unique max-
imal ideal (which is not necessarily differential), then the full local spec-
trum is obtained as above by taking the same class of admissible morph-
isms. In particular, for a differential ring 4, Spec A consists of the set
of all prime ideals of A with the Zariski topology, with the usual structur-
al sheaf 4 (which is a local+ differential ring). The full spectrum may

also be obtained as a right adjoint to the forgetful functor
DLR-top — DR-top
as in [9]. One advantage the full spectrum enjoys over the differential

spectrum is that the canonical map 4 » l"(;I) is an isomorphism for any

differential ring 4.

Now let QLDR be the quotient theory of DR obtained by adding

the sequents
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(Local) ((a+belU)=>((aclU)v(bel))
and (DSUn) ((A3meN)(D™(a")eU)) => (ae U)

for each n>o0 . Hence a g-locd differential ring is a differential ring hav-
ing a unique maximal ideal which is the radical of a quasi-prime ideal. The
class of admissible morphisms is again that of all local differential mor-
phisms of g-local differential rings. Observe, however, that QLDR, while
being a geometric theory, is not finitely presented, and hence Theorem 6.58
of [ 4, page 206] does not apply. In fact, it is an open question whether
the quasi-spectrum exists in an arbitrary topos &. However, in the case
& =39, the quasi-spectrum does exist, as we shall see presently. We first
make several observations.

By a differentid g-prime filter S of a differential ring 4 we shall
mean that S is the complement of the radical of a quasi-prime ideal in 4.,

Equivalently, S is a prime filter which satisfies the condition
((AmeN)(D™(d")eS)) = (aeS)
for everyn>o.

PROPOSITION. If S is a saturated multiplicative subobject of A, then S
is a differentid g-prime filter of A iff Al S is a glocal differential
ring.

P ROOF. It was shown in [ 11] that A[ S71] is a local ring iff S is a prime

filter of A . Hence it remains to show that in A[ S"!] the condition
(1) ((dmeN) (D™((a/s)")elU)) => (a/seU)
for every n >0 is equivalent to the condition on S
(2) ((AmeN) (D™(a") e S) )= (ac$).

If we assume (1), then U is a differential q-prime filter on A[SI]. But

since § is saturated, the diagram

S — U

[

A — A5
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is a pullback, where 4> A[ S™1] is the canonical differential ring mor-
phism. It follows easily that S is a differential q-prime filter on 4. Con-
versely, assuming that S satisfies (2), let a/se A[ "] and let m> o
be minimal such that D™((a/s)") ¢ U. Since a/l=(a/s).(s/1) in
Al S 11, it follows from the Axiom (Diff2) of [ 2, page 89] that

D™((a/s)") = D™(d"/s") =
m m
= (/P )LD (@)1= TS () DFcar /s ) omRsm) /10,
Now since U is saturated, we see that
D™(a") /1- 'EI (:)Dk(a"/s")aDm'k(s")/l e U

and since me¢ N was taken minimal so that D™(a"/s" ) ¢ U, it follows
that D™(a")/1¢ U, and hence D™(a" )¢ S. By (2), it follows that

a ¢S, and hence a/s e U as desired.

P ROPOSITION (Factorization Lemma). Let f: A> L be a differential ring

morphism with L g-local. Then there exists a factorization

-

APAffL

of [ where Af is g-local and ]7 is local which is « best possible» in the

sense that for any other factorization

A—9 ,p__ 8 ||

of f with B g-local and g local, there is a unique (necessarily local)
s: Af—»B such that sp = q and gs = ?

PROOF. The proof is similar to the proof of the factorization Lemma in the
commutative case, i.e., Lemma 4.1 of [ 3, page 249], and depends primarily

upon the observation that if the diagram

(]

A—1 L
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SPECTRA OF DIFF ERENTIAL RINGS 9

is a pullback, then S is a differential q-prime filter of 4 and hence by the

preceding proposition, A= 4 [S711 is g-local.

COROLLARY. 4 momhism f: A~ L of differential rings, where L is g-
local, is extremal iff L= A[ S™11 for some differentia g-prime filter of A.

PROOF. This is immediate from the factorization Lemma.

Let A be a differential ring in &. Then the quasi-spectrum of A
exists and consists of the set Spec 4 of q-prime ideals in A (i.e., those
prime ideals P in A which satisfy P =r(Pp ), or equivalent the image
of the mapping r: Quas A > Spec A where Quas A denotes the set of quasi-
prime ideals of 4 ) with the Zariski topology, and the structural sheaf A is
the restriction of 4 to Q Spec A . 1f the characteristic of A is positive then
it follows from [10] that r: Quas A > SpecA is a bijection, and hence
A>TA4 isan isomorphism. On the other hand, if 4 is an algebra over the
rational numbers Q, then A is special in the sense of [ 8]and hence every
quasi-prime ideal is a prime differential ideal, so that the quasi-spectrum

of A coincides with the differential spectrum of 4.

In both [2] and [3], spectra other than local spectra are considered.
In particular, integral spectra and field spectra are defined in the commuta-
tive case in [ 3] and in the differential case in [ 2]. In the case of quasi-
prime ideals, the corresponding types of differential rings are called quasi-
domains and quasi-fields and are considered in some detail in [ 10). How-
ever, we will not consider the «quasi-versions» of these spectra at this

time, as there seems to be little to be gained in doing so at present.
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