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CAHIERS DE TOPOLOGIE Vol. XXIII-3 (1982)
ET GEOMETRIE DIFFERENTIELLE

A CARTESIAN CLOSED EXTENSION OF A CATEGORY OF
AFFINE SCHEMES
by Paul CHERENACK

The main result shows that there is a slight extension ind-aff of
the category aff of reduced affine schemes of countable type over a field
k which is cartesian closed. Objects which correspond to the jet spaces
of Ehresmann [ 5] but in the context of affine schemes are employed (Sec-
tion 4) to define the intemal hom-functor in ind-aff. In addition we show
that ind-aff is countable complete and cocomplete. Certain commutation
properties for the inductive limits which define the objects of ind-aff are
derived. Using the internal hom-functor in ind-aff one can place a topology
on the collection of all scheme maps between two affine schemes X and
Y . Then under certain restrictions the scheme maps f: X > Y which are
transversal to a closed subscheme W of Y are shown to form a construct-
ible subset of the collection of all scheme maps from X to Y. The methods
used here show how one might begin to extend results (see [ 6]) on trans-
versality for smooth mappings between differentiable manifolds to the set-

ting of affine schemes.

Let kN:Spec(k[XI,...,Xn,...]) where k[ X, ,..., X

the polynomial ring in a countable number of variables. All objects in

o .1 is

ind-aff can be identified as we shall see with subsets of BN, They will
have the topology inherited from their structure as ind. lim. of objects of
aff in the category of ringed spaces. The topology is not necessarily that
induced from kN . See Example 1.11.

The meaning of cartesian closedness for a category is found in Def-

inition 3.4.

Objects of ind-aff are called ind-affine schemes.
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P. CHERENACK 2

To avoid confusion a closed set will always be a closed subset of
AN and the closure of a set will be the smallest closed subset of &N cont-
aining it unless one specifies that that set is closed in some ind-affine
scheme and thus not necessarily in KN

We say that ind-aff is a slight extension of aff since the objects
of ind-aff form (as one can see using Proposition 1.4) the smallest col-
lection of subobjects of N containing all linear (see Definition 1.3) and

closed subsets of kN and intersections of these. Compare this to the some-
what larger extension of Demazure and Gabriel [4], page G3.

Let X kN, X(k) denotes the set of k valued points of X. A
morphism f: X(k)~> Y (k) is a tuple (fnln ¢z where f, is a polynomial
in k[ X;,...,X,,...]. Let V be the category of all X(k) with X in aff
and morphisms between such objects. Then, if k is algebraically closed
and uncountable since the Hilbert Nullstellensatz holds for affine rings

kL X1, X an object of aff (see Lang [10]), V will be isomorphic to aff

and hence V also has a slight extension which is cartesian closed. Other-

wise one must make some suitable adjustment of V.

We mention briefly one of the possible applications of the theory

developed here. Using the cartesian closedness of ind-aff and supposing
YX: ind-aff X ind-aff —> ind-aff
is the intemal hom-functor in ind-aff, one can form the loop functor
E: ind-aff — ind-aff
by setting E(X ) = X¥AF where F is the closed subscheme of N prov-

ided by the condition that the basepoint ¢ k£ is mapped to the basepoint

* of X . As ind-aff has coequalizers, one can form the cone functor
C: ind-aff — ind-aff
by letting C(X ) be the coequalizer of the maps
i, s (X X)u(kxix}) T/ kx X,

where i is the inclusion and * maps everything to the basepoint (*,%) of

kx X . Then one can show (adding basepoints) that C is left adjoint to E
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A CARTESIAN CLOSED EXTENSION... 3

and thus associate to C or £ homotopy groups II, (X, Y ). Forthedetails
of this construction see Huber [ 9]. The direction in which one might want

to take this theory can be seen in [2].

We outline the paper. In Section 1 we provide in Proposition 1.4
three different descriptions of the objects of ind-aff as subsets of BN . We
use the more convenient description as required. The objects of ind-aff are
then given the structure of ringed spaces and the mappings between them
are described. A map f: X > Y in ind-aff is required to preserve the fil-
tration that X and Y have as objects in ind-aff . We show (Proposition
1.10) that this is not a severe restriction. In section 2 we show that ind-aff
has countable limits and coproducts in a fairly straightforward way. In Sec-
tion 3 we show that an extemal hom-functor on aff to ind-aff (see the first
paragraph of 3 for the definition of this concept) can be extended to an
intemal hom-functor on ind-aff provided that the inductive limits defining
objects of ind-aff satisfy certain commutativity relations. The existence
of an external hom-functor on aff to ind-aff is demonstrated in Section 4.
The necessary commutativity relations are to be found in Section 5. The
reason for proving the results in Section 3 first is to emphasize that the
methods appearing here might be used to form a cartesian closed category
in a more general context. Categorical methods have made this a more con-
cise paper.

Let X, Y, W be non-singular affine irreducible schemes of finite
types over k, let W be parallelisable in ¥ and X be parallelisable (see
Section 6 for definitions). YX(k) is identified with the scheme maps
f: X>Y. Let k be an algebraically closed field. Then in Section 6 we
demonstrate that the set Ty of all f such that f is transversal to W is
constructible in YX(k) . YX(k) can be viewed as the directed union of
certain closed algebraic subvarieties A4 of kN(k) . Let ENA_ denote
the set of maps in A which extend (see Section 6)to scheme maps from
the projective model o; X to that of Y. Then with some limitation we show

that TynNENA_ contains an open subset of ENA4, .
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P. CHERENACK 4

For schemes the reader might refer to [7, 8] ; for category theory
to [11] ; for notions of transversality to [G].

For further applications of ind-affine schemes, see [ 3].

1. DEFINITION OF ind-aff.

We present a definition of ind-affine schemes and then derive some

properties of ind-affine schemes.
CEFINITION 1.1. By a closed linear subscheme of

yeerl)

we mean a closed subscheme of kN whose defining ideal is generated by

N _
k" = Spec(kl X;, ..., X

n

linear polynomials in k[ XI yoees X ..l

Let X be a subset of &N and let ¥ C X be a closed subset of &N
for which there is a minimal closed linear subscheme HY of kN such that
Y= XHHY . Note that the existence of a minimal H, follows from the
existence of one HY . Let TX denote a maximal subset of the set consist-
ing of all such HY with Hy = UH (HeTy) afixed set.

DEFINITION 1.2. We say that Ty is directed if H, KT y implies that

for some M ¢ TX we have HUK C M.

DEFINITION 1.3. A subset H of kN is said to be full linear if:

a) Let V be a closed linear subscheme of EN. Then V(k) CHim-
plies V.C H.

b) H(k) is a vector subspace of kN(k) .

c) H is the union of closed linear subschemes.

P ROPOSITION 1.4. The follouing are equivalent :
i) XnHX =X ; Ty is directed.
it) XoH = XnH for He Ty. XC Hy. Ty is directed.
iii) X =X10HI where X, is a closed affine subscheme and H, is
a full linear subset of N, Ty isthe setof Hy suchthat Hy CH,.

PROOF. i=> ii: XnH=Xn(HynH)=XnH.
ii=>i: XnHy=Xn(UH) =u(XnH)=X.

29%



A CARTESIAN CLO SED EXTENSION... 5

i=>iii: As Hy is the union of closed linear subschemes in Ty and
TX is directed, Hy(k) is a vector subspace of kN(k). Suppose that
H(k)C Hy where H is a closed linear subscheme. One can by Zom's
Lemma if TX contains no maximal element restrict to the case where
{Li} (Li € TX ) is a countable family totally ordered by inclusion such
that

H(k) = U((L;nH)(k)).

Note that the linear polynomials in %[ X;,..., X ,...] form a vector space
of countable dimension. But an easy argument then shows that H(k) =
(L;nH)(k) for some i and thus H(k) CL,(k) for some i.But then
HCL, CHy.

iii => ii: Every point P ¢ X belongs to some closed linear subscheme
contained in H ;. Let Ty consist of all closed linear subschemes Hy con-

tained in HI . Then X C HX . It is not difficult to show:

LEMMA 1.5.1f H, K are closed linear subschemes of N there is a closed
linear subscheme H+K containing H and K and such that
(H+K)(k) = H(k) + K(k).

Let H, K¢ TX' Clearly H, KCHI and, as HI is full linear,
H+KC HI . There is a minimal closed linear subscheme L ¢ Ty such that
LnX =(H+K)nX. Clearly LOH, K. As every Hy C Hy is contained
in H,, Ty must be maximal. As every H ¢ Ty is contained in H,

XnH =Xn(H,nH) =(XnH;)nH=(X;nH;)nH=
=X,nH =XnH. Q. E.D.

CEFINITION 1.6. An ind-affine subset of BN is a subset X of kN, sat-
isfying any one of the equivalent conditions of Proposition 1.4.

REMARK. The collection of ind-affine subsets is closed under arbitrary
intersection but the union of two full linear subschemes need not be an

ind-affine subset.

The additional structure which makes an ind-affine subset X into

a ringed space will now be introduced.
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P. CHERENACK 6

The set TX can be viewed as a category where the arrows are
inclusions. There is a functor Fy:Ty> Rngsp from Ty to the category
of ringed spaces assigning the affine scheme HNX to H for each H Ty,
and inclusions to inclusions. The inductive limit of Fy is a ringed space
whose underlying set is X .

Note that one obtains the same inductive limit if one replaces TX
by the category whose objects are of the form HNX (H ¢ Ty and arrows
inclusions. Also there may be several Ty for the same X . Whether they
define the same element of Rngsp is not clear. If X is expressed X =
X;nH, as in Proposition 1.4, then Ty will be the collection of all Hy
which are closed linear subschemes contained in H,. HN X is the affine
scheme whose ideal is A+ B where A is the ideal of H and B is the
ideal of X . Thus HNX need not be reduced.

DEFINITION 1.7. An ind-affine scheme is a ringed space of the form:
limindFy . The category of ind-affine schemes (denoted ind-aff ) consists
of all ind-affine schemes together with morphisms f: (X,0y) > (Y,0y)
of ringed spaces which are induced from morphisms NS BN in aff, the
category of reduced affine schemes of countable type over k, and such
that for He Ty there is a K¢ Ty such that f(HNX ) CKnY. We will
usually write X instead of (X, Oy ).

Let X be an ind-affine scheme. From the definition of limind FX

it follows YC X is closed iff YrH, He Tx is a closed affine subset of BN,
We will show that under certain weak conditions if f: X > Y is a

map between two objects in ind-aff which is the restriction of a map bet-

ween KN in aff, then f is a map in ind-aff.

LEMMA 1.8. Let Y be an ind-affine scheme, X an irreducible object in

aff and f: X > Y the restriction of a map between BN in aff. Then there

isa KeTy suchthat f(X)CYNK.

PROOF. X :Uf'I(YﬂK) (KeTy). As X is irreducible, one of the

f'I(YﬂK) contains the generic point of X and hence X :f'I(YﬂK).

Q. E.D.
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A CARTESIAN CLOSED EXTENSON... 7

DEFINITION 1.9. An ind-affine scheme X is imeducible if for each He Ty
there is a Ke Ty with KDH and XNnK irreducible.

P ROPOSITION 1.10. Let f:X > Y be a set map between ind-affine schemes,
which is the restriction of a map between BN in aff, and X irreducible.

Then f induces a map in ind-aff.

PROOF. Let He Ty . There is a K¢ Ty such that KDH with XNK ir-
reducible. Then Lemma 1.8 implies that f(KNX ) C YN L for some L e Ty,
and hence that ffHNX)CYnL. Restricted to HNX, f is a map in
Rngsp from HNX to YNL . Taking direct limits one obtains a map f :
X->Y in ind-aff. Q.E.D.

EXAMPLE 1.11. The topology on XN H need not be that induced from the
Zariski topology on EN . Consider kk(k) which is the set of all (a;) with

a, ink, ieN and a, =0 for all but finitely many i.
Let k" (k) be the set of all (a,) in k*(k) such that

ai=0 if i>n,

and I : kk(k)- k™ k) the projection. Choose a subset C = { P]. }ch of
k¥ k) such that CN(k Y k)) consists of finitely many points and I (C)
is dense in k™(k). It is easy to see that this is possible. Also every
closed linear subset K of k"(k) is contained in k"(k) for some n (just
consider the echelon form of the linear equations defining K). Hence by
definition C is closed in k¥(k) which has a topology as the inductive
limit of the Zariski topologies on the k%’ k)N K . On the other hand as the
closure of C in kN(k) is kN(/c) , C cannot be a closed subset of & k(k)
for the topology induced from kN(k). If £ is the complex numbers, then
clearly C will be closed for the inductive limit topology in k* but not for

the topology induced from BN,

2. COUNTABLE LIMITS AND COLIMITS IN ind-aff.

We show that ind-aff has countable limits by showing that it has

countable products and equalizers.
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P. CHERENACK 8

PROPOSITION 2.1. ind-aff has countable products.
PROOF, Let {/}’l }ieN be objects in ind-aff. X, = XinHi where H, is
full linear and X is the closure of X in £N. One considers (see Remark
2.6) ><X as a closed affine and ><H as a full linear subset of kNN =
Spec(k[X 1) where the X/ are indeterminates. But AN XN gN (by diag-
onal counting). Hence

><Xi :(xXi)m(xHi)
is an object in ind-aff. Let p;: ><Xl.-> Xi be the projection map. Let
fi:Z > X, be ind-affine maps. It is easy to see that the p; and the unique

map f:Z > XX, such that p o f = f, belong to ind-aff. Q.E.T.
P ROPOSITION 2.2. ind-aff has equalizers.
PROOF. Let f, g: XY belong to ind-aff. Let
E={PeX|f(P)=g(P)}
Then taking unions over H ¢ Ty,
EnHy =U(EnH )=U(EnXnH ) =En(u(XnH))=EnX =E

where the last equality follows from the fact that f(Q) = g(Q) for Q ¢ E
as f, g are induced by maps between BN in aff . Thus £ can be given
the structure of an ind-affine scheme, Clearly the inclusion i: K> X is a
map of ind-affine schemes.

Let h: Z > X be amap in ind-aff such that foh = goh. For K¢ T,
there is a He Ty such that A(ZNK) CXNH. There isan L in T y such
that

g(XnH)CYNL and f(XnH) CYNL.
But EnH is the equalizer in aff of the restricted maps
frg: XnHYNL

and hence there is a unique map cp : ZNK > EnH such that iocy =h
on ZNK. Taking direct limits one obtains a unique map ¢: Z-> E such
that i o¢ = h. The uniqueness of ¢ follows from the fact that a map such

as ¢ must induce the ck again. Q. E.D.
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A CARTESIAN CLOSED EXTENSION... 9

aff has countable products and equalizers but not countable co-

products. On the other hand:
PROPOSITION 2.3. ind-aff has countable coproducts.

We outline a proof. Let Xi ( i e N) be ind-affine schemes. Shift the
Xi so that they do not contain the origine (e kN . Construct an embedding
5,0 X, > NN Ghere on k valued points si(x].) = (y{") and
ylL =0 ifm#£i, yl =%, ifm=4i.
Let C :Usi(Xi)‘ The objects of T are of the form XH, where H, ¢ Tx .
- 15
It is easy to see that C = CNH, and that the s, are ind-affine maps def-

ining a coproduct structure on C.

Finally we show that ind-aff has countable colimits by showing:
PROPOSITION 2.4. ind-aff has coequalizers.

PROOF. Let f, g: XZXY be two maps in ind-aff. f, g induce maps
fT, g: XY in aff and f, é have a coequalizer g : Yo Q' in aff. Sup-
pose that H ¢ Ty. Let

re k[ Q1 > k[ Y]~ kL YNH]
be the composition of the inclusion and natural quotient maps of affine
rings. Choose a basis {qi}ieN for k[ Q'] . Then K[ Q') = k[ ;] and Q'
can be imbedded as a closed affine subscheme of kN in terms of the gen-
erators {qi}ieN of k[ Q']. Let L, be the closed linear subscheme of
kN defined by the condition that Zi a; g, is sent to ( under r; . Then the
LH are directed by inclusion (for H, K ¢ Ty there is an M ¢ Ty, such that
LyvLgCL,) and hence L = UL, (HeTy) is a full linear subset of
N, Let Q =Q'nL. Q is an ind-affine scheme. As

g(YnH) C Q'nLy O,

g(Y)cQ. Clearly q: Y > Q is a map of ind-affine schemes. Note that

q(Y) =(Q’. Hence Q'=0.
Let ¢c: Y~ Z be amap in ind-aff and ¢: ¥ » Z be the corresponding

map on the Zariski closures. Suppose that cof=cog and hence that
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P. CHERENACK 10

Eof: cog. Then there is a unique map h: @-» Z such that hog=c .
Let HeTy. Thereis a K¢ T, such that ¢(YnH) C ZnK. Consider the

diagram

IAVA 1 k[ ZnK)
h* c* c;"l
QN ——7= k[ Y] 5 — k[ Y H]

* and 071 are the k-algebra maps corresponding to k, ¢, and

where h* ¢
the restriction ¢: YN H- ZNK respectively, and where u;, u, are the
nawral quotient maps. The inner diagrams commute and thus so does the

outer. As u, is surjective,

1
H(k[ZNH]) Cuyoq*k[ Q1) = ri(kL QD).
But r[’;(k[ G]) = k[ Qf\LH] . Hence cl’; maps
cfy kU ZnK]) > k[ QNLy]
which implies that k restricts to a map sending Q@nLy into ZNK and
thus to a map h in ind-aff sending Q to Z. Clearly ho g =c. h is un-

ique since it must be the restriction of k. Q.E.D.

From the above follows:
THEOREM 2.5. ind-aff is countably complete and cocomplete.
REMARK 2.6. To any vector space V of kN(k) one can associate a full
linear subset V* of N by enlarging it to include points of closed linear
subschemes H of &N such that (k) is a subspace of V.By XH, (ieN)
in Proposition 2.1 we mean not the set theoretic product which may not be

full linear but (XH (k))™ (x now in scts). We use this convention

as required.
3. THE EXTENSION OF EXTERNAL HOM-FUNCTORS IN aff, TO INT-

ERNAL HOM-FUNCTORS IN ind-aff.

All hom-sets are those of ind-aff unless specified otherwise.
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A CARTESIAN CLOSED EXTENSION... 11

We suppose that there is a bifunctor (as will be shown in 4)
B(X,Y) =YX: aff<aff > ind-aff
such that a natural equivalence
Hom(XxY,Z) ~ Hom( X, ZY)

(where X, Y, Z are restricted to objects in aff) exists. In this situation
B(X,Y) is called an external hom-functoron aff to ind-aff.

Let Y be an object in ind-aff and Y =limind (Y H) where the
inductive limit is taken over H ¢ TY . Let X be affine. Extend the bifunc-
tor B on objects by letting YX =limind (YnH )X where the inductive
limit is taken over H ¢ Ty . We'll see that Y X is an object of ind-aff later
in Proposition 5.2. Let f: Y » W belong to ind-aff. For each H e Ty there
isa Ke TW such that f(¥YNH ) CKNW and thus a map

X (YnH )X 5 (WAK)X
in ind-aff. Taking inductive limits one obtains a map fX,- YX5 WX Let
g:Z > X be amapin aff. Taking inductive limits of the maps
(YOH)8:(YnH )X 5 (YnH)Z
one obtains amap Y8: Y X5 YZ,
One readily verifies that defining fX and Y& as above one has

extended the bifunctor B to a bifunctor
B(X,Y) =YX, affX indaff > ind-aff.
See Remark 5.6.
Letnow X = limind(XNK) (Ke Ty ). Define
Y X= limpmj y (XNK)

where the projective limit is taken over Ke Ty . ZX is not necessarily
an ind-affine scheme (the proofs would be shorter if it was). Both =YXand
vX (as X is reduced; see Proposition 5.5) can be viewed as subsets of

xY(X0K) (K eTy).
DEFINITION 3.1. YX =YX ¥X,

In Section 5 we will show that YX is an ind-affine scheme.
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P. CHERENACK 12

In a manner analogous to that above (but dual) one obtains an ext-

ension of the bifunctor B to a bifunctor
B(X,Y) =YX ind-affx<ind-aff > R

where R is the category of ringed spaces. Let c:ind-aff> aff be the
functor which associates to X ¢ ind-aff the closure X of X in kN and to

an arrow f: X > Y the induced map f: X ¥ in aff. Then
BrX,Y)=B(c(X),c(Y)):indaffXind-aff - ind-aff
is clearly a bifunctor. Letting B(X,Y)=B(X,Y)nB(X,Y) one sees

that we have extended the bifunctor B to a bifunctor (see Remark 5.6):
B(X,Y) =YX. ind-aff<indaff > ind-aff.

If ind-aff had the inductive and projective limits that we needed
above, we would have used only the following two lemmas in the proof that

indaff was cartesian-closed. Their proofs are to be found in Section 5.

L EMMA 3.2. Let Z =limind(ZNL ) where the inductive limit is taken
over Le T, and X, Y be affine. Then

Hom(X,ZY) = LL»Hom(X,(Zr\.L)Y).
LEMMA 3.3. Let X be ind-affine and Y =limind(YnH) (HeTy).Then
limind (XX(YnH)) = XxXY (HeTy).

CEFINITION 3.4. A category C is cartesian closed if there is a bifunctor
B:CxC-C, C has finite products and there is a natural equivalence
Hom ¢ (XxY, Z) = Hom o (X,B(Y,Z))

with X, Y, Z objects in C.
Then we show :
THEOREM 3.5. There is a natural equivalence
(t) Hom (XX Y,Z ) zHoml(X,ZY)
induced from the natural equivalence

Hom (Xx7,Z) = Hom (X, 2 )
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A CARTESIAN CLOSED EXTENSION... 13

where X, Y, Z are objects in I = ind-aff and X, ¥, Z denote the clos-
ureof X, Y, Z in EN. Thus ind-aff is cartesian closed,

We omit the subscript [ below,

PROOF.Let X, Y be affine and Z as in Lemma 3.2. Then
Hom(X,ZY) = Hom(X, timind(ZAL)Y ) =GHom(X,(ZnL)Y ) =
=UHom (XXY,ZNL) =Hom(XXY, limind ZAnL ) =Hom(XXY,Z)
using Lemma 3.2, the assumption that (1) holds for affines and the defin-
itions of mappings between ind-affine schemes.

Note that as the isomorphism between Hom( X,(ZNL) Y) and
Hom(XxY,ZNL) is induced from an isomorphism between Hom( X, Z Y)
and Hom( XxY,Z ) , the isomorphism between

Hom(X,ZY) and Hom(XxY,Z)
is also induced from this isomorphism. See (**) of Remark 2.6.
Next let Y be affine and X, Z be ind-affine schemes. Let X =

Limind( XNnK ) with K¢ TX . There are commutative diagrams

Hom(X, ZY) —dwxHom( XK, Z Y)

.

Hom(XxY,Z)—2-xHom((XnK)xY, Z)

and
limproj Hom( XnK, Z Y /1 XHom(XnK, Z Y)
limproj Hom(( XK ) X ¥, Z )2 x Hom (( XnK )X ¥, Z )
where i1 ,i2, j1, j2 are canonical embeddings and the natural isomorph-

isms which are the vertical mappings we have by the first part of the proof.
Again note that ips i, are embeddings because X and XX Y are reduced.

As

2

Hom(X,ZY) =Hom(X,ZY)n(limproj Hom(XnK,Z7Y))

and
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P. CHERENACK 14

Hom(XxY,Z) = Hom(XxY,Z )n(limproj Hom((XnK)xY, Z))

(using Lemma 3.3), there is a natural isomorphism between Hom(X,ZY)
and Hom(XXY,Z) induced from the natural isomorphism [ between
Hom(X,ZY) and Hom(XxY,Z).

Next let X, Y, Z be ind-affine and Y =limind (YNH) (He Ty).

Then there are commutative diagrams

Hom(X,2 Y) — 1 xHom( X,z Y H )

{

12

Hom( X X Y,Z)——2—>XHom(X><(YﬂH),Z)

limprojHom(X,Z Y H) 11 _ spomex, zYNH )

]

lim proj Hom( XX (YAH ), Z ) L2« x Hom( XX (Y H ), Z)

where i are canonical embeddings and the natural isomorph-

1’ i2’ jl ’ j2
isms which are the vertical maps we have by the last part of the proof. As
Hom(X,ZY) = Hom(X, Z Y)n(limproj Hom( X, Z YO H))
(zZ¥c ZYC 7Y ; see (xx) of Remark 5.6) and
Hom(XxY,Z) = Hom(XXY,Z)n(limpmoj Hom(AX(YNH),Z )

(use Lemma 3.3) there is a natural isomorphism between Hom(XXY,Z)

and Hom( X, Z Y) induced by the natural isomorphism  above. Q.E.LD.

4. CONSTRUCTING THE EXTERNAL HOM-FUNCTOR OF aff INTO
ind-aff.

All hom-sets are those in ind-aff.

We show that the bifunctor
B(X,Y) =YX: aff<aff > ind-aff
described at the outset of Section 3 exists.

Let X, Y be affine. A morphism f: X > Y is given by a countable
number of coordinates fie k[ X]. Suppose {ei}jeN is a basis for k[X]

30%



A CARTESIAN CLOSED EXTENSION... 15

and /(Y ) is the ideal defining Y . If
f() =(f(x)) = (Sde),
then

0=F(f(x)) :%Fp(af:)ep for Fel(Y)

implies F, (af) =0. We let U be the affine closed subscheme of EN*N
defined by the ideal /y which is generated by

CF (X0) | peN, Fel(Y)),

NN can be identified with &N (by diagonal counting). Let

T:{(ti) | tieN,ieN}.
If ¢t = (ti) consider the ideal At generated by the Xi. for j>¢,. Then
H=UH, (teT) where H, = Spec( k[ Xi.]/At) isa full linear subset of k™.
REMARK. (UmHt)(k) can be naturally identified with the set of maps
fe Hom(X,Y) such that if f:(lE a]t:ei) then a{: =0 if j> L. Hence
UnH, might be described as a ¢-jet scheme, and this point of view plays
an important role in Section 6.

DEFINITION 4.1. YX =UnH = limind(UnH,).

It can be seen that a change of basis {ej}jeN corresponds to a
linear map (each coordinate a linear polynomial) mapping Y% onto an iso-
morphic copy.

Let g: Y > W be in aff. As

g(1(%)) = (8n(f(%))) =(8n(Zale;)) = (3 () e,)

g induces a map gX: YX, pX in ind-aff which on k valued points is

defined by gX(a{) = (gﬁl(a{:)) . Clearly with this defintiion of gX, Y¥is

a functor in Y from aff to ind-aff.
Let g: W> X be in aff. g induces a map g*: k[ X] > k[ W] . Let
{d_} N beabasisfor K[ W].

m ' m €
feg(x)) =(f,(e(x))) =(g*(fi(x))) =(§L?(a£) d,)

where L:."(a];) is a linear function in (ai:) . Define a map Y 8:; Y*5y%in
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ind-aff by setting Yg(a{') = (L;n(a{‘)) on k valued points. Note that if

one changes the basis { dm} me N then the map in ind-aff obtained differs

from the first map by the isomorphism between the two copies of Y ¥ in-

duced by this base change. Thus with this definition of ¥ & a functor
X

Y": aff > ind-aff in X is obtained.

Letf:Z~ X, g: X~ Y and h: Y > I be maps in aff. As
ho(gof) = (hog)of
one sees that /o gX = gZo Y/ and hence that
B(X,Y) =YX: offxaff » ind-aff
is a bifunctor.
THEOREM 4.2. There is a natural equivalence
Hom(XXY,Z )~ Hom(X,Z7Y).
Thus B is an external hom-functor on aff to ind-aff.
P ROOF. Let {ef}heN, resp. {e]y}ij, be a basis of k[ X], resp. k[ Y ].

Then § e:ejy,’i form a basis for k[ XX Y] = k[ X1Qk[ Y] .
If zp = hZ.aihjefe]-y is the h-th tuple of an element of Hom(XXY,Z ) write
]

F(zh)= 2 F (ahi.)e;‘ez.

Then the mappings in Hom(XXY, Z) correspond to the set of all (a h/
(/cN XNXN' s identified with kN) satisfying:
A) F (a )—0 forall Fel(Z).

B) For fxxed i, a!.= 0 except for a finite number of %, j.

hJ

Let w., = Zb‘] * be the i j-th coordinate of an element in Hom(X,Z Y).
ij

As a consequence of the definition of zY (j2¢, implies w;.=0) the

bl j satisfy condition B. Let u, Ew ]ei’ be the i-th coordmate of an ele-

ment of ZY(k) and Fel(Z) . Then
0=F(u;)= F(z(z bi enel) :PEF (bhl)e e
»q

and thus the b;zj satisfy condition B. Conversely it is clear that to every

sz satisfying A and B there is a unique element of Hom(X,Z Y) . Thus
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there is a «natural identification» of both Hom(XXY,Z ) and Hom (X, Z Y)
with the set of all (a;;j) satisfying A and B. We leave it to the reader to
see that from this «natural identification» there comes a natural isomorph-

ism between Hom(XXY,Z ) and Hom(X,Z Y). Q.E.D.

5. COMMUTATION PROPERTIES OF THE INDUCTIVE LIMIT.

We prove the lemmas and show that the hom-functor exists as re-
quired in Section 3. The lemmas describe commutation properties of the
inductive limit with certain operations. Before we begin the proof of Lemma
3.2 we will describe the inductive limit ZY = limind (ZNL )Y where Y
is affine and L ¢ TZ'

First (ZnL)Y = UZﬂL N H where H is a fixed full linear subset
of IN, L e T, and U,  , is defined by the ideal J, , where H and
UZﬂL are chosen as they were in Definition 4.1. Clearly [, ., =/J5 + /-

and thus U, .,/ ZUZﬂUL.Let
M=cu(UnH) (LeT,).
As U; is a closed linear subscheme and the U NnH are directed by in-

clusion the following lemma implies that M is a full linear subset of kN .

LEMMA s.1. Let A(k)CM be a Zariski closed subset of M(k). Then
ACU, forsome L eT, if A isa closedlinear subscheme of N,

P ROOF. Recall that the relation

F(f(x)) =EFP(a]:)e where f(x):(za{:e,)
P P PR

provides the generators and linear polynomials Fp(ai:) for JL when the
F are restricted to a set of linear generators of /(L) and p varies. Let
E ; be the ideal generated by linear F in I(L ) or where Fp vanishes on
A for all p and E =nE . The closed linear subschemes which are the
zero sets of E and E are related by V(E)=UV(E;). Cleady
V(E)CL. Hence:

loV(E)Cc UL (LeTy ).

From the definition of TZ and 1° follows
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20 V(E) =R forsome ReT,.
It is not difficult to see that

30 E is the ideal generated by linear polynomials F where FP van-
ishes on 4 forall p or F vanishes on ﬁZ .
Next we show

40 For R asin 2°, 4 CUg.
As AcC u(Up) if ANUp# A thereisa KeT; (KDR) and a point
QeUgn A such that Qf Up. Hence one can find a linear polynomial
G e I(R) such that the Cp vanishes on Up but GP(Q) # 0 for some p.
Then by 30 G ¢ E. This contradicts 29. Q.E.D.

Let B = UZ NnM.
P ROPOSITION 5.2, B = zY .

PROOF. Let ; be the set of all closed linear subschemes of U; nH.
Then
Y- lim i -
VA —lzmmd(UZﬂULﬂH) (LeT,)
=lim ind (lim ind(UZﬂA)) (A e QL’ L e TZ)
:limind(U-Z—ﬁA) (AETB) by Lemma 5.1

=B.
Q. E.D.

Here as before all home-sets consist of morphisms in ind-aff bet-
ween two objects in ind-uff.
P ROPOSITION 5.3 (Lemma 3.2). Let Z =limind (ZNL ) where the limit
is taken over L ¢ TZ and X, Y be affine. Then

Hom(X, limind((ZAL )Y)) = limind Hom (X, (ZnL ) Y).

P ROOF. Note that the inductive limit in sets here is just union. Let f:
X>2ZY bea map in ind-affine schemes. Then for D = Z Y and some K ¢ T,
f(X)cZ¥nK. Lemma 5.1 implies that KC Uy, H for some L ¢ T,.

Hence
f(X) CZYnKc U nHNB=UnUznH=(ZnL)Y,

Q. E.D.
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P ROPOSITION 5.4 (Lemma 3.3). Let X be an indaffine scheme and
Y=Ulimind(YnH) (H ¢ Ty). Then

XXY = limind (XX(YnH)) (HeTy ).
P ROOF. Let X = XHHX as in Proposition 1.1.
XxY =(XoHy)x(YnHy) =(Xx¥Y)n(HyxHy).

Let A be linear closed in Hyx Hy. Then there isa H e Ty, KeTy such
that A C KXH . Let @, be the set of all closed linear subschemes cont-
ained in HX X H . Then for fixed H

(1) limind((XXY)nL) =(XxY)n(HyxH) =Xx(YnH)
where the inductive limit is over L ¢ Qy. Applying limind taken over
He Ty the left side of (1) becomes
limind ((XXY)nM) (MeTyxyy)

which equals XXY. Q.E.D.

We show now the last requirement for the fundamental result of this
paper.
P ROPOSITION 5.5. ¥ % is an affine scheme for ind-affine schemes X, Y.
PROOF. Let X =limind(XnK) (KeTy). As we have seen in Section 4
the maps b : 7 X, 7X0K jnduced by the inclusions XNK » X are lin-
ear. Hence W = ﬂb'll((Y XﬂK) is easily seen to be an ind-affine scheme
(Y XnKC YXHK. See (%) of Remark 5.6 ). We show that W = Y X. Let

S=iN, R=5% and Ry =S5X"K

There is a commutative diagram

W 7X R
(1) 3% by CK
YXﬂK )7XﬂK RK

for each K. It is easily seen that ¢ is surjective and hence the induced

maps ck: k[ RK] > k[ R] are injective. As the k[ RK] are directed by
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inclusion
limind k[ R ) = UR[R,] (KeTy) )
Suppose fek[R] but f}k[ EK] . Recalling the definition of sX , we

see that f is a polynomial in a finite number of variables a{ where (c{) €
R(k) arises from (Eotl.ei) ¢ Hom(X, EN) and the e form a basis for
k[ X]. As X is dense in X there is a K such that
{ €; | allz is a variable in f for some i }

is linearly independent in k[ XN K] . One has thus a basis for /c[RK] such
that ¢, is projection and cl’g(a{.') = a{: if a{: is a variable in f. But then
fekl RK] . Thus limind k[ RK] = k[ R] and hence R = limproj RK'

Taking projective limits, diagram ( ) becomes

v Y

e
=]

a b c

=1}

limproj YXNK _, limprj yXNK
As the horizontal arrows are injective, so are @ and b. Thus
WcC YXnlimproj Y XNK)
(note that strictly speaking one should speak of pullback rather than inter-
section). If
P e 7Xnlimproj (Y XK
then b(P):(bK(P))eXYXHK and hence P¢ W. Q.E.D.

REMARK 5.6. Let Y be affine and Z be ind-affine (as in the discussion
preceding Lemma 5.1). Then
(ZnL)Y =U, nHCUz;nH CZY
and hence
(%) z¥cz’

Let f: Z~ W be a map in ind-aff and f:Z > W the corresponding map in
aff. Then fY.' Z¥ 5 WY is induced from fY and hence fY is the restric-
tion of a map in aff between kN. Because f(ZZnL)C WnK for some
KeT, and Lemma 5.1, fY respects filtration in ZY and hence belongs
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to indaff. g: X > Y in ind-aff induces

(ZNL )8: UZF\LHH-’ Uy NH'
which is the restriction of Z% . Uz nH-~ U'ZnH’ and hence Z % is the

restriction of Z8. Again Lemma 5.1 implies that Z#& preserves filtration.

Next let X, Y be ind-affine. Suppose that f: Y > W, g: Z»> X are
in ind-aff and f— Y-w, g:Z » X are the corresponding maps in aff .
Then from the definition of YX via the by it follows that fX (resp. Y &)
is the restriction of fX (resp. Yg). Because the bK are linear and hence

map closed linear subschemes to closed linear subschemes, the filtration

preserving maps fXﬁH (resp. Y 8(L) where g(L ) is the restriction of
g o ZNL for some L ¢T, and g(ZnL)C XNH for some H e T y) lift
to filtration preserving map f X (resp. Y &). The fact that

(%) yXc yXcv X
follows from the commutativity of

y X

)

Y

dK bK
YXﬂK YX(WK

(which commutes because we have shown that dK= Y! is the restriction

of bK = V! where I: XnK > X is the inclusion).

6. TRANSVERSALITY IN VX,

Let X, Y, W be affine non-singular irreducible schemes of finite
type over an algebraically closed field k, W a closed proper subscheme
of Y and f: X> Y a map of schemes. For an affine non-singular scheme
Z of finite type over k by T, Z we denote the tangent space to Z at z.
For the notions that we use see [1, G]. We assume that k is algebraically

closed.

DEFINITION 6.1. f is transversal to W if for each x ¢ X(k), f(x) ¢W or

Tpin)¥ = Tppe) W+ () (T,).
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Letr=dimW and YCKE™.

DEFINITION 6.2. W is parallelisable in Y if there is a map of schemes
a:Y > (k™)" such that for each ye W(k), a(y) is an r-tuple of vectors
generating Ty V. The map o will be called a parallelising map. We say
X is parallelisable if X is paralellisable in X.

If W is not parallelisable in Y it is not difficult to find a finite
open covering {Ui} of Y such that U,nW is parallelisable in U, .

Recall that ¥ X(k) is just the collection of all scheme maps f:
X-> Y. Lett bp} be a basis for k[ X] . The elements of YX(k) have the
form f = (%‘.ag bp) where aze k, for fixed g one has

a2=0ifp>>0 and ¢g=1,...,m.
Let_r:(rl,...,rm) e N™ and
- X 0

A!—{er(k)iaZ—Olfp>rq}.
DEFINITION 6.3. A subset C of YX(k) is constructible if, for all T,
CﬂAr is constructible, i.e., if for some n e N,

. n
AIF\C = Y (Kmm Um)

where Km is closed and Um is open in kN(k) (m=1,...,n).

P ROPOSITION 6.4. Let X be parallelisable and W be pamllelisable in
Y. Then
Ty= {fe YX(k) | f is transversal to W}

is constructible.

PROOF. Let x¢ X(k) and B: X (k")° be the parallelising map of X
where X C k™ and s = dim X. Let ¢ as above be the parallelising map of
WinY and £: X (k™) the composite ao f. We restrict to fed NY X(k).
Form all rXr determinants from the array ((df), (B(x)),f(x)-) calling
these D, (as, Xy T) s eens Da(ag, x,r) . Suppose that F;,..., F, generate
the ideal of W and let

Db, %,1)=F(f(x)) for i=1,...,0b.
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Then clearly fe A will be transversal to W if, with ¢ = a+5b,
D, (ag,x,_r) =0, .., Dc(as,x,I)ZO

do not have a common zero on X . The equations
Dl(af]’,x,_r): 0, ..., Dc(af;,x,_r_) =0

define a closed subset Sr of Ar X X. Let p,: Ar X X Ar be the projection
on the first factor. Then by Chevalley's Theorem [8, page 94] p,(S,)is a
constructible subset of A and hence its complement Tp N AI is also

constructible. Q.E.L.

Let Y* (resp. W*) be the projective scheme which is the closure
of Y (resp. W) in projective m-space P™ defined over k. Similarly let
X* be the projective scheme which is the closure of X in p". Suppose
that X*, Y* and W* are non-singular. Let F' be an element of the proj-
ective ring of X* of a given degree and suppose that

X=tPeX*| F(P)#0}.
There is a smallest integer m(r) such that, for all fe )”X//u)v’m-‘lr, f can
be written in homogeneous coordinates

f*: (Fm(I);G]w--’Gm/\

where F™(1), Gl »+.s G, are elements of the same degree in the projec-
tive ring of X*. We call f* the extension of f (relative to F and r) if
Fm(r) Gl Y ee s Gm do not have a common zero in .\ *. Let

_r=(rl ,...,rm), s = (s],..., sm) e N™,
We write s> r if s, 2T, for each i.

We assume that 3 (resp. a ) extends to a map
B*: X* (PM)S  (resp. a*: Y% (PMY )

of schemes and that restricted to suitable covering affine opens 8* is a

parallelising map (resp. a* is a parallelising map of ¥#* in V*).

PROPOSITION 6.5. Let EmAr be the set of elementsin Y X(k)nAL which

extend to scheme maps X*- Y *. Suppose that EﬂAI contains a map which
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extends to a scheme map X*- Y* which is transversal to W*. Then,
TynkE ﬂA_r contains an open non-empty subset of EF\AI (with respect
to the subspace topology).

PROOF. Working in homogeneous coordinates let £*: X*» (P™) be the
composite a*o f* (where fe ENA_ and f extends to f*: X*» Y *). Form
all rXr determinants of the array—(x e X*) ((df*), (B*(x) ), EX(x)) re-
stricting to fe ArnE and call these

Dl(afl’,x,g), cees Da(ag,x,[).
Suppose that FI yenes Fb are homogeneous polynomial generating the ideal
of W* and let
DHa(as,x,_r) =F (f*(x)) for i =1,..,b.
Then clearly if the
Dl(ag,x,_r)zo, s Dc(a}q),x,_r)=0 (c=a+b)

do not have a common root other than zero then ag eAd,NENTy .
Let /(X*) be the homogeneous ideal defining X* in P" and
q: kl Ty,..., T, 1> k[ X*] the quotient by I( X*). There are homogeneous

polynomials Ej(aZ’ T,r) such that
P = . p | = .
q(E].(aq,T,z)) D](aq,x,z) for j=1,..,¢c
Let Hj(T) (j=1,...,d) generate I[(X*) and
Ej+c(az, T,r) = Hj(T) for j=1,..,d.
Set e = d+c¢. Then we apply the following result to be found in van der
Waerden [12, page 8].

LEMMA 6.6. e homogeneous polynomials with indeterminate coefficients
possess a resultant system of integral polynomials b, ..., b‘f’ in these
coefficients such that for special values of the coefficients in an arbitrary
field the vanishing of the resultants is necessary and sufficient in order
that the homogeneous polynomials have a solution distinct from the zero

solution.

Applying this lemma to the Ej(ag,T,I) for j=1,..., e in our
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case the indeterminate coefficients of the lemma being replaced by poly-
nomials in the az obtained from the Ej (ag, T,r) one obtains polynomials
P P i p .
bl(aq,_r), cees b¢(aq,_r) in the al such that: Let
—{gP P r)= P .=
V_r {aqe EmAI | b, (aq,_r) 0,..., bqs(aq,_r) 01.

Then U, =(A.NE) -V, isan open subset of EnAI such that if (CS) eU,
the equations E]. (cs, T,r) =0 (j=1,..,e) have no common root.
Thus TynEnA DU , U, # © by assumptions. Q.E.D.

EXAMPLE 6.7. One can see that even in the simplest cases, for instance
cC and W ={0}, that Ty is not an open subset of YX(k) . For instance
let P, be the collection of polynomials f(X) = aX?+ bX + c. Then the
collection of f not transversal to {0} corresponds to the set N of (a, b,c)

such that
b2-4ac=0 if a 20, a=b=c=0 if a=0.

If P, is identified with k3 then clearly T,-N is not open with respect

to the Zariski topology on k3 nor the usual topology if £ = R or C.
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