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CAHIERS DE TOPOLOGIE Vol. XXIII-3 (1982)
ET GEOMETRIE DIFFERENTIELLE

NORMAL FORMS OF MATRICES IN TOPOI !
by Javad TAVAKOLI

0. INTRODUCTION.

In ordinary linear algebra every m Xn matrix over a field is equi-
valent to one in normal (diagonal) form. The purpose of this paper is to
examine this in an elementary topos with natural number object. We will
give a positive answer to this problem if we are dealing with a geometric
field (a commutative ring K in a topos E, satisfying the axiom of non-

triviality (0 # 1), is said to be a geometric field if
El(a=0)v(ac'T"),

where T is the object of units of K [JN2])2 Our main theorem appears
in Section 1, where we prove every linear transformation between finite
dimensional vector spaces can be normalized. Also we show that if K[ Pl .
K[ q] , then p = ¢. In Section 2 we define rank for a linear transformation
and introduce dimension for /-families of locally finite dimensional vector

spaces. Finally it is shown that if
04, >4, 54,0
is an exact sequence of vector spaces, then if 4; and 4, are finite dim-

ensional then A3 is. If A2 and A3 are finite dimensional then AI is.

If any two are locally finite dimensional then the other is and
dim(Az) = dim(Al ) + dim(A3).

Also we give an example to show that if 4; and 4, are finite dimensional

A

o isnot necessarily.

1 This research is part of the author's Ph. D. dissertation at Dalhousie University.
The author wishes to express his deep gratitude to his research supervisor, Prof
essor Robert P ARE.

2 The main definitions of fields are given in [ JN1] and [ JN 2].
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J. TAVAKOLI 2

It is natural to ask whether the results obtained in this paper hold
for the other types of fields. It is tempting to suggest that some variation
of the results are also true for residue fields (for definition see [ JN 2]).

All the concepts of this paper are considered in an elementary topos
E with natural number object N and with geometric field K. The other

notations can be found in [ JN1}, [P&S] or [TV 1].

1. NORMAL FORM OF A LINEAR TRANSFORMATION.

(1.1) CEFINITION. Let ¢ : K[ p] - K[ q] be a linear transformation bet-
ween two finite dimensional vector spaces in E. We say ¢ is in nomal
form if there exist natural numbers r, p’ and ¢' such that

r+p'=p, rtq' =gq (i.e. [rl0[p'] =[p] and [r]1I[¢'] = [q])

and

klrl ¢ kladl

i, i i
(KI’K2)1 - - (KZ,K2)
17 0
K[r]@K[p'] /0 0) K[']FBK[(]']
commutes, where
il i2 ’ jI j2 ’
[rl—[pl-—=1[p"1l, [r] =—[ql—*=[q']
are the coproduct injections.
(1.2) REMARK. For any natural numbers p and ¢ we have a family of nor-
mal forms. Consider the following pullback diagram

(amyg,am 3)

NXNXN NXN
(rsp'sq') I P.B. (psq)
A

where @ is the addition operation on N . (Interpretation:
A = {(r,p', q') | r+p'=p and r+q' = g} )
Then in /A4, r+p'=A*p and r+ ¢’ = 4 *q. Now consider
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NORMAL FORMS OF MATRICESIN TOPOI 3

10
(a*k )@ caxk )lp] _(Q__i.(A*K)[’]e(A*K)[q']

F [

axklrl) ¢ Axklal)

in VectK(E)A . ¢ is the required family of normal forms.

(1.3) LEMMA. Let p be a natural number in E. Then there is a morphism
A:T1+pl*[1+p]l » [ 1+pl*[ 1+p]l in E/[1+pl,

indexed by [ 1+ pl such that

[ 1+pl*[1+p] A [ 1+pl1*[1+p]
[
[I+pl*1+[1+p]*p] S
‘%
[1+p]l*1

2 _
commutes and A“ = 1[1 +pl*[1+p]
(Interpretation: A is a [1+p]-family of morphisms A;:[I+pl->[I1+p]
such that for each i ¢ [ 1 +p],
A (0)=i, A(i)=0 and A;(j)=] for j#0,i)
P ROOF. First we define an isomorphism
1+[pl+[pl+0pl+lc] == [1+plX[1+p]

([pIx[pl=[pl+lc]l) by:
1 (i) | [I+plx[1+pl,

first [ pl] —Qg—li)—— [1+plx[I+p],

second [p] -—Qﬂ—)—* [1+plx[1+p]>

iy X iy

thid [p] —2— [ p]x[p] [1+pIx[1+p],
and [c]——c—>[p]><[p]——i-zxi——>[1+p]><[l+p].
Now we define

A': 1+ [pl +[pl+[pl+1lcl » I+[pl+[pl+(pl+lec]
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J. TAVAKOLI 4

by interchanging the first [ p] with the third [ p]. It is obvious that A’ is

a morphism over [ 1+p], i.e.,

1+lp1+10p] +Ipl+[c] AL 1+lp1+0p] +[p] +lc]

a lzz Jzza

[I+pIx[1+p] [1+plx[1+p]

7T] 771

[ 1+p]
commutes. Therefore A’ induces a morphism
A:T1+pl* 1+p] » [ 1+p]1*[1+p].

Since A’2 =] then A2=1. Also 1, the second [p], and [¢] are cons-

tant under A’ so the required diagram commutes. 0O

(1.4) DEFINITION. A linear transformation ¢: K[p] > K[q] is said to be
non-zero if the pullback of % along T >» K has global support, where ;5

is given by
ktrl_¢ kUl in vecy (E)
[pl> klel  in E
(pIx[ gl BoK in E .

(1.5) LEMMA. Let H :Hom(KU +p],K[1 * q]) be the object of homo-
morphisms from K[I +pl to K[I +q], see [P &S], and

¢.H*(K[1 +p]) N H*(K[I +q])

be the generic one. Then there exists Uy +U, =H such that i} is non-

zero and i5¢ is zero, where

il i2
U, H v,

are the injections.

P ROOF. Consider the following pullback diagram

H*([1+p]><[1+q])___?’__.11*1<
(*) l P.B. I
l H*T
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NORMAL FORMS OF MATRICES IN TOPOI 5

where ¢ is given by the following bijections
gk rpy b gkl raly in yeer (E)H
H*¥(1+p] » H*Kl1+4)y in E/H
H¥([1+plx[1+¢)) 2~ H*K in E/H
In this diagram H*T is a complemented subobject of H*K so [ is a com-

plemented subobject of H*([1+p]lx[1+4q]), which is therefore a finite
cardinal in E/H [JN1]. Hence there exist

il i?
UI H 02 such that U +U

'*l non-zero in E/U and L*l is zero in E/U2 ([JN1] Chapter 6), i.e.,
ifl has global support. Since 11*¢> = 1196 sc by applying i} to (*) we get
1*¢ non-zero (by Definition (1.4) ). O

(1.6) LEMMA. Let qS:K[I tp) L kU1+4) pe 4 nonezem linear transfor-

mation. Then there exist invertible homomorphisms

p.kU+pl, goklrl ana @:kli+dl . gekldl

and a homomorphism f: klel, glal such that

kl1+p] ¢ gl1+4l
PJz (1 0) :’Q
Keklrl 0 f’ kekldl

commutes.

PROOF. ¢ being non-zero means that the object [ in the following diagram

[1+pIx[1+4] K
|
l T

has global support. Since ! is a finite cardinal then it has a global ele-
ment, i.e. we have (i,j) :1-[1+p]lX[I1+q] such that ¢(i,j) isa
unit. Apply i * and j* to the morphisms

Ap:[1+p]*[1+p] > [ 1+pl*[1+p]
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J. TAVAKOLI 6

and
Aq:[1+q]*[1+q]+[1+q]*[1+q]
(defined in Lemma (1.3)) to get
*/\p:[1+p]»[]+p] and j*Aq:[]+q]—+[1+q],

respectively. Now consider the following diagram
%

2 A
gl1+p] Ay pl14p) g kl1+4] K 9 kl1+4]

?’Can. / liCan.
KeK[P] — kokldl
AL

K K
o

1/,",/[1“)1

In this diagram 2(_) is the functor defined in [TV 2] and j;, i, are the

injections. But

S, = (K2 I _keklel Can glI+pl)
and the diagrams
i *A P *A
[1+p] — P - [1+p] [I1+q) — L 0. [1+q)
1 1
are commutative (Lemma (1.3) ). Therefore
by =3 3 =3 and KiIKj*Aq—KiI j*A‘I:Kf
i*A i1_ i*A, i B '

Also, by definition of X, we have pi=2;"]". Hence the transpose of

;i prepln kli+el_¢ _gli+q) K/ g

)

which is

LX[]+q]

I {144 [1+qIx[1+p]l 2= K,

factors through T >» K, since ¢ is non-zero; i.e. a is a unit. Hence we
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NORMAL FORMS OF MATRICES IN TOPOI 7

have the following diagram

a b)
koklrl d kokldl
-1
(ao ])’ 1 b
Kokl (a1 d) (.1,,10 7)

(6 7

(1 0 )
K(BK[P] 0 -balc+d K@K[q]

By letting
.1 .

-1 _ (24 0 I “b _ ] 0\ j A

P —Ei*Apcan-(O ]) (0 1 ), Q—(-a-lc IICan.K q

and f =-ba"lc+d we get the required result. O

(1.7) LEMMA. Let p, q: 1> N be such that there exist UIHU2 =] such
that Ujp =0 and USq =0 (i.e. |=p=0vq=0). Then

Hom (KLP1, klal) = 1,

i. e. the only morphism kUPl, klad s the zem mormhi sm.

P ROOF.
U*Hom(K[p] kL) < Hom(UpK Ul pl U?Kuf[q]) 3
Hom (0, UK vtal,
U;‘Hom(K[P] klaly < Hom (UFK uslp] Uz*KUB[q]) _
Hom (UK uxlrl 0) =
Since E/U;XE/U,~ E, then Hom(k'Pl klal =7, g

(1.8) THEOREM. Let p, ¢ be any two natural numbers in E. Then every
linear transformation U: K[F’] > K[‘ﬂ is equivalent to one in normal form.
PROOF. We will prove this by induction. Let p and ¢ be natural numbers
in E satisfying the condition of Lemma (1.7). In what follows the cons-
tant natural numbers /*p and [*¢ are also denoted by p and ¢, respecti-
vely. E. g. in the definition of i below, B*K[ b+pl means B*K[ b +B*p].

Consider
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J. TAVAKOLI 8

N*NXN*N = N*(NxN) —DN*a N*N
PB n
b 1

in E/N. Then b: 3y b =B > N is the object consisting of all (r, 1) such
that r+l =n, i.e.if m:1> N then
(m)— (b)
ILU) NXN, ril=m

Let 7, and [, be the generic natural numbers such that r,+1, = b. Let

i =IsoB(B*K[b+P]’ B*K[r”](DB*K[lo+P])
and
i2: IsoB(B*K[b+q], B*K[rO]QB*K[lo+q]) .
Consider d = %, i §i2 in E/N which has the following universal proper-
ty.If m:1-> N then
(m)— (d)

(m)—2— (b) and (q) — ilgiz

[Lral) , NXN, r+l=mand 6, 1*KIm*tpl =, jxg Il gpxg [14p]
and 9, [*KLmral =, gl geglival
There is a morphism 7#:(d)> (h) given by the following natural trans-

formations. If m:[-> N :

(m)— (d)

01 (] 0) -1
l*K["‘+P]—-:"—-’I*K[r]®I*K[l+p] 0 0 I*K[T]QI*K[HQ]&_[*K["“W]

-1(1 0) 0
m*(N*K["er]) 0 _0 m*(N*K["+q]) _
(m)— (k) .
It suffices to show that 7 is a split epimorphism. Consider
t = split" () (d)™
h
| bp ™
1 (b))
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NCRMAL FORMSOF MATRICESIN TOPOI 9

in E/N . We want to show ¢ = splitN(n) has a global element.
0%k = 0*Hom(N*KLntpl Nxglntaly o gomegxlpl glaly -

(Lemma (1.7) ). Also we get a global element for 0*d by the following

100:0), yx, 01=1,[p]: klpl = glpl, 6, = ]K[q]‘.K[q]: klql

(0)— (d)
1—— 0%d)

But since

0% split" () = split(0*r) ——=0%(d) = 0%(d)*(H)

0*0 (k)

1 I~ 0%h)0" ")
is a pullback then we have a global element ] - 0*splitN(n) . We need

only to show that there is a morphism
t = splitN(n) > s*t=s *splitN( 7).

To do this it is enough to show there exists a morphism y: tX s*h > s*d

such that (s*7)y is the projection, because if we have such a map then
(1Yo s¥qs™h s*ah s*hh) = (pa 1 s* SRy
i.e. we get t > s*t. For simplicity of notation we denote the functor
(¢)X():E/N > E/N
by (7). Let ® be the generic homomorphism for
s*h = Hom(N*K[1+n+p], N*K[I+"+q]) .

Let 2y s*h =4, then by Lemma (1.5) there exists p, +p, = s*h such

that ® is non-zero on I and it is zero on to - If

U1>—\—\'—>/hA

is the injection then, by Lemma (1.6), there exist homomorphisms P, (,

and f such that P and Q are invertible and
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J. TAVAKOLI 10

(U*K)[I+#1+p] a}‘(b U}kK[l+/11+q]
1
(*) P= = O

0
[uﬁp]_(o f) Apy+ql

Us K@ UK Us Ko Uy

commutes. The homomorphism f gives us a morphism p : (#]) - (k) such

that p*$ = f, where ¢ is the generic homomorphism for k. On the other

hand by definition of t we have
(k) ~=(d)
H—L[LNX’V, r+1 :}7, 01 H*I\[E‘FP]_:.__) f7*K[r]@[7*/{[l+P] ~
and 6,: ﬁ*[\'[ﬁw] =, ]7*1\-[r]@[7*]&,[1, )

such that

I 0 — 7 _ ;
657 {0 0)0],/1*[\[“[7] L geplh+dl

is 75¢ where ol (/T) > (h) is the projection (because bv definition of

m:(d)~(h) and the fact that (h)»(d)Zw(h) is the projection 7o )
- -] I 0,y 8
Now apply p* to 05 (0 001 =754 to get

—pt p= 111 - %
p*(ﬁgl(o g) 0;) = p*nke.

Also by pulling back the diagram (*) along the projection 7/ : (-,1_]) - (;L]),

weget
- lI1+g,4+p tRogh P _ Lrvg,+
(K gtel o1 %K fi;tal
Pr=7%p |~ =0 = o1
©y | (] 0) o =0Q
- - .+ 0 gmr* _ — 0o+
U}*l\@(/;ﬁk[m b "2 U}‘K@U}‘K[’” d
But
7)
() ——————(h)
3 "72
A\
(u_,)—-—_.p (h)
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NORMAL FORMS OF MATRICESIN TOPOI 11

commutes, so
PkL ek K =% % —% 'l(] 0)
my*f =mi*p*p = prryd = p¥( 62 (o o) 01 -
On the other hand
(r+1)7 =5 +15 = (K)F =, -
Therefore 1+rp+lp = 1+j; and so we have the following natural iso-

morphism

U, L1310:00) , NXN such that 1+r5+15 = 1+F,»

~ ~ l1+g,+p] . - _ - _
6, = (1050, )P 5K 1 p];U;“K@UM['PJeU*;K“Wl ~
ZIYI*K[1+rp-]@l77K[lﬁ+p]
and [ _ ]
5 _ 1 + _ - - -
b,=(105%0,) Q*: Upk - M1 =, Grreirklrplogrklie tal
-Gk 4ol gakltptal
(1+5,) — (d)
5. G) —— (d)
(p._l)—v—]——-» s*(d)
such that

— v
() — L~ s%(d)
nél . ls*n
%
(pp) >——=s*(h)
commutes, because @ is the generic homomorphism and
.o f1 0y, o
my*at® = (5)71 (5 ) (57
Also we have a morphism (IE) > s*(d) defined as follows:

(0,]-{-’—12): [72 >NXN and
= [1+py+p] O _ [1+p,+p]
& : UFK tants— Ukl Mok 2
—K[1+ﬁ2+‘11 ] =

- - I1+p,+
&y O 1= U*K[O]@U;‘K[ thigtgl

Can iso 2 =
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J. TAVAKOLI 12

(14§,)— (d)
5,05 — (d) .

(i) ——2 s*(d)

1 0 _ _
Since the 1 in (p o) is the identity on T*KL0), k(0] which is
equal to zero, and @ is zero on p, wehave

10
&1(p o)§1=é§1(3 3)51=”é'*“’2“1’=0

where 74': (#—2) > (py) is the projection. Hence by definition of 7

(i) s*(d)
772"J Js *n
%2
(py) ——2—— s*(h)
commutes. So we have a morphism
vy
y= (Vz)

s¥(h) =(pp) + (py) ———=— s*(d)

such that (s*7)y: s*¥(h) > s*(h) is the projection.
Now let p, g be any two natural numbers in E. There exists
T1+ T2 =] such that p< g on TI and p>q on T,, i.e. there are nat-

ural numbers r and Ty such that

T1*§= rt Tfp and T2*ﬁ =ryt T}‘t}_

Consider two natural numbers

T, +T "2 lo) N
1=T,+T,"
=0

and a natural number
- (742)
l:1=T,+T, 229° _N .

Then Z-+;1 = t; and Z+r-2 =p (we can interpret [ as the minimum value
of p and ¢). Butry, 7, satisfy the condition of Lemma (1.7) because
T*ry =0 and T37; =0, so if we apply [* to the above argument we get
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NORMAL FORMS OF MATRICES IN TOPOI 13

the result, i.e. every linear transformation U: klpl, klal s equivalent

to one in normal form. This completes the proof. 0O

(1.9) COROLLARY. Any monomorphism ¢ : K[p]>-—» K[p] is an isomor-
phism.

P ROOF. By Theorem (1.8) there are natural numbers r, P;s Py such that

¢

klel s 2 | klpl

61”z oo U2
K[’]®K[p1] ‘//=(0 0) K[,]@K[pgl

commutes and r+p;, =p =r+p,. Since ¢ is mono, then ¢y is. Hence the
. p . .

kemel of ¢, i.e. K[ 1], is the 0 vector space, i.e. p; =0; but p; =p,,

se p, = 0. This means ¢y is an identity on K[r] which implies that ¢ is

an isomorphism. 0O

(1.10) COROLLARY.If W is any vector space which sutisfies
Iso(0,W) =0, then Mon(K'Plow, klr]) <o
for any natural number p .
P ROOF. [t is obvious that we have the following pullback diagram
0 >——-—7—-7V
PB T
kel i klplgyp.
Given any I-element of Mon(KLP1@W, KLP1) we have
[—— Mon(KPlow, klPly in E

1k horw—e¢ . 1+klP) in vecr, (E)!
Then we have the monomorphism
rklely s ¥ peeglely@pep b xklply

in VectK(E)l which is an isomorphism, by Corollary (1.9). Therefore ¢
is an isomorphism, i.e. [ *{ is an isomorphism. Now apply /* to the above
diagram to get 0 =~ [*W in Vecty (E)[, which is equivalent to
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J. TAVAKOLI 14

[ > 1so(0, W) =0; ie [=0.
Therefore Mon(K[P](BW,K[p]) = 0 (let 1:M0n(K[p]®W,K[”]) and

¢ to be a generic monomorphism). O

(1.11) PROPOSITION. If ¢: kUl s gla) 54 monomorphism then p <gq.

PROOF. Let U; +U, =1 in £ suchthat p<g on U, and p>gq on U, .
Then in E/U, there exists a natural number r such that UJp = r= Uffq,
and so

U U% v¥ U*
Von (UFR' -”p],U._,*K[ Bl Mon((U;K)[ 5"’])@(0;1\)[’],/1 j;/\)[ 241,

has a global element U & , which is impossible bv Corollary (1.10). unless

1 =0.Hence U, =0, i.e. pigqg. O

(1.12) PROPOSITION. /f rbed gl ppen pTq.

PROOF. Let ¢ [\’[P] > I\[ q] be the isomorphism, then by Theorem (1.8)
there are natural numbers r, p’, ¢’ such that p = r-p', ¢ = rt g’ and

ol

rlpl rlal
2

|

{

| 0\ / I
Kerled Lo 0)=" \1i1gaTen

0,

i

commutes. ¢ is an isomorphism implies ¢ is, so the kernel of (4 is the
zero vector space, i.e€. K[p'] =0, so p'=0. On the other hand since the
image of ¢ is K[ r] , then K[ ] K [ r]@[{[ gl and, by Corollary (1.10)
g'=0 sor=p =gq. O

(1.13) COROLLARY. Every epimorphism ¢ : klpls kUP) s an isomor
phism.

P ROOF. It is easy to see that finite cardinals are intemally projective,
see [ JN1], and therefore locally projective. Thus ¢ splits locally, i.e.
there exists [—- 1 such that /[*¢ splits. This means there is a mono m

in Vect K(E)I such that [*¢.m =1 ; by Corollary (1.9), m

]*

is an isomorphism. Therefore /*¢5 is an iso. Since [* reflects isomorph-
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NORMAL FORMS OF MATRICES IN TOPOI 15

isms, then ¢ is an isomorphism. O

(1.14) COROLLARY./f Iso(0,W)=0 for W a vector spacein E, then
epi(K[p], veklrly~o for any finite cardinal [p] in E.

PROOF. The proof is similar to Corollary (1.10). O

NOTE. Corollary (1.14) shows that if klel, klal s an epimorphism,
then ¢< p. 0

(1.15) COROLLARY. Let V be a locally finite dimensional (l.f.d.) vector
space and ¢ : V >V bea linear transfomation.

(i) lf ¢ is mono, then itis an isomorphism.

(ii) 1 & is epi, then itis an isomorphism.
P ROOF. By definition of 1.f.d. there exists

[—— 1 such that ]*V=(I*K)[p] in VectI*K(_E)I.

{1) If ¢ 1is mono then ]*g’):([*[\')[p] > (]*K)[PJ is also mono:
then by Corollary (1.9) [*qS is an isomorphism. Hence ¢ is an isomor-
phism.

(ii) If ¢ is epi, then [*&: (1*K) [r], (I*K)[p] is epi. By Corollary

(1.13), /*¢ is an isomorphism. Therefore ¢ is an isomorphism. 0O

2. RANK OF A LINEAR TRANSFORMATION.
Let ¢: l\'[ rl, K[ gl be a linear transformation. Then there exist

natural numbers r, p’ and ¢’ such that p =r+p’, ¢ =r+¢q’ and
kxlpl ¢ . kxlal

”2 (1 0) l"

k[Aerlelio 0/ glrlggle’]

(Theorem (1.8) ). This shows that the image of ¢ is K['] . If the image

of ¢ is also K[ "] for some natural number r’, then K[’] = K["] and so

r=r' (by Proposition (1.12) ), i.e. r is the unique natural number with

the above property.
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J. TAVAKOLI 16

(2.1) DEFINITION. Let ¢ : K[p] > K [q] be a linear transformation from
K[p] to K[q] in E. Then the natural number r: I > N, which is given
above, is called the mnk of ¢ and is denoted by r(¢).

(2.2) THEOREM. Let K[ P]__(fl—ié_:[([q] be two linear transformations in
E. Then r(¢ ;) =r(¢,) iff there exist two invertible linear tran sformations
:K[p] [lp] ana’Q:K[q]»K[q] such that Q¢ =¢,P.

P ROOF. Suppose r(¢ ;) = r((f)?) = r. Then, by Definition (2.1 ) the follow-

ing is commutative

x[pl 1 xLql
olll lfeg
[p] (0 ) [; Lg']
K Tokle —2 Y Klek!?
oil t]o;
klrl 2 xldl

Now by taking P = 6} g .0; and Q = (99"1 .0, we are done. Conversely,
suppose there are invertible linear transformations P and (J such that
Q¢; =¢,P. Apply Definition (2.1) to ¢; and ¢, to get the follow-

ing diagram

K[TI @K[pl (0 ,[r]]@K[ql]
[r]
0,2 Tk ! /102
kxlpl c]SII' xlal
P ' ¢
klpl P2, glal
6; ' 045
it 1 0y Yy - .
0) :

K['2]@K[P2] ) k2 gl az]
v
\K[ r2]7/
where 7, =r(¢;) and ro=r(¢,). By the diagonal lemma there exists a
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[’2]

['1]_)[(

commute. Therefore g is an isomorphism and then r; =r,, by Proposi-

tion (1.12). m]

unique homomorphism a: K such that the resulting diagrams

(2.3) COROLLARY. Let ¢: klrl, klal 4na U ktals kldbe two tin-
ear transformations. Then r(yr.¢) <r(p) and r(y.¢) <r(¢).

P ROOF. Apply Definition (2.1) to ¢ and ¢ to get a commutative diagram

Kl()]

Kl s ko]
. ¢

()] CL]

By the Diagonal Lemma there exists a unique homomorphism

k()] glr(yg)]

such that the resulting diagrams commute, and is an epimorphism. So by
the Note after Corollary (1.14) r(y ) < r(g).

Now apply Definition (2.1) to ¢y and )¢ to get a commutative diagram

Lr(y)]
/Ifl “\
kxlpl ‘tﬁ klal LY kLl

\K[r(w’;n/

Then by the diagonal lemma there exists a unique homomorphism

kLr(ye)] | glr(y)]

such that the resulting diagrams commute, and is a monomorphism. So, by

Proposition (1.11), r(¢y ) < r(y). o

(2.4) THEOREM. Any finite dimensional subspace of a finite dimensional

vector space has a finite dimensional complement.

P ROOF. Let K[P] be a finite dimensional subspace of K[q] , l.e.there
is a monomorphism ¢ : klel > glal, Apply Theorem (1.8) to get
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K[P] o) K[‘I]
o, ]
[P]] (0 ())

klrle
where r = r(¢) . Since ¢ is monomorphism, then (é g) is monomorphism.

lpy]
so K 1 =0, i.e. p; = 0. Therefore

kllek Kl

[(]]]

klel - kU7l ang klrlek ~klal, ¢

(2.5) DEFINITION. Let [ be an object of £. A vector space V in
VeclK(E)I is said to be an /-family of locally finite dimensional vector

spaces if there exist a: /—» | and a natural number p: />N in E/J such

that a*V = (J*K)Ur) in Veer (E)7 .

(2.6) THEOREM. Let V be an I-family of locally finite dimensional vec-
tor spaces. Then there exists a unique momhism p':1 >N, such that

p'a = p, where a and p are given above.

PROOF. Let

I

7o

<

be the kernel pair of a. Then we have

rr}"a*V ~ ”I*((]*K)[p]): (f'*K) [P771]
I
ﬂ;a*V zﬂ;((]*[()[p]) ~ (]v*K)[Pﬂz]
Therefore (]'*K)[Pﬂ]] = (J'*K)[pﬂ‘?] in VectK(_E)j' and, by Prop-

osition (1.12), pm; =pmy. Since a is a coequalizer of (7; ,7,), hence

there exists a unique morphism p': [/ > N such that

]
A— .
]
p P
'
N

commutes, i.e. p'a =p. O
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(2.7) DEFINITION. The natural number p’: [ > N given in Theorem (2.6 )
is called the dimension of V and is denoted by dim(V ). In particular, if
[ =1, i.e. if V is locally finite dimensional, then V has a dimension,

namely p’: > N.

(2.8) THEOREM. Let V and V'be locally finite dimensional vector spaces

such that V is a subspace of V', i.e. there is a monomomphism ¢ : V>— V.
If dim(V) =dim(V'), then V=V".

PROOF. Let
1%V = 1%k )P) in Vecz,*K(E)I, where q: /=1,

]*V':(]*K)[q] in Veczj*K(E)], where B:J—- 1.

By definition of dimension we have

i a 1 J—B 1
!\N//P' and NN‘/II'

where p' = dim(V) and ¢'= dim (V') . Since ¢' =p', by assumption, then

we have

which implies pm; = qmy. Apply (IX])* to ¢ to get

(Ix])*y —LLXJ)* 15 g)*p
[ 4
nl*a*V (IX])*¢ U;B*V'
Ik y
ap*K )Ll - LDXT)T6 ey Lol
¢ q
T SR AL B S STLLc

But, by Corollary (1.9), (IXJ)*¢ is an isomorphism. Then ¢ is an iso-

morphism. O
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(2.9) COROLLARY. Let ¢:V > V' be a linear transformation with V and
V' locally finite dimensional vector spaces, then
(i) dim(V )< dim(V') if ¢ is mono,
(ii) dim(V)2dim(V') if ¢ is epi,
(iii) dim(V)=dim(V') if ¢ is iso.
PROOF. (i) Since V and V' are 1.f.d. then there are objects q: [—> 1,
B :J——1 such that

1%V = (1*k )LPl ana j*yr = yxk)lal

where p: /> N, q:J > N are natural numbers in E// and E/], respec-

tively. Suppose ¢ is a monomorphism, then

(IXJ)*V (IXI)*qS (Ixf)*V'

| I
(s )k P (006 gy ek )t

is a monomorphism, where 7;'s are the projections. Then, by Proposition

(1.11), pm; < qmy as natural numbers in E/IXJ. If W>-NXN repre-

sents «<» on N, then

IxJ (am;,Bmy) ]
J .- j(P',q’)
W > NxN

commutes, where dim(V ) =p', dim(V') = q' are given by

¢ ] J B 1
N A and N A
N N

respectively. Then (p’, q') factors through W>— NXN,i.e. p'< q'.

(ii) The proof is similar to (i).

(iii) With the same notation as in (i), if ¢ is an isomorphism then
(IX])*¢p is an isomorphism hence, Proposition (1.12), pm; = qm, i.e.
(pmys qmy) factors through the diagonal subobject of NXN. Then there

is a morphism ] » A which makes
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IX] (aﬂlyﬁﬂ'z) "1
- - (p', q')
A= —~ NXN

commute, i.e. p'=¢q'. O

(2.10) COROLLARY. Lvery locally finite dimensional subspace of a l.{.d.
vector space is locally complemented.
PROOF. Let S be a subspace of V. Since S and V are locally finite dim-
ensional, then there exist J—» I, [—»» 1, p:J/>N and q:1-> N such
that J *S = (J*K)[P] and [*V = (I*K)[q] . Hence
(IXI1)*S C (IXI)*V
Ik |

((]X[)*K)[PTTI] [‘Isz]

C ((JXI1)*K) ,

where 7, 's are the projections. Apply Theorem (2.4) to this subspace (i.e.

(IXI1)*S C (IXI)*V) to get
(rx1)*K) P g ) U < rap) TR

where t: /X[ > N is anatural number in E/Jx][. O

(2.11) THEOREM. Any complemented subspace of a locally finite dimen-

sional vector space is locally finite dimensional.

P ROOF. Let V be a locally finite dimensional vector space and V; C ¥V
such that V = V; @V, , for some vector space V, . Then there exist [—- |

and p: [ > N such thatl*Vz(I*K)[P] in VectK{E)I. So we have

1%V = (1*k Pl oy, i 2k ) 1P
where 7 is projection and { is injection. But iz is a linear transforma-
tion on (1*K)[P] | 5o the image should be finite dimensional (i.e. I*¥, =

([*K)[ r] , where r is the rank of {7 ). Therefore VI is locally finite dim-

ensional. O

(2.12) COROLLARY. Let V, V; and V2 be locally finite dimensional
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vector spaces such that V =V, @ V,. Then
dim(V) = dim(V,) + dim(V,).

PROOF. Let p’, ¢’, t’ be the dimensions of V, V; and V, , respectivcly.
Then there exist

-

] — @ 1 B [
/' \ ’ //I
Ny’/p s q\’v//q ’ \ //t

such that

I*V:(]*[\)[p], ]*V] z(]*K)[CI]’ L*[’:):(L*K)['].

Apply (IX[XL)* to V = V; @V, to get

(IXTXL)*V = (IXIXL)*V, @015 1<1 )%,
Iie It [l

n}"a"ﬁV = ﬂ;‘ﬁ*Vl ] 77;‘)/*1’2
Il I N
. P77]] . , [q#:)] h .[”7?]
((IXTI>L)*k) = ((IX]>L)*K) @(/lx]\L)*I\} '
[‘1770+’7771

((1<IxXL)*K)

’

where 7;'s are the projections. Therefore pr; = qm, + tw, (Proposition

(1.12) ) and by the following commutative diagram
(q' B’T'nt }’773)

[x]XL yx

pam

J_ane) e

we have p' = ¢'+t'. O

(2.13) PROPOSITION. Let V and W be locally finite dimensional vector

spaces. Then dim (VW) = (dim(V))(dim(W)); for the definition of
tensorproduct, see [ TV 1] Chapter II.

PROOF, If

dim(V) =p' and dim(W) = ¢’
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then there exist

/\ a 1 ]\ B 1
p\N% ) q\Nﬁ

such that 1%V = (1*K )LP) and 1#W < (7*K) (9] Hence

[[3771] [qﬂg]

(IXT)*V = ((I1x1])*K) and (IX])*W = ((IX])*K)

where 7,'s are the projections. Since tensor product is preserved by the

inverse image of a geometric morphism, then we have

(IxJ])*Vew)

I

(IXT)*V@(Ix])*W =
({IX])*K)[PTT]]

[PTII .q772]

[qTTf_)]

u

Q((Ix])*K)

which is isomorphic to ((IX])*K) (see [TV1] ChapterlIl).
Thus there exists a unique ¢t: ] » N such that

am

<7
pnl.qm /
N

commutes (Definition (2.7) ). Also, there exists a unique t': /] > N which

1

makes both triangles

(pmysqms) NxN m} N
T
an; =fn, - l!i

T (PLd) NN MmN

commute, where m is the multiplication on N (diagonal Lemma). In par-

Ix]

ticular, t'am; =pm;.qm,. But by uniqueness of ¢, ¢t'=t=p’. q", i.e.,
dim(VOW) = (dim(V) )(dim(W)). ©

The next theorem summarizes some of the theorems and corollaries.
(2.14) THEOREM. Let 0 > A; > A, > A, > 0 be an exact sequence of
K-vector spaces in E.

1.If A; and A, are finite dimensional then A, is.
2. If A, and A 4 are finite dimensional then A; is.
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3. If any two are locally finite dimensional, then the other is, and
dim(A,) =dim(4; )+ dim(A3) .
4. If AI and A3 are finite dimen sional, A2 is not necessarily.
The following is an example for (4). Let K # K be a geometric
field in Set.:‘. , where K is a field in Set, and let A, be

1 0
K? (0 1) K2 .

(6 1)

It is obvious that 4, is not finite dimensional (but it is locally finite dim-

-> >
e 5.

* > - —~ 'a.
ensional because if U = (1 —5—>2) is in Set then Set /U= Set™

and so the image of U*4, under this equivalence is
(1 0) K2

K2y
ml@

0 1

oa .
which is finite dimensional in Set ™. . But we have the following exact

N
sequence in Set*”*

0 K T, k2 72 K 0
1 o[z 1
11 (0 1) (0 1) 1
i
0 K I K2 "2 K 0. o
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